ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH
|
|
- Jakub Jóźwiak
- 9 lat temu
- Przeglądów:
Transkrypt
1 ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko PODZIĘKOWANIA DLA: Marii Radwańskiej, Anny Stankiewicz, Sławomira Milewskiego, Jerzego Pamina, Piotra Plucińskiego
2 Tematyka zajęć 1 Algorytm, porównanie z MRS 2 Tarcze ES tarczowe 3 Płyty ES dostosowany Płyta kwadratowa 4 Powłoki Wybrane aspekty teoretyczne ES powłokowe Zbiornik walcowy 5 Zakończenie
3 Typy analizy Statyka Stateczność Dynamika Przepływ ciepła Analiza nieliniowa: sprężysto-plastyczna, zagadnienie kontaktowe, itd. Problemy sprzężone Inne Rozróżniamy zadania stacjonarne (niezależne od czasu) i niestacjonarne (zależne od czasu).
4 Analiza statyczna W wyniku analizy statycznej, wyznaczamy statyczne skutki zewnętrznych oddziaływań na konstrukcję, pracującą w zakresie sprężystym przy ograniczeniu się do analizy małych przemieszczeń i odkształceń. Przy powyższych założeniach mamy do czynienia z analizą materiałowo i geometrycznie liniową, z obowiązującymi zasadami superpozycji i zesztywnienia.
5 Metody komputerowe metoda elementów skończonych (MES) (ang. Finite Element Method) metoda elementów brzegowych (MEB) (ang. Boundary Element Method) metoda objętości skończonych (MOS) (ang. Finite Volume Method) metoda różnic skończonych (MRS) (ang. Finite Diference Method) rozszerzona metoda elementów skończonych (ang. Extended Finite Element Method) metody bezsiatkowe (ang. Meshless Method) inne
6 MRS (lokalna) a MES MRS (lokalna) MES Sformułowanie Lokalne Globalne (wariacyjne) problemu brzegowego Równanie różcznikowe + w.b. Funkcjonał Aproksymacja Wzory różnicowe Interpolacja ES dla pochodnych funkcje kształtu Całkowanie Brak Kwadratury Gaussa Warunki brzegowe Dodatkowe wzory Modyfikacja różnicowe układu równań Macierz Zazwyczaj Symetryczna układu równań nie jest symetryczna pasmowa
7 Klasyczna MRS - wady i zalety Zalety: Dydaktyczny charakter, łatwość implementacji Istnienie wersji lokalnej Łatwa generacja siatki Najstarsza metoda komputerowa Wady: Trudności dyskretyzacji przy krzywoliniowym brzegu Nie można lokalnie zagęszczać siatki Trudna do automatyzacji, nie można przeprowadzać adaptacji Uwaga! Istnieje Bezsiatkowa (Uogólniona) Metoda Różnic Skończonych.
8 MES - wady i zalety Zalety: Wady: Bardzo szerokie pole zastosowań i duża dokładność rozwiązania Ogromna biblioteka elementów skończonych Podstawa wielu pakietów komputerowych Najbardziej powszechna metoda komputerowa Kłopotliwa generacja siatki dla obszarów o skomplikowanej geometrii Problemy przy uwzględnianiu nieliniowości: geometrycznych, rozwoju rysy (szczeliny) Może wystąpić zjawisko blokady rozwiązania
9 Algorytm liniowej analizy statycznej MES Dyskretyzacja wybór elementu skończonego (ES) z odpowiednimi węzłowymi stopniami swobody (SS) podział obszaru na skończony zbiór ES i węzłów z ujęciem ich wzajemnych relacji Analiza zbioru ES - wyznaczenie dla wszystkich ES macierzy sztywności liniowej k e wektorów węzłowych zastępników obciążeń elementowych f e transformacja k e, f e (z układów lokalnych-elementowych) z użyciem macierzy transformacji T e w K e, F e (odnoszących się do globalnego układu współrzędnych)
