STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH
|
|
- Dominik Kulesza
- 5 lat temu
- Przeglądów:
Transkrypt
1 Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i tnących na rezultat obliczeń. Istnieje jednak obawa, że duże wartości sił normalnych mogą w znaczącym stopniu wpływać na wartości sił wewnętrznych (w ramach może powstać efekt, który zmusi nas do rezygnacji z zasady zesztywnienia). Przeanalizujmy rozwiązanie ramy metodą przemieszczeń z uwzględnieniem wpływu sił normalnych. Niech dana będzie rama statycznie niewyznaczalna z obciążeniem jednoparametrowym (wszystkie siły są wyrażone przez P) (rys..): P q = P a, P a a a a = m Rys... Rama statycznie niewyznaczalna Rozwiążmy najpierw tę ramę klasyczną metodą przemieszczeń. Przyjmujemy układ podstawowy (SKN = ): φ = z Δ = z Zapisujemy układ równań kanonicznych: Rys... Układ podstawowy { r z r z R P = r z r z R P = Po rozwiązaniu metodą przemieszczeń w ujęciu klasycznym otrzymujemy wartości sił wewnętrznych, także rozkład sił normalnych.
2 Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH,Pa,59P,989P M [knm],59pa N [kn],7pa,p Rys... Siły wewnętrzne po rozwiązaniu w podejściu klasycznym Załóżmy teraz, że siła P jest duża i może dojąć do znacznych przemieszczeń. W takiej sytuacji należałoby zapisać równania równowagi w stanie odkształconym, czyli z pominięciem zasady zesztywnienia. Uwzględnienie działania sił normalnych dokonuje się przez rozwiązanie ramy metodą przemieszczeń, z zastosowaniem wzorów transformacyjnych, w których występują współczynniki α będące funkcją parametru ν. Parametr ten jest powiązany z siłą normalną występującą w pręcie: i = N l i i i Tak więc postać wzoru transformacyjnego dla poszczególnych prętów zależeć będzie od wartości siły normalnej. Pojawia się problem, ponieważ chcąc zastosować wzory transformacyjne ze współczynnikami ν musimy znać rozkład sił normalnych w ramie statycznie niewyznaczalnej, czyli znać wynik na początku zadania. Ponieważ jest to niemożliwe trzeba najpierw rozwiązać ramę klasycznie i wyznaczyć siły normalne. Dla każdego pręta określić wzory transformacyjne z uwzględnieniem wyznaczonych sił normalnych i ponownie rozwiązać układ. Otrzymane w drugim rozwiązaniu siły będą się różnić od tych, które były podstawą wzorów transformacyjnych (otrzymane z klasycznego rozwiązania). Dlatego obliczenia należy powtórzyć. Taką metodę kolejnych przybliżeń nazywamy metodą iteracyjną. Obliczenia przeprowadza się tak długo, aż wynik nie odbiega znacznie od przyjętego w danym kroku iteracyjnym rozkładu sił (wyznaczonych z poprzedniego kroku). Dalsze rozważania przeprowadzimy po przyjęciu konkretnej wartości siły P = kn. Po pierwszej iteracji otrzymujemy następujące wartości sił wewnętrznych:,7 7,779 8, M [knm],8 N [kn],,85 Rys..4. Siły wewnętrzne po iteracji I (rozwiązanie metodą klasyczną)
3 Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH W drugim kroku rozwiązania zapisujemy nowy układ równań kanonicznych metody przemieszczeń ze współczynnikami rik, wyznaczonymi z uwzględnieniem sił normalnych, natomiast wartości RiP pozostawiamy niezmienne (we wszystkich iteracjach RiP przyjmują takie same wartości jak w rozwiązaniu klasycznym). Do wyznaczenia rik zastosujemy wzory transformacyjne: dla pręta obustronnie utwierdzonego: M ik = l M ki = l i k ik k i ik W danej ramie występuje tylko jeden pręt obustronnie utwierdzony. Dla tego pręta współczynniki α, β, γ, będą zależne od ν, gdzie: = N l =,85 =, 9,75 dla pręta utwierdzonego z jednej strony i z przegubem z drugiej strony : M ik = l i ik W rozpatrywanej ramie występują dwa takie pręty, przy czym dla pręta α będzie zależne od ν, gdzie = N l 7,779 = 9,75 =,7 natomiast dla pręta α będzie zależne od ν, gdzie = N l = 8, 9,75 =,58 Wykresy momentów dla poszczególnych stanów jednostkowych, będą miały następujący przebieg: α Stan φ =, Δ = γ Stan φ =, Δ = α α 9 γ β Rys..5. Przebieg momentów w poszczególnych stanach jednostkowych
