MES w zagadnieniach nieliniowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "MES w zagadnieniach nieliniowych"

Transkrypt

1 MES w zagadnieniach nieliniowych Jerzy Pamin JPamin@L5.pk.edu.pl Podziękowania: A. Wosatko, A. Winnicki ADINA R&D, Inc. ANSYS, Inc. TNO DIANA Altair Engineering

2 Tematyka zajęć Zagadnienia nieliniowe Analiza przyrostowo-iteracyjna Nieliniowość geometryczna Nieliniowość fizyczna Zarysowanie Katastrofy budowlane Literatura [1] R. de Borst and L.J. Sluys. Computational Methods in Nonlinear Solid Mechanics. Lecture notes, Delft University of Technology, [2] G. Rakowski, Z. Kacprzyk. Metoda elementow skończonych w mechanice kostrukcji. Oficyna Wyd. PW, Warszawa, [3] M. Jirásek and Z.P. Bažant. Inelastic Analysis of Structures. J. Wiley & Sons, Chichester, [4] M. Kwasek Advanced static analysis and design of reinforced concrete deep beams. Diploma work, Politechnika Krakowska, 2004.

3 Źródła nieliniowości Spowodowane zmianą geometrii ciała (odkształcalnego) duże odkształcenia (np. guma, formowanie metali) duże przemieszczenia (np. konstrukcje smukłe, cienkościenne) kontakt (oddziaływanie stykających się ciał) obciążenie śledzące (zależne od deformacji ciała) Spowodowane nieliniowymi związkami konstytutywnymi plastyczność (odkształcenia trwałe) uszkodzenie (degradacja własności sprężystych) zarysowanie (kontynualna reprezentacja rys)... Uwagi: Nie obowiązuje zasada superpozycji. Możliwy jest opis ośrodka nieciągłego, w którym części składowe są połączone interfejsami (np. konstrukcje zespolone) lub występują pękniecia (rysy dyskretne). Interfejsy mają zazwyczaj nieliniowe charakterystyki, reprezentując np. tarcie, adhezję, pękanie.

4 Nieliniowe kontinuum [1,2,3] Równania równowagi + statyczne warunki brzegowe L T σ + b = 0 w V, σν = ˆt na S gdzie: L macierz operatorów różniczkowych σ tensor/wektor uogólnionych naprężeń b wektor sił masowych ˆt S ν Słaba forma równań równowagi δu T (L T σ + b) dv = 0 δu V Zasada prac wirtualnych δw int = δw (Lδu) T σ dv = δu T b dv + δu Tˆt ds V V S V

5 Metoda Galerkina Przemieszczeniowa wersja MES u u h = n w i=1 N i (ξ, η, ζ)u i = Nu e gdzie: N - funkcje kształtu, u e - wektor stopni swobody elementu, n w - liczba węzłów Transformacja węzłowych stopni swobody u e = A e u g gdzie: u g - wektor stopni swobody układu Słaba forma równań równowagi dla układu zdyskretyzowanego n e e=1 A e T V e B T σ dv = f, B = LN Podejście izoparametryczne, numeryczne całkowanie macierzy ES

6 Liniowa sprężystość Prawo Hooke a Notacja tensorowa: σ = D e : ɛ, Notacja macierzowa: σ = D e ɛ, σ = σ x σ y σ z τ xy τ yz τ zx Izotropia materiału: D e = D e (E, ν) Liniowe związki kinematyczne σ ij = Dijkl e ɛ kl, ɛ = ɛ x ɛ y ɛ z γ xy γ yz γ zx Notacja tensorowa: ɛ = 1 2 [ u + ( u)t ], ɛ ij = 1 2 (u i,j + u j,i ) Notacja macierzowa: ɛ = Lu Zatem tensor naprężenia: σ = D e ɛ = D e Lu = D e LNu e = D e BA e u g Równania równowagi dla układu zdyskretyzowanego n e e=1 A e T V e B T D e B dv A e u g = f, Ku g = f σ 1 E ɛ

7 Analiza przyrostowo-iteracyjna Nieliniowy problem: f przykładane w przyrostach t t + t σ t+ t = σ t + σ Równowaga w chwili t + t: n e A e T gdzie: e=1 n e A e T e=1 B T σ t+ t dv = f t+ t V e B T σ dv = f t+ t V e f t int = n e e=1 Ae T V e B T σ t dv Linearyzacja lewej strony w chwili czasu t: Układ równań dla przyrostu: σ = σ( ɛ( u)) K u g = f t+ t f t int f t int