10 Algorytm liniowej analizy statycznej MES Analiza całego układu agregacja macierzy sztywności K i wektora F utworzenie wektora zewnętrznych obciążeń węzłowych P zapisanie układu równań K Q = F + P + R i jego modyfikacja wynikająca z kinematycznych więzów podporowych obliczenie wektora uogólnionych przemieszczeń węzłowych Q = K 1 (F + P) wyznaczenie wektora reakcji podporowych R = K Q - F - P Analiza zbioru ES - powrót do elementu wyznaczenie uogólnionych przemieszczeń dla każdego elementu wyznaczenie sił przekrojowych (ewentualnie odkształceń) w węzłach lub punktach wewnętrznych ES (punkty Gaussa)
11 Analiza MES za pomocą programów komputerowych 1 Preprocessing typ analizy, geomatria modelu, wprowadzanie danych, wybór ES, generacja siatki obliczeniowej, określenie warunków brzegowych 2 Generacja i rozwiązanie układu równań (przy użyciu solvera) macierze elementowe, wektory prawej strony, agregacja, rozwiązanie 3 Postprocessing analiza wyników tekstowych i zwizualizowanych
12 ES tarczowe Najprostszy ES tarczowy CST trójkątny, 3-węzłowy Y v1 3 v3 u3 Liczba stopni swobody węzła: LSSW = 2 Liczba węzłów elementu: LWE = 3 Liczba stopni swobody elementu: LSSE = LSSW LWE = 6 1 u1 2 v2 u2 X Wektory przemieszczeń węzła i elementu: q w = {u w, v w } T q e n = {u 1, v 1 u 2, v 2 u 3, v 3 } T dla w = 1,..., LWE, e = 1,..., LE Do aproksymacji obu przemieszczeń u i v używane są biliniowe funkcje kształtu N i, i = 1, 2, 3: u n (2 1) = Nn (2 6) qe n (6 1) CST Constant Strain Triangle
13 ES tarczowe ES tarczowy Q4 prostokątny, 4-węzłowy b u 4 u 1 v 4 v 1 Y η = 2 y/b a v 3 u 3 ξ = 2 x/a X u 2 v 2 Liczba stopni swobody węzła: LSSW = 2 Liczba węzłów elementu: LWE = 4 Liczba stopni swobody elementu: LSSE = LSSW LWE = 8 Wektory przemieszczeń węzła i elementu: q w = {u w, v w } T q e n = {u 1, v 1 u 2, v 2 u 3, v 3 u 4, v 4 } T dla w = 1,..., LWE, e = 1,..., LE Do aproksymacji obu przemieszczeń u(ξ, η) i v(ξ, η) używane są funkcje kształtu N i (ξ, η), i = 1, 2, 3, 4, biliniowe (liniowe względem dwu bezwymiarowych unormowanych współrzędnych ξ, η [ 1, +1]): u n (ξ, η) (2 1) = {u(ξ, η), v(ξ, η)} = N n (2 8) qe (8 1) n u(ξ, η) = N 1 u 1 + N 2 u 2 + N 3 u 3 + N 4 u 4 v(ξ, η) = N 1 v 1 + N 2 v 2 + N 3 v 3 + N 4 v 4
14 Algorytm, porównanie z MRS Tarcze Płyty Powłoki Zakończenie ES tarczowe Biliniowe funkcje kształtu dla ES tarczowego 4-węzłowego N1 = 14 (1 ξ)(1 η) N2 = 14 (1 + ξ)(1 η) N3 = 14 (1 + ξ)(1 + η) N4 = 14 (1 ξ)(1 + η)
15 ES tarczowe Bazowy element wzorcowy dla elementu Q4 Część obliczeń wykonywana jest na elemencie wzorcowym, np. wyznaczanie macierzy pochodnych funkcji kształtu: B = L N. Element wzorcowy: ξ, η [ 1, 1] [ ξ η { x, y = J [ x y } { ξ, η Macierz ] Jacobiego - relacja między pochodnymi ] [ x y ξ ξ, gdzie: J = x η } y η ]
16 ES dostosowany Prostokątny ES płytowy 4-węzłowy, dostosowany Stopnie swobody w węźle: = {w, ϕ x, ϕ y, χ} w = {w, w/ y, w/ x, 2 w/ x y} w q w [4 1] Stopnie swobody w elemencie: = {q 1, q 2, q 3, q 4 } = {w 1, ϕ x1, ϕ y1, χ 1 w χ 4 } q e [16 1]