4 Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH 4 Po wyznaczeniu rik, i rozwiązaniu układu równań uzyskano w II iteracji następujące wartości sił wewnętrznych:,94 8, 8,8 M [knm] 4, N [kn],979,8 Rys... Siły wewnętrzne po iteracji II Jak widać wyniki uzyskane w iteracji I i II różnią się, co potwierdza przekonanie, że pomijając wpływ sił normalnych na końcowy rozkład sił wewnętrznych popełniamy błąd. Wykonajmy kolejną iterację:,97 8, 8,7 M [knm] 4,4 N [ kn],97,8 Rys..7. Siły wewnętrzne po iteracji III Porównując iteracje II i III można stwierdzić, że miedzy wartościami sił wewnętrznych są niewielkie różnice, można przerwać obliczenia. Zazwyczaj iterację przerywa się wtedy, gdy spełniona jest nierówność: gdzie: ε jest zakładanym błędem względnym, max N N i i N i Ni jest wartością siły normalnej w danym punkcie pręta ramy uzyskaną w i tej iteracji. W naszych rozważaniach przyjęliśmy stosunkowo małą wartość siły P = kn. Przy większej wartości tej siły różnice wyników uzyskiwanych w kolejnych iteracjach byłyby większe. Zastanówmy się teraz jaką maksymalną siłą możemy obciążyć konstrukcję. Oznacza to, że musimy znaleźć wartość siły krytycznej P, dla której cały układ utraci stateczność. Rozwiązanie zadania stateczności sprowadza się zawsze do rozwiązania zagadnienia tzw. stateczności początkowej, co oznacza, że całą ramę musimy poddać działaniu tylko i wyłącznie sił osiowych. W rzeczywistości jednak (tak jak i w danym
5 Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH 5 zadaniu) stan taki się nie zdarza, dlatego przed przystąpieniem do zadania właściwego, najpierw należy wyeliminować zginanie układu. Eliminacja taka odbywa się przez wyznaczenie sił wewnętrznych, np. metodą przemieszczeń, a następnie obciążenie prętów obciążeniem zastępczym (jednoparametrowym), w celu uzyskania otrzymanego wcześniej rozkładu sił normalnych, ale bez wystąpienia zjawiska zginania.,59p,p,989p N [kn],59p,59p,989p,989p,p,p Rys..8. Wykres sił normalnych oraz wynikające z niego obciążenie zastępcze Zauważmy, że w każdym pręcie występuje inna wartość siły normalnej. Otrzymamy zatem trzy współczynniki ν. W celu uniknięcia zbyt dużej liczby niewiadomych przeprowadzimy unifikację niewiadomej: Lp. Numer pręta Tabela. Wyrażenie wszystkich wielkości ν i przez współczynnik ν Sztywność Długość Siła w pręcie N i = pręta pręta N l i i i i Współczynnik porównawczy η i a = m,p ν, a = m,59p η ν,579 a = m,989p η ν,745 Po tych czynnościach przystępujemy do właściwej części zadania. Znajdujemy wartości momentów od stanów jedynkowych: a) stan φ = M = = M = = M = = b) stan Δ = M = M = = =
6 Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH M = = 9 Przebieg momentów dla poszczególnych stanów przedstawia się następująco: r Stan φ =, Δ = r Stan φ =, Δ = α r r α β γ γ α 9 Rys..9. Przebieg momentów w poszczególnych stanach jednostkowych Z równowagi węzłów wyznaczamy wartości r i r, które wynoszą: r = = r = natomiast współczynniki r i r wyznaczamy z równań pracy wirtualnej: r = r = = r 9 = r = 8 4 c) stan P W tradycyjnej metodzie przemieszczeń układ obciążony wyłącznie siłami normalnymi jest układem bezmomentowym, bo wszystkie siły stoją w węzłach, ale należy przypomnieć, że przy wyznaczaniu stateczności obowiązuje teoria II rzędu. Dojdzie więc do powstania momentów wynikających z przemieszczenia układu.