8 Schemat metody przyrostowo-iteracyjnej Konieczne poprawki iteracyjne celem osiągnięcia stanu równowagi w chwili t + t algorytm Newtona-Raphsona Siły niezrównoważone (residualne): R j = f t+ t f t+ t 0 f f f t+ t f t u t u 1 du 2 u t+ t R 1 f int,1 u K j du g = f t+ t f t+ t K - operator styczny Pierwsza iteracja: u g 1 =K 1 0 (f t+ t fint,0) t σ 1 f t+ t int,1 f t+ t Poprawki: du g j+1 =K 1 j σ j+1 (f t+ t f t+ t +1 Kryterium zbieżności: f t+ t f t+ t f δ f t+ t ) Algorytm zmodyfikowany: K j = K 0

9 Schemat metody przyrostowo-iteracyjnej Konieczne poprawki iteracyjne celem osiągnięcia stanu równowagi w chwili t + t algorytm Newtona-Raphsona Siły niezrównoważone (residualne): R j = f t+ t f t+ t 0 f f f t+ t f t u t u 1 du 2 u t+ t R 1 f int,1 u K j du g = f t+ t f t+ t K - operator styczny Pierwsza iteracja: u g 1 = K 1 0 (f t+ t σ 1 f t+ t int,1 Poprawki: du g j+1 =K 1 j σ j+1 f t+ t (f t+ t f t+ t +1 Kryterium zbieżności: f t+ t f t+ t f δ f t int,0) f t+ t ) Algorytm zmodyfikowany: K j = K 0

10 Schemat metody przyrostowo-iteracyjnej Konieczne poprawki iteracyjne celem osiągnięcia stanu równowagi w chwili t + t algorytm Newtona-Raphsona Siły niezrównoważone (residualne): R j = f t+ t f t+ t 0 f f f t+ t f t u t u 1 du 2 u t+ t R 1 f int,1 u K u g = f t+ t fint t K - operator styczny Pierwsza iteracja: u g 1 = K 1 0 (f t+ t σ 1 f t+ t int,1 Poprawki: du g j+1 =K 1 j σ j+1 f t+ t +1 f t+ t f int,0) (f t+ t f t+ t ) Kryterium zbieżności: f t+ t f t+ t f δ Algorytm zmodyfikowany: K j = K 0

11 Schemat metody przyrostowo-iteracyjnej Konieczne poprawki iteracyjne celem osiągnięcia stanu równowagi w chwili t + t algorytm Newtona-Raphsona Siły niezrównoważone (residualne): R j = f t+ t f t+ t 0 f f f t+ t f t u t u 1 du 2 u t+ t R 2 f int,2 u K u g = f t+ t fint t K - operator styczny Pierwsza iteracja: u g 1 = K 1 0 (f t+ t σ 1 f t+ t int,1 Poprawki: du g j+1 =K 1 j σ j+1 f t+ t (f t+ t f t+ t +1 Kryterium zbieżności: f t+ t f t+ t f δ f int,0) f t+ t ) Algorytm zmodyfikowany: K j = K 0

12 Sposoby przykładania przyrostów Sterowanie siłą lub przemieszczeniem Sterowanie parametrem łuku

13 Nieliniowość geometryczna x 2, X 2 φ(x, t) S 0 u V X V 0 x S Konfiguracja początkowa i aktualna x 1, X 1 Funkcja ruchu: x = φ(x, t) Wektor przemieszczenia: u(x, t) = x X Gradient deformacji (podstawowa miara deformacji): F = φ X = X x Tensor odkształcenia Greena (jedna z możliwych miar odkształcenia): E = 1 2 (FT F I) = 1 2 [ X u + ( X u) T + ( X u) T X u]

14 Nieliniowość geometryczna Nieliniowe związki kinematyczne, np. ε x = ε L x + ε N x = u x ( w ) 2 x σ = σ( ɛ( u)) Równania równowagi opisują równowagę ciała zdeformowanego. Zasadę prac wirtualnych można zapisać w konfiguracji początkowej lub aktualnej. Różnym miarom odkształcenia odpowiadają różne miary naprężenia. Małe odkształcenia: E ɛ = 1 2 [ u + ( u)t ] < 2%. Małe przemieszczenia (uogólnione): V V 0 (jeden opis, zasada zesztywnienia).