17 ES dostosowany Aproksymacja pola ugięcia Bezwymiarowe współrzędne powierzchniowe: ξ = 2 ( ) ( x a 1, η = 2 y ) b 1 Wielomianowa aproksymacja: w(ξ, η) = (α 1 + α 2 ξ + α 3 ξ 2 + α 4 ξ 3 )(β 1 + β 2 η + β 3 η 2 + β 4 η 3 ) = C 1 + C 2 ξ + C 3 η + C 4 ξ 2 + C 5 ξη + C 6 η 2 + C 7 ξ 3 + C 8 ξ 2 η + C 9 ξη 2 + C 10 η 3 + C 11 ξ 3 η + C 12 ξ 2 η 2 + C 13 ξη 3 + C 14 ξ 3 η 2 + C 15 ξ 2 η 3 + C 16 ξ 3 η 3 u e = {w(ξ, η)} = N (ξ, η) qe = [1 1] [1 16] [16 1] = {N1 1, N2 1, N3 1, N4 1, N N4 4 } {w 1, ϕ x1, ϕ y1, χ 1 w χ 4 } T
18 Algorytm, porównanie z MRS Tarcze Płyty Powłoki Zakończenie ES dostosowany Bisześcienne funkcje kształtu dla pierwszego węzła elementu płytowego, 4-wezłowego (bazowego) N11 odpowiadająca w1 N12 odpowiadająca ϕx1 N13 odpowiadająca ϕy 1 N14 odpowiadająca χ1
19 Płyta kwadratowa Płyta kwadratowa K Y 7 Dane: wymiary płyty L X = L Y = 3.0 m grubość płyty h = 0.12 m Z 5 obciążenie p z = q = 14.4 kn/m 2 4 X moduł Younga E = kpa współczynnik Poissona ν = 0 Sztywność giętna płyty wynosi D m = Eh3 12(1 ν 2 ) = 4608 knm.
20 Płyta kwadratowa Kryterium znakowania tablice i ROBOT Momenty i siły poprzeczne W tablicach inżynierskich i programie ROBOT przyjęto oś 0Z skierowaną góry, co pociąga za sobą oznaczanie dodatnich momentów zginająch powodujących rozciągające naprężenia na powierzchni górnej. z x m x t x t y m y y mxy m yx
21 Płyta kwadratowa Płyta kwadratowa wyniki Porównanie wielkości charakterystycznych w 7 m x7 m x5 m y5 m y4 [ [mm] knm ] [ knm ] [ knm ] [ knm ] m m m m Tablice inż Program Siatka ALGOR GRAITEC ROBOT ALGOR GRAITEC ROBOT ROBOT Można analizować także momenty w narożu, gdzie spotykają się swobodna i przegubowo podparta krawędź są to momenty główne m I, m II (o różnych znakach!): m IK = m IIK = q L X L Y.
22 Algorytm, porównanie z MRS Tarcze Płyty Powłoki Zakończenie Płyta kwadratowa Płyta kwadratowa wyniki Mapy konturowe mx i my mx my ALGOR GRAITEC ROBOT
23 Wybrane aspekty teoretyczne Klasyfikacja powłok ze względu na smukłość Powłoki: I) cienkie stosujemy teorię Kirchhoffa-Love a, II) umiarkowanie cienkie stosujemy teorię Mindlina-Reissnera, III) grube obliczamy zagadnienia 3D, np. typowe zagadnienie z mechaniki rury grubościennej.
24 Wybrane aspekty teoretyczne Trójparametrowa teoria powłok Kirchhoffa-Love a powłoki cienkie Powłoka cienka Powłoka jako ustrój powierzchniowy charakteryzuje się wartością grubości dużo mniejszą od promieni głównych krzywizn: h R min < Hipoteza kinematyczna niezależne kinematyczne pola w powłokach to trzy liniowe przemieszczenia: u 1 (ξ 1, ξ 2 ), u 2 (ξ 1, ξ 2 ), w(ξ 1, ξ 2 ), w kierunkach lokalnej bazy (e 1, e 2, n), wprowadzanej w punkcie powierzchni środkowej powłoki. Hipoteza statyczna w powłokach cienkich naprężenia σ n, τ 1n, τ 2n są nieporównywalnie mniejsze od pozostałych naprężeń.
25 Wybrane aspekty teoretyczne Stan membranowy Stan membranowy rozkład naprężeń wzdłuż grubości jest jednorodny. Stan ten jest w powłokach najkorzystniejszy (optymalny) z punktu wykorzystania materiału. Przy spełnieniu pewnych warunków podparcia i obciążenia może być on zrealizowany w rzeczywistych konstrukcjach.