7 Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH 7 Δ,P Δ,989P,59P,59P M p [knm],989p,p Rys... Stan obciążenia Z równowagi węzła wyznaczamy RP =, a z równania pracy wirtualnej RP = : R P, P,989 P = R P =,994 P Po podstawieniu wyznaczonych wielkości do układu równań kanonicznych metody przemieszczeń: otrzymujemy: { { r r R P = r r R P = = 8 4,994 P = Po zgrupowaniu niewiadomych i podzieleniu przez uzyskujemy: { 4 7,8984 P = = Zauważmy, że:, P =
8 Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH 8 Po uwzględnieniu powyższego związku i po wstawianiu do układu równań otrzymujemy: gdzie: = { = 4,9555 = tg tg tg = tg tg = tg tg = tg tg Jak widać wszystkie wielkości są zależne tylko od jednej niewiadomej ν. Kryterium utraty stateczności stanowi warunek zerowania się wyznacznika macierzy sztywności, stąd: det 4,9555 = Po rozwiązaniu i uwzględnieniu, że = 9,75 knm (dla dwuteownika I), otrzymamy wartość () ν =,77 stąd minimalna siła krytyczna P() kr = 8,5kN. Porównajmy teraz wartości sił krytycznych dla kolejnych schematów statycznych pracy wybranego pręta (rys..). Wykorzystując wzór Eulera na siłę krytyczną: P kr = l dla pręta otrzymamy (l = a = m): P kr =,745 Rys... Lokalizacja pręta w ramie
9 Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH 9 Przyjmując, że pręt jest wydzielony z konstrukcji, dla różnych warunków podparcia, czyli różnych współczynników wyboczeniowych μ otrzymujemy, gdy : pręt jest obustronnie utwierdzony (μ =,5), dla takiego schematu statycznego pracy pręta wartość siły krytycznej wynosi,95, pręt jest utwierdzony tylko na jednym końcu (μ =,), pomija się oddziaływanie innych prętów, wartość siły krytycznej wynosi,85. Natomiast traktując pręt jako element całej ramy, czyli uwzględniając oddziaływanie całej konstrukcji, otrzymamy, że wartość siły krytycznej wynosi: P= 5,5 9,75 wtedy współczynnik wyboczeniowy wynosi: =,9,745 =,9 =,95 Można zatem stwierdzić, że przy poszukiwaniu wartości siły krytycznej, czyli przy badaniu stateczności ram, gdy nie uwzględnimy pręta jako elementu konstrukcji, gdy wyizolujemy go myślowo do rozważań i pominiemy wpływ sąsiednich prętów, to popełnimy znaczące błędy, które zafałszują rzeczywiste rozwiązanie.
5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY
Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym
Bardziej szczegółowo1. METODA PRZEMIESZCZEŃ
.. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:
Bardziej szczegółowoPROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych
Bardziej szczegółowoStateczność ramy. Wersja komputerowa
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel
Bardziej szczegółowoĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI
Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe
Bardziej szczegółowoMETODA SIŁ KRATOWNICA
Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..
Bardziej szczegółowoStateczność ramy - wersja komputerowa
Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych
Bardziej szczegółowoCzęść ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1
Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna
Bardziej szczegółowoPROJEKT NR 1 METODA PRZEMIESZCZEŃ
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr
Bardziej szczegółowo3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE
Część. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE.. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Istotę metody przemieszczeń, najwygodniej jest przedstawić przez porównanie jej do metody sił, którą wcześniej już poznaliśmy
Bardziej szczegółowoAnaliza I i II rzędu. gdzie α cr mnożnik obciążenia krytycznego według procedury
Analiza I i II rzędu W analizie I rzędu stosuje się zasadę zesztywnienia, tzn. rozpatruje się nieodkształconą, pierwotną geometrię konstrukcji, niezależnie od stanu obciążenia. Gdy w obliczeniac statycznyc
Bardziej szczegółowoOBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA
POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS
Bardziej szczegółowoĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3
ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań
Bardziej szczegółowoPrzykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1
Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu
Bardziej szczegółowo1. Obciążenie statyczne
. Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha
Bardziej szczegółowoRozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił
Rozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił Polecenie: Narysuj wykres sił wewnętrznych w ramie. Zadanie rozwiąż metodą sił. PkN MkNm EJ q kn/m EJ EJ Określenie stopnia statycznej niewyznaczalności
Bardziej szczegółowo2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów.