15 Nieliniowość geometryczna Równowaga układu zdyskretyzowanego: K u g = f t+ t gdzie styczna macierz sztywności: f t int K 0 - macierz sztywności liniowej K = K 0 + K u + K σ K u - macierz sztywności przemieszczeniowej (macierz dyskretnych związków kinematycznych B zależna od przemieszczeń) K σ - macierz sztywności naprężeniowej (zależna od naprężeń uogólnionych)

16 Nieliniowość fizyczna K u g = f t+ t Linearyzacja lewej strony w chwili czasu t: σ = ( ) σ t ( ɛ t ɛ u) u D = σ ɛ, L = ɛ u Dyskretyzacja: u = N u e f t int σ = σ( ɛ( u)) Liniowe związki geometryczne macierz dyskretnych związków kinematycznych B = LN niezależna od przemieszczeń Styczna macierz sztywności n e K = A e T B T D B dv A e V e e=1

17 Uplastycznienie materiału siła A B C P σ y - A σ y B σ y - - C przemieszczenie σ y σ y σ y zakres sprężysty pełne uplastycznienie zakres sprężysty pełne uplastycznienie

18 Rysy dyskretne lub rozmazane Energia pękania G f (zużyta na powstanie jednostki powierzchni rysy)

19 Symulacja zarysowania żelbetowej tarczy pakietem ATENA [4]

20 Katastrofa platformy Sleipner A, Norwegia 1991 Żelbetowa platforma wirtnicza posadowiona na głebokosci 82 m, podstawa złożona z 24 komór o średnicy 12 m (4 wspierają pomost) Przyczyna zatonięcia konstrukcji podstawy podczas operacji posadowienia: błąd w obliczeniach MES trójnika łączącego komory (niedoszacowanie siły ścinającej o 47%) i niewystarczające zakotwienie zbrojenia w strefie krytycznej Rysunki z arnold/disasters/sleipner.html

21 Airport Paris Charles de Gaulle, Terminal 2E, 2004 Zespolona przeszklona konstrukcja powłokowa w kształcie rury, swobodnie podparte sklepienie osłabione licznymi otworami Zaprojektowany przez architekta Paula Andreu (zaprojektował również terminal 3 w Dubai International Airport, który zawalił się podczas budowy), oddany w roku 2003 Przyczyna: zbyt mały margines bezpieczeństwa w projekcie, prawdopodobnie także błedy wykonawcze i/lub niedostatecznie dobry beton Rysunki zaczerpnięte z

22 Uwagi końcowe 1. Symulacje komputerowe stwarzają bezcenne możliwości, ale tylko świadomemu użytkownikowi MES. 2. W modelowaniu efektów nieliniowych zaczyna dominować modelowanie 3D. 3. Dla poprawy jakości aproksymacji MES wskazane jest adaptacyjne zagęszczanie siatki na podstawie oszacowania błędu dyskretyzacji.

23 Adaptacyjne zagęszczenie siatki elementów Przykład zaczerpnięty ze strony Altair Engineering

24 Generacja siatki elementów Przykład zaczerpnięty ze strony Altair Engineering

25 Monitoring błędów dyskretyzacji Adaptacyjne zagęszczenie siatki

ROZWIĄZANIE PROBLEMU NIELINIOWEGO

ROZWIĄZANIE PROBLEMU NIELINIOWEGO Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja

Bardziej szczegółowo

Rozwiązywanie zagadnień nieliniowych

Rozwiązywanie zagadnień nieliniowych Rozwiązywanie zagadnień nieliniowych Wykład 4 dla kierunku Budownictwo, specjalności DUA+TOB/BIM+BIŚ+BOI Jerzy Pamin Instytut Technologii Informatycznych w Inżynierii Lądowej Politechnika Krakowska Podziękowania:

Bardziej szczegółowo

MES w zagadnieniach sprężysto-plastycznych

MES w zagadnieniach sprężysto-plastycznych MES w zagadnieniach sprężysto-plastycznych Jerzy Pamin e-mail: JPamin@L5.pk.edu.pl Podziękowania: P. Mika, A. Winnicki, A. Wosatko ADINA R&D, Inc.http://www.adina.com ANSYS, Inc. http://www.ansys.com TNO