26 Wybrane aspekty teoretyczne Zaburzenia stanu membranowego źródłami stanu giętnego Szybki wzrost momentów i sił poprzecznych w kierunku źródła Szybkie ich zanikanie, gdy nie istnieje w pobliżu inne źródło Stan membranowy i jego zaburzenia p warunki brzegowe obciążenie konturowe załomy zmiana grubości p p p
27 ES powłokowe Podział ES powłokowych ES oparte na teorii powłok ES geometrycznie jednowymiarowe ES dwuwymiarowe płaskie trój- i czterowęzłowe ES dwuwymiarowe zakrzywione oparte na teorii powłok cienkich Kirchhoffa-Love a albo na teorii powłok umiarkowanie cienkich Mindlina-Reissnera ES tzw. zdegenerowane, oparte na równaniach kontinuum 3D, zmodyfikowanych hipotezami powłokowymi, spójne z pięcioparametrową teorią powłok Mindlina-Reissnera ES bryłowe, korzystające z równań kontinuum 3D, opisujace powłoki grube Powyższa klasyfikacja wiąże się z: liczbą aproksymowanych pól wewnątrz ES, liczbą i rodzajem stopni swobody węzła, wzorami użytymi do obliczania energii wewnętrznej oraz sposobem całkowania po obszarze ES przy liczeniu macierzy sztywności i wektorów węzłowych obciążeń.
28 ES powłokowe ES powłokowe 1D dla powłok obrotowych Elementy skończone geometrycznie jednowymiarowe dyskretyzują południk powłoki os iowo symetrycznej, z zastosowaniem analitycznego rozwinięcia wszystkich funkcji w szereg trygonometryczny zmiennej obwodowej. u(ξ, Θ) = = j=1 u 1 u 2 w = u v w J u j (ξ) cos(jθ) j=1 J v j (ξ) sin(jθ) j=1 J w j (ξ) cos(jθ) =
29 ES powłokowe Płaskie powłokowe ES 2D o 3 i 4 węzłach Elementy skończone powłokowe płaskie z 3 i 4 węzłami są utworzone w wyniku superpozycji ES tarczowych i ES płytowych. + = + = W węźle takiego ES, stosując model przemieszczeniowy, występują następujące stopnie swobody: q n w = {u, v} w q m w = {w, ϕ 1, ϕ 2 } w q w = {q n q m } w = {u, v, w, ϕ 1, ϕ 2 } w
30 ES powłokowe Płaskie powłokowe ES 2D dostępne w programie ROBOT Do dyskretyzacji powłok z załomami i/lub rozgałęzieniami musi być wprowadzony do węzła trzeci rotacyjny stopień swobody ϕ n czyli węzłowy szósty stopień swobody, a zatem: q w = {u, v, w, ϕ 1, ϕ 2 ϕ n } w. Kąt ϕ n - obrotu wokół normalnej nie może być pomijany przy aproksymacji przemieszczeń powierzchni środkowej, ze względu na konieczność transformacji wektorów obrotów do układu globalnego (X, Y, Z).
31 ES powłokowe Zakrzywione powłokowe ES 2D oparte na klasycznej trójparametrowej teorii powłok cienkich Aproksymacja pola przemieszczeń (3 składowe translacyjne): u(ξ 1, ξ 2 ) = {u 1 (ξ 1, ξ 2 ), u 2 (ξ 1, ξ 2 ), w(ξ 1, ξ 2 )} = = {u(ξ 1, ξ 2 ), v(ξ 1, ξ 2 ), w(ξ 1, ξ 2 )} = N Wektor SSW: q w = {u, v, w, ϕ 1, ϕ 2 } w [3 LSSE] qe [LSSE 1] lub q w = {u, v, w, ϕ 1, ϕ 2 ϕ n } w. LSSW = 6 LW = 6 LSSE = 36 LSSW = 6 LW = 8 LSSE = 48
32 Zbiornik walcowy Zbiornik walcowy Równanie różniczkowe przemieszczeniowe 4-go rzędu dla osiowo symetrycznego stanu membranowo-giętnego i jego rozwiązanie w IV (x) + 4β 4 w(x) = w(x) = = e βx [B 1 cos(βx) + B 2 sin(βx)] } {{ } szybko maleje przy wzroście x gdzie: β = w o (x) } {{ } całka ogólna 1 D m [p n + ν R ( 1 Rh 4 3(1 ν2 ) p 1 dx + C 1 )] + w(x) } {{ } = całka szczególna + e +βx [B 3 cos(βx) + B 4 sin(βx)] } {{ } szybko rośnie przy wzroście x + w(x) w(x) funkcja ugięcia dla stanu bezmomentowego osiowo symetrycznego w o (x) funkcja ugięcia opisująca lokalny stan giętny Pojawiają się moment m 1 (x) i siła poprzeczna t 1 (x). Ulegają modyfikacji przemieszczenie w(x) i siła równoleżnikowa n 2 (x).