2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopień statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno
Bardziej szczegółowo8. PODSTAWY ANALIZY NIELINIOWEJ
8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:
Bardziej szczegółowoDRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Bardziej szczegółowogruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:
1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]
Bardziej szczegółowoWIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,
Bardziej szczegółowoĆwiczenie nr 3. Obliczanie układów statycznie niewyznaczalnych metodą sił.
Ewa Kloczkowska, KBI 1, rok akademicki 006/007 Ćwiczenie nr 3 Obliczanie układów statycznie niewyznaczalnych metodą sił. Dla układu prętowego przedstawionego na rysunku naleŝy: 1) Obliczyć i wykonać wykresy
Bardziej szczegółowoPodstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Bardziej szczegółowoDRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH
Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza
Bardziej szczegółowo{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.
Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe
Bardziej szczegółowoAl.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
Bardziej szczegółowoPodpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są
PODPORY SPRĘŻYSTE Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są wprost proporcjonalne do reakcji w nich
Bardziej szczegółowoUwaga: Linie wpływu w trzech prętach.
Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać
Bardziej szczegółowoUkłady równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Bardziej szczegółowoWrocław 2003 STATECZNOŚĆ. STATYKA 2 - projekt 1 zadanie 2
Wrocław 00 STATECZNOŚĆ STATYKA - projet zadanie . Treść zadania Dla ray o scheacie statyczny ja na rysunu poniżej należy : - Sprawdzić czy uład jest statycznie niezienny - Wyznaczyć siły osiowe w prętach
Bardziej szczegółowo5.1. Kratownice płaskie
.. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.
Bardziej szczegółowoNarysować wykresy momentów i sił tnących w belce jak na rysunku. 3ql
Narysować wykresy momentów i sił tnących w belce jak na rysunku. q l Określamy stopień statycznej niewyznaczalności: n s = r - 3 - p = 5-3 - 0 = 2 Przyjmujemy schemat podstawowy: X 2 X Zakładamy do obliczeń,
Bardziej szczegółowoRozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Bardziej szczegółowoProjekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej
Bardziej szczegółowoUKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Bardziej szczegółowoSTATECZNOŚĆ RAM WERSJA KOMPUTEROWA
Politechnika Poznańska Wydział Budownictwa i Inżynierii Środowiska Instytut Konstrukcji Budowlanych Zakład Mechaniki Budowli Studia Stacjonarne II Stopnia I rok Semestr II 21/211 STATECZNOŚĆ RAM WERSJA
Bardziej szczegółowoObliczanie układów statycznie niewyznaczalnych metodą sił.
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt wykonał: Krzysztof Wójtowicz Konsultacje: dr inż. Przemysław Litewka Obliczanie układów statycznie niewyznaczalnych
Bardziej szczegółowo3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która
3. Interpolacja Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która przyjmuje wartości y 1, y 2,, y n, dla skończonego zbioru argumentów x 1, x
Bardziej szczegółowoZgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów.
2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 3 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopieo statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno
Bardziej szczegółowoLinie wpływu w belce statycznie niewyznaczalnej
Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też
Bardziej szczegółowoMechanika i Budowa Maszyn
Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach
Bardziej szczegółowoWyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Bardziej szczegółowoZadanie: Narysuj wykres sił normalnych dla zadanej kratownicy i policz przemieszczenie poziome węzła G. Zadanie rozwiąż metodą sił.