Bardziej szczegółowo

PLASTYCZNOŚĆ W UJĘCIU KOMPUTEROWYM

PLASTYCZNOŚĆ W UJĘCIU KOMPUTEROWYM Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2013/2014 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Sprężystość

Bardziej szczegółowo

Analiza płyt i powłok MES

Analiza płyt i powłok MES Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy

Bardziej szczegółowo

MODELE ANALIZY NIELINIOWEJ DO OPISU ZARYSOWANIA

MODELE ANALIZY NIELINIOWEJ DO OPISU ZARYSOWANIA Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2013/2014 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Podziękowania: Jerzy Pamin, Andrzej

Bardziej szczegółowo

8. PODSTAWY ANALIZY NIELINIOWEJ

8. PODSTAWY ANALIZY NIELINIOWEJ 8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:

Bardziej szczegółowo

MES w zagadnieniach ośrodka ciągłego 2D i 3D

MES w zagadnieniach ośrodka ciągłego 2D i 3D MES w zagadnieniach ośrodka ciągłego 2D i 3D Wykład 2 dla kierunku Budownictwo, specjalności DUA+TOB/BIM+BIŚ+BOI Jerzy Pamin i Piotr Pluciński Instytut Technologii Informatycznych w Inżynierii Lądowej

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

Analiza płyt i powłok MES Zagadnienie wyboczenia

Analiza płyt i powłok MES Zagadnienie wyboczenia Analiza płyt i powłok MES Zagadnienie wyboczenia Wykład 3 dla kierunku Budownictwo, specjalności DUA+TOB Jerzy Pamin i Marek Słoński Instytut Technologii Informatycznych w Inżynierii Lądowej Politechnika

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9

Bardziej szczegółowo

MES w zagadnieniach sprężysto-plastycznych

MES w zagadnieniach sprężysto-plastycznych MES w zagadnieniach sprężysto-plastycznych Wykład 5 dla kierunku Budownictwo, specjalności DUA+TOB Jerzy Pamin Instytut Technologii Informatycznych w Inżynierii Lądowej Politechnika Krakowska Podziękowania:

Bardziej szczegółowo

MES w zagadnieniach ośrodka ciągłego 2D i 3D

MES w zagadnieniach ośrodka ciągłego 2D i 3D MES w zagadnieniach ośrodka ciągłego 2D i 3D Wykład 2 dla kierunku Budownictwo, specjalności DUA+TOB Jerzy Pamin i Piotr Pluciński Instytut Technologii Informatycznych w Inżynierii Lądowej Politechnika

Bardziej szczegółowo

Metody obliczeniowe - modelowanie i symulacje

Metody obliczeniowe - modelowanie i symulacje Metody obliczeniowe - modelowanie i symulacje J. Pamin Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechniki Krakowskiej Strona domowa: www.l5.pk.edu.pl Zagadnienia

Bardziej szczegółowo

Analiza płyt i powłok MES Zagadnienie wyboczenia

Analiza płyt i powłok MES Zagadnienie wyboczenia Analiza płyt i powłok MES Zagadnienie wyboczenia Wykład 3 dla kierunku Budownictwo, specjalności DUA+TOB/BM+BŚ+BO Jerzy Pamin i Marek Słoński nstytut Technologii nformatycznych w nżynierii Lądowej Politechnika

Bardziej szczegółowo

Metody obliczeniowe - modelowanie i symulacje

Metody obliczeniowe - modelowanie i symulacje Metody obliczeniowe - modelowanie i symulacje J. Pamin nstitute for Computational Civil Engineering Civil Engineering Department, Cracow University of Technology URL: www.l5.pk.edu.pl Zagadnienia i źródła

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,

Bardziej szczegółowo

4. Elementy liniowej Teorii Sprężystości

4. Elementy liniowej Teorii Sprężystości 4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.

Bardziej szczegółowo

9. PODSTAWY TEORII PLASTYCZNOŚCI

9. PODSTAWY TEORII PLASTYCZNOŚCI 9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

Bardziej szczegółowo

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz 1 Charakterystyka ustrojów powierzchniowych Anna Stankiewicz e-mail: astankiewicz@l5.pk.edu.pl Tematyka zajęć Przykłady konstrukcji inżynierskich Klasyfikacja ustrojów powierzchniowych Podstawowe pojęcia