33 Zbiornik walcowy Zbiornik walcowy Dane Geometria, materiał, obciążenie wysokość L = H = 20.0 m promień R = 10.0 m grubość h = 0.12 m moduł Younga E = kpa współczynnik Poissona ν = ciężar własny p 1 = γ b h = = 2.88 kpa parcie hydrostatyczne p n = γ c (L x) = 10(20 x) kpa sztywność giętna D m = = knm Eh3 12(1 ν 2 ) warunki brzegowe w(0) = 0, w (0) = 0, m 1 (L) = 0, t 1 (L) = 0 Powłoka długa? β = m, λ = π β 2.63 m λ - długość półfali Czy 3 λ < L? 7.9 m < 20 m TAK
34 Zbiornik walcowy Zbiornik walcowy stan bezmomentowy Rozwiązanie analityczne Przemieszczenie normalne w 20 Funkcja przemieszczenia normalnego: x [m] w(x) = w(x) = R Eh (γ cr + νγ b h)(l x) w(x) [cm] Siła południkowa n 1 Siła równoleżnikowa n x [m] 10 x [m] n1(x) [kn/m] n2(x) [kn/m]
35 Zbiornik walcowy Zbiornik walcowy zaburzenie stanu bezmomentowego Rozwiązanie analityczne Przemieszczenie normalne w Siła poprzeczna t 1 Moment południkowy m x [m] 10 x [m] 10 x [m] m 1 (0) = 67.6 knm m w(x) [cm] t1(x) [kn/m] m1(x) [knm/m] Siła południkowa n 1 Siła równoleżnikowa n x [m] 10 x [m] n 2 (2) = 1841 kn m n1(x) [kn/m] n2(x) [kn/m]
36 Zbiornik walcowy Zbiornik walcowy zaburzenie stanu bezmomentowego Rozwiązanie numeryczne ROBOT Siła równoleżnikowa n 2 Siła poprzeczna t 1 Moment południkowy m 1 Siła południkowa n 1 od ciężaru własnego
37 Zbiornik walcowy Zbiornik walcowy zaburzenie stanu bezmomentowego Rozwiązanie numeryczne ANSYS Moment południkowy m 1 Moment równoleżnikowy m 2 Siła południkowa n 1 Siła równoleżnikowa n 2
38 Zbiornik walcowy Zbiornik walcowy zaburzenie stanu bezmomentowego Podsumowanie Rozwiązanie analityczne w max n [ 2,max n 2,min m 1,max m 1,min [cm] kn ] [ kn ] [ knm ] [ knm ] m m m m położenie x [m] wartość Rozwiązania numeryczne ANKA (ES 1D) ROBOT (ES 2D) ANSYS (ES 2.5D) Typ elementu LE LSSU aktywnych ANKA SRSK 1D ROBOT płaski 2D ANSYS zdegenerowany SHELL D
39 Zbiornik walcowy Test nierozciągliwego zginania walcowej powłoki otwartej Weryfikacja jakości ES powłokowych z Momentowe obciążenie brzegowe powinno wywołać: przemieszczenie brzegu zgodne z analitycznym rozwiązaniem: u = ˆm R2 D m, x,u L Wariantujemy: wielkości geometryczne powłoki: R/h = 10,..., 100, ˆm R naprężenia ze stanu giętnego. typ siatki ES: regularna nieregularna. y gdzie: D m = Eh3 12(1 ν 2 ), zerowe siły membranowe, stałe momenty m 2. Dodatkowo kontroli podlega stosunek maksymalnego membranowego naprężenia do maksymalnego
40 Nie ma czegoś takiego jak książkowy przypadek. Dziękuję za uwagę prawo Murphy ego
41 Literatura M. Radwańska. Ustroje powierzchniowe. Podstawy teoretyczne oraz rozwiązania analityczne i numeryczne. Skrypt PK, Kraków, A. Borkowski, Cz. Cichoń, M. Radwańska, A. Sawczuk, Z. Waszczyszyn. Mechanika budowli. Ujęcie komputerowe. T.3, rozdz.9, Arkady, Warszwa, Cz. Cichoń, W. Cecot, J.Krok, P. Pluciński. Metody komputerowe w liniowej mechanice konstrukcji. Wybrane zagadnienia. Skrypt PK, wydanie 2, Kraków, G. Rakowski, Z. Kacprzyk. Metoda elementow skończonych w mechanice konstrukcji. Oficyna Wyd. PW, Warszawa, R.D. Cook, D.S. Malkus, M.E. Plesha, R.J Witt. Concepts and Applications of Finite Element Analysis. University of Wisconsin Madison, John Wiley&Sons, O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu. The Finite Element Method: Its Basis and Fundamentals. VI edition, Elsevier Butterworth Heineman, 2005.