Zadanie: Narysuj wykres sił normalnych dla zadanej kratownicy i policz przemieszczenie poziome węzła. Zadanie rozwiąż metodą sił. P= 2kN P= 2kN Stopień statycznej niewyznaczalności: n s l r l pr 2 w 6
Bardziej szczegółowo6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH
Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy
Bardziej szczegółowoP. Litewka Efektywny element skończony o dużej krzywiźnie
4.5. Macierz mas Macierz mas elementu wyprowadzić można według (.4) wykorzystując wielomianowe funkcje kształtu (4. 4.). W tym przypadku wzór ten przyjmie postać: [ m~ ] 6 6 ~ ~ ~ ~ ~ ~ gdzie: m = [ N
Bardziej szczegółowoRys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic
ROZDZIAŁ VII KRATOW ICE STROPOWE VII.. Analiza obciążeń kratownic stropowych Rys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic Bezpośrednie obciążenie kratownic K5, K6, K7 stanowi
Bardziej szczegółowoZADANIA - POWTÓRKA
Część 5. ZADANIA - POWTÓRKA 5. 5. ZADANIA - POWTÓRKA Zadanie W ramie przedstawionej na rys 5. obliczyć kąt obrotu przekroju w punkcie K oraz obrót cięciwy RS. W obliczeniach można pominąć wpływ sił normalnych
Bardziej szczegółowoPręt nr 4 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,
Bardziej szczegółowo3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ
3. ÓWNOWG PŁSKIEGO UKŁDU SIŁ Zadanie 3. elka o długości 3a jest utwierdzona w punkcie zaś w punkcie spoczywa na podporze przegubowej ruchomej, rysunek 3... by belka była statycznie wyznaczalna w punkcie
Bardziej szczegółowoMetody energetyczne. Metoda Maxwella Mohra Układy statycznie niewyznaczalne Metoda sił Zasada minimum energii
Metody energetyczne Metoda Maxwella Mohra Układy statycznie niewyznaczalne Metoda sił Zasada minimum energii dv 1 N dx Ndu EA dv dv S 1 M dx M sdϕ GI 1 M gdx M gdϑ EI S Energia sprężysta układu prętowego
Bardziej szczegółowoKatedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI
Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI
Bardziej szczegółowoRozwiązanie stateczności ramy MES
Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek
Bardziej szczegółowogruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej
Bardziej szczegółowoAutor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE
METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody
Bardziej szczegółowoAnaliza globalnej stateczności przy użyciu metody ogólnej
Analiza globalnej stateczności przy użyciu metody ogólnej Informacje ogólne Globalna analiza stateczności elementów konstrukcyjnych ramy może być przeprowadzona metodą ogólną określoną przez EN 1993-1-1
Bardziej szczegółowoZ1/7. ANALIZA RAM PŁASKICH ZADANIE 3
Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych
Bardziej szczegółowoPręt nr 1 - Element żelbetowy wg. EN :2004
Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800
Bardziej szczegółowoUkłady równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Bardziej szczegółowoWYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:
Bardziej szczegółowoMETODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:
Bardziej szczegółowoWykład nr 2: Obliczanie ramy przesuwnej metodą przemieszczeń
Mechanika Budowli 2 sem. IV N1 Wykład nr 2: Obliczanie ramy przesuwnej metodą przemieszczeń Mechanika Budowli 2 sem. IV N1 Treści Programowe: 1. Metoda przemieszczeń układy nieprzesuwne 2. Metoda przemieszczeń
Bardziej szczegółowoMECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Bardziej szczegółowoUKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Bardziej szczegółowoMatematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..
Bardziej szczegółowoDr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Bardziej szczegółowoPrzykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład
Bardziej szczegółowoOBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH
OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH Sporządził: Bartosz Pregłowski Grupa : II Rok akadem: 2004/2005 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH
Bardziej szczegółowoPrzykład 9.2. Wyboczenie słupa o dwóch przęsłach utwierdzonego w fundamencie
rzykład 9.. Wyboczenie słupa o dwóch przęsłach utwierdzonego w undamencie Wyznaczyć wartość krytyczną siły obciążającej głowicę słupa, dla słupa przebiegającego w sposób ciągły przez dwie kondygnacje budynku.
Bardziej szczegółowoMechanika teoretyczna
Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład
Bardziej szczegółowoINTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
Bardziej szczegółowoRozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Bardziej szczegółowoWstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Bardziej szczegółowoPOLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI
POLIECHNIKA POZNAŃSKA INSYU KONSRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI ĆWICZENIE PROJEKOWE NR 2 DYNAMIKA RAM WERSJA KOMPUEROWA Z PRZEDMIOU MECHANIKA KONSRUKCJI Wykonał: Kamil Sobczyński WBiIŚ; SUM;
Bardziej szczegółowoZad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:
Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I
Bardziej szczegółowoLiczba godzin Liczba tygodni w tygodniu w semestrze
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze
Bardziej szczegółowoPodstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
Bardziej szczegółowoUTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.
Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym
Bardziej szczegółowoSprawdzenie nosności słupa w schematach A1 i A2 - uwzględnienie oddziaływania pasa dolnego dźwigara kratowego.
Sprawdzenie nosności słupa w schematach A i A - uwzględnienie oddziaływania pasa dolnego dźwigara kratowego. Sprawdzeniu podlega podwiązarowa część słupa - pręt nr. Siły wewnętrzne w słupie Kombinacje
Bardziej szczegółowoWytrzymałość Materiałów
Wytrzymałość Materiałów Stateczność prętów prostych Równowaga, utrata stateczności, siła krytyczna, wyboczenie w zakresie liniowo sprężystym i poza liniowo sprężystym, projektowanie elementów konstrukcyjnych
Bardziej szczegółowoVII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Bardziej szczegółowoMECHANIKA BUDOWLI LINIE WPŁYWU BELKI CIĄGŁEJ
Zadanie 6 1. Narysować linie wpływu wszystkich reakcji i momentów podporowych oraz momentu i siły tnącej w przekroju - dla belki. 2. Obliczyć rzędne na wszystkich liniach wpływu w czterech punktach: 1)
Bardziej szczegółowoPochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
Bardziej szczegółowoMECHANIKA BUDOWLI. Linie wpływu sił w prętach kratownic statycznie niewyznaczalnych
Dana kratownica: Olga Kopacz, Ada Łodygowski, ojciech Pawłowski, Michał Płotkowiak, Krzysztof Typer Konsultacje naukowe: prof. dr hab. JERZY RAKOSKI Poznań 00/00 MECHANIKA BUDOLI Linie wpływu sił w prętach
Bardziej szczegółowoObsługa programu Soldis
Obsługa programu Soldis Uruchomienie programu Po uruchomieniu, program zapyta o licencję. Można wybrać licencję studencką (trzeba założyć konto na serwerach soldisa) lub pracować bez licencji. Pliki utworzone
Bardziej szczegółowoZadanie 1 Zadanie 2 tylko Zadanie 3
Zadanie 1 Obliczyć naprężenia oraz przemieszczenie pionowe pręta o polu przekroju A=8 cm 2. Siła działająca na pręt przenosi obciążenia w postaci siły skupionej o wartości P=200 kn. Długość pręta wynosi
Bardziej szczegółowoWykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE ZWYCZAJNE
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład
Bardziej szczegółowoPrzykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
Bardziej szczegółowoZbigniew Mikulski - zginanie belek z uwzględnieniem ściskania
Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać
Bardziej szczegółowoĆWICZENIE 6 Kratownice
ĆWICZENIE 6 Kratownice definicja konstrukcja składająca się z prętów prostych połączonych przegubowo w węzłach, dla której jedynymi obciążeniami są siły skupione przyłożone w węzłach. Umowa: jeśli konstrukcja
Bardziej szczegółowoALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY
ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział
Bardziej szczegółowoMetody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50
Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie
Bardziej szczegółowo[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
Bardziej szczegółowo2ql [cm] Przykład Obliczenie wartości obciażenia granicznego układu belkowo-słupowego
Przykład 10.. Obiczenie wartości obciażenia granicznego układu bekowo-słupowego Obiczyć wartość obciążenia granicznego gr działającego na poniższy układ. 1 1 σ p = 00 MPa = m 1-1 - - 1 8 1 [cm] Do obiczeń
Bardziej szczegółowo1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia
Bardziej szczegółowoWytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
Bardziej szczegółowoa 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Bardziej szczegółowoPręt nr 1 - Element żelbetowy wg. PN-B-03264
Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x900 (Beton
Bardziej szczegółowoMETODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój
METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin
Bardziej szczegółowoProjekt nr 4. Dynamika ujęcie klasyczne
Projekt nr 4 Dynamika POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 4 Dynamika ujęcie klasyczne Konrad Kaczmarek
Bardziej szczegółowo