Bardziej szczegółowo

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich

Bardziej szczegółowo

WYBRANE ZAGADNIENIA MECHANIKI USTROJÓW POWIERZCHNIOWYCH

WYBRANE ZAGADNIENIA MECHANIKI USTROJÓW POWIERZCHNIOWYCH WYBRANE ZAGADNIENIA MECHANIKI USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2010/2011 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

Bardziej szczegółowo

METODY KOMPUTEROWE W MECHANICE

METODY KOMPUTEROWE W MECHANICE METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania

Bardziej szczegółowo

Łagodne wprowadzenie do Metody Elementów Skończonych

Łagodne wprowadzenie do Metody Elementów Skończonych Łagodne wprowadzenie do Metody Elementów Skończonych dr inż. Grzegorz DZIERŻANOWSKI dr hab. inż. Wojciech GILEWSKI Katedra Mechaniki Budowli i Zastosowań Informatyki 10 XII 2009 - część I 17 XII 2009 -

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP)

TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP) TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP) Wstęp. Podstawy matematyczne. Tensor naprężenia. Różniczkowe równania równowagi Zakład Mechaniki Budowli PP Materiały pomocnicze do TSP (studia niestacjonarne,

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało

Bardziej szczegółowo

FLAC Fast Lagrangian Analysis of Continua

FLAC Fast Lagrangian Analysis of Continua FLAC Fast Lagrangian Analysis of Continua Program FLAC jest oparty o metodę róŝnic skończonych. Metoda RóŜnic Skończonych (MRS) jest chyba najstarszą metodą numeryczną. W metodzie tej kaŝda pochodna w

Bardziej szczegółowo

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki FLAC Fast Lagrangian Analysis of Continua Program FLAC jest oparty o metodę różnic skończonych. Metoda Różnic Skończonych (MRS) jest chyba najstarszą metodą numeryczną. W metodzie tej każda pochodna w

Bardziej szczegółowo

6. ZWIĄZKI FIZYCZNE Wstęp

6. ZWIĄZKI FIZYCZNE Wstęp 6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 015/016 Kierunek studiów: Mechanika i Budowa Maszyn Forma

Bardziej szczegółowo

P. Litewka Efektywny element skończony o dużej krzywiźnie

P. Litewka Efektywny element skończony o dużej krzywiźnie Wykaz oznaczeń stosowanych w pracy a długość elementu łukowego, c kosinus kąta rozwarcia elementu, c 0 kosinus połowy kąta rozwarcia elementu, d współczynnik ścinania, e współczynnik membranowy, g ij,

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności: 7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić

Bardziej szczegółowo

Analiza statyczna MES dla dźwigarów powierzchniowych

Analiza statyczna MES dla dźwigarów powierzchniowych Adam Wosatko PODZIĘKOWANIA DLA: Marii Radwańskiej, Anny Stankiewicz, Sławomira Milewskiego, Jerzego Pamina, Piotra Plucińskiego Tematyka zajęć 1 Analiza statyczna MES algorytm, porównanie z MRS 2 ES tarczowe

Bardziej szczegółowo

Analiza wrażliwości tarczy z wykorzystaniem metody elementów skończonych

Analiza wrażliwości tarczy z wykorzystaniem metody elementów skończonych Analiza wrażliwości tarczy z wykorzystaniem metody elementów skończonych Mgr inż. Tomasz Ferenc Politechnika Gdańska, Wydział Inżynierii Lądowej i Środowiska Projektowanie wszelkiego rodzaju konstrukcji

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2019/2020

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2019/2020 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 2019/2020 Kierunek studiów: udownictwo orma sudiów:

Bardziej szczegółowo

TARCZOWE I PŁYTOWE ELEMENTY SKOŃCZONE

TARCZOWE I PŁYTOWE ELEMENTY SKOŃCZONE PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

Elementy projektowania inżynierskiego

Elementy projektowania inżynierskiego Elementy projektowania inżynierskiego dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania Komputerowego Katedra Informatyki i Matematyki Stosowanej (7 listopada 017)

Bardziej szczegółowo

SYMULACJA NUMERYCZNA ZAGADNIENIA KONTAKTU NA PRZYKŁADZIE PRÓBY ZGINANIA RURY

SYMULACJA NUMERYCZNA ZAGADNIENIA KONTAKTU NA PRZYKŁADZIE PRÓBY ZGINANIA RURY Katarzyna BRUSZEWSKA Adam BUDZYŃSKI Wojciech BIENIASZEWSKI Opiekun naukowy: dr n.t. Elżbieta SZYMCZYK Wydział Mechaniczny, Zakład Mechaniki Ogólnej WAT SYMULACJA NUMERYCZNA ZAGADNIENIA KONTAKTU NA PRZYKŁADZIE

Bardziej szczegółowo

PODSTAWOWE POJĘCIA MES

PODSTAWOWE POJĘCIA MES Metoda Elementów Skończonych Studium magisterskie PODSTAWOWE POJĘCIA WYKŁAD 1 Wersja elektroniczna, http://www.okno.pg.gda.pl. Literatura KLEIBER M.: Wprowadzenie do metody elementów skończonych. PAN IPPT,

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

MODELOWANIE MATERIAŁÓW - WSTĘP

MODELOWANIE MATERIAŁÓW - WSTĘP Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2014/2015 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Jerzy Pamin Adam Wosatko Zakres wykładu 1 O modelowaniu

Bardziej szczegółowo

8. Metody rozwiązywania układu równań

8. Metody rozwiązywania układu równań 8. Metody rozwiązywania układu równań [K][u e ]=[F e ] Błędy w systemie MES Etapy modelowania metodami komputerowymi UKŁAD RZECZYWISTY MODEL FIZYCZNY MODEL DYSKRETNY Weryfikacja modelu fiz. Weryfikacja

Bardziej szczegółowo

Wprowadzenie do MES. Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp.

Wprowadzenie do MES. Dla każdego ES, w oparciu o przemieszczenia w węzłach, wyznaczamy siły działające na niego, odkształcenia, naprężenia, itp. MES 2 Wprowadzenie do MES Everything important is simple! Podstawowe zasady MES Dzielimy konstrukcję na proste fragmenty (analogia klocki Lego, cegły), które nazywamy elementami skończonymi (ES). ES są

Bardziej szczegółowo

ANALIZY WYTĘŻENIA BELEK ŻELBETOWYCH Z BETONU O WYSOKIEJ WYTRZYMAŁOŚCI

ANALIZY WYTĘŻENIA BELEK ŻELBETOWYCH Z BETONU O WYSOKIEJ WYTRZYMAŁOŚCI MODELOWANIE INŻYNIERSKIE 5, t. 1, rok ISSN 196-771X ANALIZY WYTĘŻENIA BELEK ŻELBETOWYCH Z BETONU O WYSOKIEJ WYTRZYMAŁOŚCI Piotr Smarzewski 1a 1 Katedra Konstrukcji Budowlanych, Politechnika Lubelska e-mail:

Bardziej szczegółowo

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona

Bardziej szczegółowo

Podstawy mechaniki komputerowej

Podstawy mechaniki komputerowej Podstawy mechaniki komputerowej dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania Komputerowego Katedra Informatyki i Matematyki Stosowanej (8 maja 6) Koczubiej Podstawy

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami

Bardziej szczegółowo

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH POLITECHNIKA POZNAŃSKA PROJEKT METODA ELEMENTÓW SKOŃCZONYCH Prowadzący: dr hab. Tomasz Stręk Wykonali: Kajetan Wilczyński Maciej Zybała Gabriel Pihan Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE I SYMULACJA PROCESÓW WYTWARZANIA Modeling and Simulation of Manufacturing Processes Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy specjalności PSM Rodzaj zajęć: wykład,

Bardziej szczegółowo

MES1 Metoda elementów skończonych - I Finite Element Method - I. Mechanika i Budowa Maszyn I stopień ogólnoakademicki

MES1 Metoda elementów skończonych - I Finite Element Method - I. Mechanika i Budowa Maszyn I stopień ogólnoakademicki KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2016/2017 MES1 Metoda elementów skończonych - I Finite Element Method - I A. USYTUOWANIE

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.

Bardziej szczegółowo

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia

Bardziej szczegółowo

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP. Podstawowe związki (równania równowagi, liniowe i nieliniowe związki geometrczne, związki fizczne, warunki brzegowe) w zapisie wskaźnikowm

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Nieliniowości fizyczne Część 2 : Nieliniowość sprężysta. Teoria nośności granicznej

Nieliniowości fizyczne Część 2 : Nieliniowość sprężysta. Teoria nośności granicznej Wykład 6: Nieliniowości fizyczne Część 2 : Nieliniowość sprężysta. Teoria nośności anicznej Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.co Literatura: [] Timoschenko S. Goodier A.J.N., Theory of

Bardziej szczegółowo

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi MES Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F + R, u A R f f F R + f, f + f, f + F, u A Równania

Bardziej szczegółowo

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

Program NUMPRESS Explicit Podstawy teoretyczne

Program NUMPRESS Explicit Podstawy teoretyczne System komputerowej analizy, optymalizacji i niezawodności przemysłowych procesów tłoczenia blach Program NUMPRESS Explicit Podstawy teoretyczne Produkt, którego dotyczy niniejszy dokument, powstał w ramach

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 4

INSTRUKCJA DO ĆWICZENIA NR 4 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów konstrukcji Zastosowanie optymalizacji

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Metody elementów skończonych

Metody elementów skończonych Metody elementów skończonych wykład 1 Metoda Elementów Skończonych (Finite Element Method) Matematyk przybliżona metoda rozwiązywania równań różniczkowych; przybliżona metoda minimalizacji funkcjonału;

Bardziej szczegółowo

Twierdzenia o wzajemności

Twierdzenia o wzajemności Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F

Bardziej szczegółowo

RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH

RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH Część 5. RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH 5. RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH 5.. ZWIĄZKI MIĘDZY ODKSZTAŁCENIAMI I GŁÓWNYMI NAPRĘŻENIAMI W każdym materiale konstrukcyjnym

Bardziej szczegółowo

Wytrzymałość materiałów

Wytrzymałość materiałów Wytrzymałość materiałów IMiR - IA - Wykład Nr 1 Wprowadzenie. Pojęcia podstawowe. Literatura, podstawowe pojęcia, kryteria oceny obiektów, założenia wytrzymałości materiałów, siły wewnętrzne i ich wyznaczanie,

Bardziej szczegółowo

Karta (sylabus) przedmiotu

Karta (sylabus) przedmiotu Karta (sylabus) przedmiotu [Budownictwo] Studia I stopnia Przedmiot: Metody obliczeniowe Rok: III Semestr: VI Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 15 16 Ćwiczenia

Bardziej szczegółowo

ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH

ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

Bardziej szczegółowo

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk,

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk, Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach Krzysztof Żurek Gdańsk, 2015-06-10 Plan Prezentacji 1. Manipulatory. 2. Wprowadzenie do Metody Elementów Skończonych (MES).

Bardziej szczegółowo

Wprowadzenie do WK1 Stan naprężenia

Wprowadzenie do WK1 Stan naprężenia Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)

Bardziej szczegółowo

5. MES w mechanice ośrodka ciągłego

5. MES w mechanice ośrodka ciągłego . MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m

Bardziej szczegółowo

PYTANIA SZCZEGÓŁOWE DLA PROFILI DYPLOMOWANIA EGZAMIN MAGISTERSKI

PYTANIA SZCZEGÓŁOWE DLA PROFILI DYPLOMOWANIA EGZAMIN MAGISTERSKI PYTANIA SZCZEGÓŁOWE DLA PROFILI DYPLOMOWANIA Materiały budowlane z technologią betonu EGZAMIN MAGISTERSKI Fizyka budowli Budownictwo ogólne 1. Materiały pokryć dachowych. 2. Wymagania techniczne i rozwiązania

Bardziej szczegółowo

UOGÓLNIONE PRAWO HOOKE A

UOGÓLNIONE PRAWO HOOKE A UOGÓLNIONE PRAWO HOOKE A Układ liniowosprężysty Clapeyrona Robert Hooke podał następującą, pierwotna postać prawa liniowej sprężystości: ut tensio sic vis, czyli takie wydłużenie jaka siła W klasycznej

Bardziej szczegółowo

1. Obciążenie statyczne

1. Obciążenie statyczne . Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha

Bardziej szczegółowo