Analiza statyczna MES dla dźwigarów powierzchniowych
Adam Wosatko PODZIĘKOWANIA DLA: Marii Radwańskiej, Anny Stankiewicz, Sławomira Milewskiego, Jerzego Pamina, Piotra Plucińskiego Tematyka zajęć 1 Analiza statyczna MES algorytm, porównanie z MRS 2 ES tarczowe
TARCZOWE I PŁYTOWE ELEMENTY SKOŃCZONE
PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady
ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki
Analiza płyt i powłok MES
Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
Metoda elementów skończonych
Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną
1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz
1 Charakterystyka ustrojów powierzchniowych Anna Stankiewicz e-mail: astankiewicz@l5.pk.edu.pl Tematyka zajęć Przykłady konstrukcji inżynierskich Klasyfikacja ustrojów powierzchniowych Podstawowe pojęcia
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,
ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY
ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział
[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa
Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia
Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop
Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9
7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:
7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić
Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D
Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko
Metoda Różnic Skończonych (MRS)
Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów
WYBRANE ZAGADNIENIA MECHANIKI USTROJÓW POWIERZCHNIOWYCH
WYBRANE ZAGADNIENIA MECHANIKI USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2010/2011 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna)
PRZYKŁADOWE ZADANIA ZADANIE (ocena dostateczna) Obliczyć reakcje, siły wewnętrzne oraz przemieszczenia dla kratownicy korzystając z Metody Elementów Skończonych. Zweryfikować poprawność obliczeń w mathcadzie
ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI
Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut
8. Metody rozwiązywania układu równań
8. Metody rozwiązywania układu równań [K][u e ]=[F e ] Błędy w systemie MES Etapy modelowania metodami komputerowymi UKŁAD RZECZYWISTY MODEL FIZYCZNY MODEL DYSKRETNY Weryfikacja modelu fiz. Weryfikacja
Metody obliczeniowe - modelowanie i symulacje
Metody obliczeniowe - modelowanie i symulacje J. Pamin nstitute for Computational Civil Engineering Civil Engineering Department, Cracow University of Technology URL: www.l5.pk.edu.pl Zagadnienia i źródła
Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)
METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach
METODY KOMPUTEROWE W MECHANICE
METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania
Karta (sylabus) przedmiotu
Karta (sylabus) przedmiotu [Budownictwo] Studia I stopnia Przedmiot: Metody obliczeniowe Rok: III Semestr: VI Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 15 16 Ćwiczenia
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)
Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 015/016 Kierunek studiów: Mechanika i Budowa Maszyn Forma
Metody obliczeniowe - modelowanie i symulacje
Metody obliczeniowe - modelowanie i symulacje J. Pamin Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechniki Krakowskiej Strona domowa: www.l5.pk.edu.pl Zagadnienia
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Metody obliczeniowe Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,
Analiza wrażliwości tarczy z wykorzystaniem metody elementów skończonych
Analiza wrażliwości tarczy z wykorzystaniem metody elementów skończonych Mgr inż. Tomasz Ferenc Politechnika Gdańska, Wydział Inżynierii Lądowej i Środowiska Projektowanie wszelkiego rodzaju konstrukcji
Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE
METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Osiadanie kołowego fundamentu zbiornika
Przewodnik Inżyniera Nr 22 Aktualizacja: 01/2017 Osiadanie kołowego fundamentu zbiornika Program: MES Plik powiązany: Demo_manual_22.gmk Celem przedmiotowego przewodnika jest przedstawienie analizy osiadania
ROZWIĄZANIE PROBLEMU NIELINIOWEGO
Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja
PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych
Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia
Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia Przedmiot: Wytrzymałość Materiałów II Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: MBM 1 S 0 4 44-0 _0 Rok: II Semestr:
METODA PASM SKOŃCZONYCH PŁYTY DWUPRZĘSŁOWE
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI METODA PASM SKOŃCZONYCH PŁYTY DWUPRZĘSŁOWE Dla płyty przedstawionej na rysunku należy: 1)Obciążając ciężarem własnym q i
Łagodne wprowadzenie do Metody Elementów Skończonych
Łagodne wprowadzenie do Metody Elementów Skończonych dr inż. Grzegorz DZIERŻANOWSKI dr hab. inż. Wojciech GILEWSKI Katedra Mechaniki Budowli i Zastosowań Informatyki 10 XII 2009 - część I 17 XII 2009 -
POWŁOKI GEOMETRIA POWIERZCHNI
Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydzia Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Maria Radwańska Tematyka wykładu
gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
P. Litewka Efektywny element skończony o dużej krzywiźnie
Wykaz oznaczeń stosowanych w pracy a długość elementu łukowego, c kosinus kąta rozwarcia elementu, c 0 kosinus połowy kąta rozwarcia elementu, d współczynnik ścinania, e współczynnik membranowy, g ij,
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac
1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t )
pis treści ymulacja procesów cieplnych Algorytm ME 3 Implementacja rozwiązania 4 Całkowanie numeryczne w ME 3 ymulacja procesów cieplnych Procesy cieplne opisuje równanie różniczkowe w postaci: ( k x (t)
MODELOWANIE MATERIAŁÓW - WSTĘP
Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2014/2015 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Jerzy Pamin Adam Wosatko Zakres wykładu 1 O modelowaniu
gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:
1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]
Wzornictwo Przemysłowe I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2014/2015
Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74
Elementy 1D Element cięgnowy Element LINK1 jest elementem 2D, dwuwęzłowym, posiadającym jedynie dwa stopnie swobody - translację w kierunku x oraz y. Można zadeklarować pole jego przekroju oraz odkształcenie
pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ
Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona
Analiza płyt i powłok MES Zagadnienie wyboczenia
Analiza płyt i powłok MES Zagadnienie wyboczenia Wykład 3 dla kierunku Budownictwo, specjalności DUA+TOB/BM+BŚ+BO Jerzy Pamin i Marek Słoński nstytut Technologii nformatycznych w nżynierii Lądowej Politechnika
WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,
Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1
Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, ichał Płotkowiak, Wojciech Pawłowski Poznań 00/003 ECHANIKA UDOWLI WSTĘP. echanika budowli stanowi dział mechaniki technicznej, zajmujący się statyką, statecznością
Analiza stateczności zbocza
Przewodnik Inżyniera Nr 25 Aktualizacja: 06/2017 Analiza stateczności zbocza Program: MES Plik powiązany: Demo_manual_25.gmk Celem niniejszego przewodnika jest analiza stateczności zbocza (wyznaczenie
Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki
MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl
MECHANIKA BUDOWLI I Prowadzący : pok. 5, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 989 Paluch M., Mechanika Budowli: teoria i przykłady,
INTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
ZASTOSOWANIE ELEMENTÓW POWŁOKOWYCH ZGINANA PŁYTA I BELKA CIENKOŚCIENNA.
ZASTOSOWANIE ELEMENTÓW POWŁOKOWYCH ZGINANA PŁYTA I BELKA CIENKOŚCIENNA. 1. Wprowadzenie Elementy powłokowe są elementami płata powierzchniowego w przestrzeni i są definiowane za pomocą ich warstwy środkowej
PODSTAWOWE POJĘCIA MES
Metoda Elementów Skończonych Studium magisterskie PODSTAWOWE POJĘCIA WYKŁAD 1 Wersja elektroniczna, http://www.okno.pg.gda.pl. Literatura KLEIBER M.: Wprowadzenie do metody elementów skończonych. PAN IPPT,
Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie
Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań
Wprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
Analiza płyt i powłok MES Zagadnienie wyboczenia
Analiza płyt i powłok MES Zagadnienie wyboczenia Wykład 3 dla kierunku Budownictwo, specjalności DUA+TOB Jerzy Pamin i Marek Słoński Instytut Technologii Informatycznych w Inżynierii Lądowej Politechnika
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 N 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:
Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk,
Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach Krzysztof Żurek Gdańsk, 2015-06-10 Plan Prezentacji 1. Manipulatory. 2. Wprowadzenie do Metody Elementów Skończonych (MES).
Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy
Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi
Nasyp przyrost osiadania w czasie (konsolidacja)
Nasyp przyrost osiadania w czasie (konsolidacja) Poradnik Inżyniera Nr 37 Aktualizacja: 10/2017 Program: Plik powiązany: MES Konsolidacja Demo_manual_37.gmk Wprowadzenie Niniejszy przykład ilustruje zastosowanie
Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2)
Przykłady rozkładu naprężenia stycznego w przekrojach belki zginanej nierównomiernie (materiał uzupełniający do wykładu z wytrzymałości materiałów I, opr. Z. Więckowski, 11.2018) Wzór Żurawskiego τ xy
DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ.
Cw1_Tarcza.doc 2015-03-07 1 DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ. 1. Wprowadzenie Zadanie dwuwymiarowe teorii sprężystości jest szczególnym przypadkiem
Poznań 17.XII.2007 r.
Zboralski Piotr KBI VII 007/008 Poznań 17.XII.007 r. 1. Schemat płyty: Krawędź 1 swobodnie podparta Krawędź utwierdzona. Dane materiałowe i geometryczne: B = 10[ m] kn p1 = 1,4 L = [ m] xp = 4[ m] kn p
Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia
MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F
Mechanika teoretyczna
Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład
Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji
POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr 7 Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Analiza statyczna obciążonego kątownika
Stateczność ramy. Wersja komputerowa
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel
Politechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 5 Temat ćwiczenia:
PROJEKT NR 1 METODA PRZEMIESZCZEŃ
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią
OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA
POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS
Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia I stopnia o profilu: A P
WM Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia I stopnia o profilu: A P Przedmiot: Wytrzymałość Materiałów I Kod ECTS Status przedmiotu: obowiązkowy MBM 1 S 0 3 37-0_0 Język wykładowy:
Stateczność ramy - wersja komputerowa
Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych
Elementy Projektowania Inżynierskiego CALFEM Wybrane funkcje.
Elementy Projektowania Inżynierskiego CALFEM Wybrane funkcje. A B C E F P S assem() beam2d() beam2e() beam2s() coordxtr() eigen() eldia2() eldisp2() eldraw2() elflux2() eliso2() extract() flw2qe() flw2qs()
Laboratorium Wytrzymałości Materiałów
Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów
PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH
1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:
1 z , 12:01
Strona: 1 Podstawowe informacje o module Nazwa modułu: Metody komputerowe Nazwa jednostki prowadzącej studia: Wydział Budownictwa, Inżynierii środowiska i Architektury Nazwa kierunku studiów: Budownictwo
Linie wpływu w belce statycznie niewyznaczalnej
Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też
Wytrzymałość Materiałów
Wytrzymałość Materiałów Stateczność prętów prostych Równowaga, utrata stateczności, siła krytyczna, wyboczenie w zakresie liniowo sprężystym i poza liniowo sprężystym, projektowanie elementów konstrukcyjnych
DYNAMIKA KONSTRUKCJI BUDOWLANYCH
DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych
2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów.
2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopień statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno
F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi
MES Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F + R, u A R f f F R + f, f + f, f + F, u A Równania
WRAŻLIWOŚĆ POWŁOKI CYLINDRYCZNEJ NA ZMIANĘ GRUBOŚCI
Budownictwo 16 Halina Kubiak, Maksym Grzywiński WRAŻLIWOŚĆ POWŁOKI CYLINDRYCZNEJ NA ZMIANĘ GRUBOŚCI Wstęp Zadaniem analizy wrażliwości konstrukcji jest opisanie zależności pomiędzy odpowiedzią determinowaną
MES w zagadnieniach ośrodka ciągłego 2D i 3D
MES w zagadnieniach ośrodka ciągłego 2D i 3D Wykład 2 dla kierunku Budownictwo, specjalności DUA+TOB/BIM+BIŚ+BOI Jerzy Pamin i Piotr Pluciński Instytut Technologii Informatycznych w Inżynierii Lądowej
Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej