Przykład 4.2. Sprawdzenie naprężeń normalnych
|
|
- Bartłomiej Wolski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m X c Z c Y c Rozwiazanie Zadanie zostanie rozwiązane dwoma sposobami różniącymi się wyborem układu współrzędnych, w jakim zostaną wykonane obliczenia. SPOSÓB - obliczenia w układzie centralnych osi bezwładności Sprawdzenie warunku nośności przekroju ze względu na naprężenia normalne polega na porównaniu występujących w przekroju naprężeń normalnych z dopuszczalnymi. Rozwiązywanie zadania rozpoczać należy od określenia charakterystyk geometrycznych przekroju. A = 5 8 = 0 cm J yc = = 7, cm4 J zc = 8 5 = 7,74 6 J ycz c = 5 8 =, cm 4 7
2 W przekroju odległym o x 0; m od podstawy słupa siły wewnętrzne mają wartość: N = 0 kn M yc = 0,5 kn m x) m m x) = 0,5 kn m M zc = 0, kn m x) m x) Wyraźnie widać, że maksymalne wartości sił wewnętrznych występują dla x = 0, tj. w podstawie słupa, gdzie N = 0 kn M yc = 0,5 kn m m 0) = knm = 00 kncm M zc = 0, kn m 0) = 0, knm = 0 kncm M 00 knm 0 knm 0 kn Wzór na naprężenia normalne obowiązujący dla centralnych osi bezwładności ma postać: σ x = N A + J y cz c M yc + J yc M zc J y cz c J yc J zc y J yczcm zc + J zcm yc z Jy cz c J yc J zc Podstawiając obliczone wartości momentów bezwładności i sił wewnętrznych otrzymujemy: σ x = 0 0, 00) + 7, 0 +,) 7, 7,78 y, 0 + 7,78 00) c,) 7, 7,78 z c = =,46y c,75z c Równanie osi obojętnej otrzymujemy przyrównując naprężenie normalne σ x do zera. σ x = 0 =,46y c,75z c = 0 = = y c,46 + z c,75 = = y c 0, z c 0,4598 = Tak więc oś obojętna przechodzi przez punkty 0; 0,459) i 0,406; 0).
3 Z B M Y A os obojetna Na powyższym rysunku pokazano oprócz położenia osi obojętnej również wypadkowy wektor momentu zginającego oraz główne centralne osie bezwładności ich położenie wyznaczane jest przy okazji obliczeń wykonywanych sposobem ). Zrobiono to w celu sprawdzenia poprawności obliczeń. W przypadku zginania ukośnego jest bowiem regułą, że oś obojętna przekroju odchyla się od kierunku wypadkowego momentu zginającego w kierunku osi minimalnego momentu bezwładności. W rozpatrywanym przypadku zasada ta jest spełniona moment J z < J y ). Skrajne wartości naprężeń występują w punktach przekroju najbardziej odległych od osi obojętnej, tj. w punktach A i B. σx A = σ x 5 ) cm; =,46 5 ),75 8 ) = = + 4, + 5,8 = 8,9 kn cm σx B = σ x 5 cm; 8 ) cm =,46 = + 4,,6 = 8,5 kn cm 5 ),75 8 = Aby porównać otrzymane wyniki z naprężeniami dopuszczalnymi należy przeliczyć jednostki: Tak więc kn cm = 0 MN = 0 MPa 0 4 m σ A x = 89 MPa = σ max σ B x = 85 MPa = σ min
4 B A σ x [MPa] Warunek nośności ze względu na naprężenia normalne w przekroju jest spełniony wtedy i tylko wtedy gdy: σ max k r σ min k c W rozpatrywanym przypadku σ max = 89 MPa k r = 80 MPa σ min = 85 MPa < k c = 0 MPa Ponieważ naprężenia ściskające są, co do wartości bezwzględnej, większe niż dopuszczalne badany słup nie spełnia warunku nośności ze względu na naprężenia normalne w przekroju. SPOSÓB - obliczenia w układzie głównych centralnych osi bezwładności Podobnie jak w sposobie obliczenia należy rozpocząć od określenia charakterystyk geometrycznych przekroju: A = 0 cm J yc = 7, cm 4 J zc = 7,7 4 J ycz c =, cm 4 W dalszej kolejności obliczyć należy wartości głównych centralnych momentów bezwładności oraz położenie osi głównych centralnych. I, = I y c + I zc ) ± I yc I zc ) + 4Iy cz c = = 7, + 7,78) ± 7, 7,78) + 4,) = 49,44 ±,04 4
5 Tak więc I = 49,44 +,04 = 80,4 4 I = 49,44,04 = 8,4 cm 4 = J y = J z Kąt nachylenia osi głównych Y i Z obliczamy następująco: tg α = I y cz c I yc I zc =,) 7, 7,78 = = α = 45,7o = α =,86 o Z Y W następnym etapie wyznaczyć trzeba wzory transformacyjne przekształcające współrzędne centralne we współrzędne główne centralne. Wzory te mają postać: y = y c cos α + z c sin α = y c cos,86 o + z c sin,86 o = 0,94y c + 0,885z c z = y c sin α + z c cos α = y c sin,86 o + z c cos,86 o = 0,885y c + 0,94z c Analogicznie określone są wzory na składowe momenty zginające M y i M z podstawiono wartości momentów M yc i M zc obliczone wcześniej): M y = M yc cos α + M zc sin α = 00 cos,86 o + 0 sin,86 o = 84,7 kncm M z = M yc sin α + M zc cos α = 00) sin,86 o + 0 cos,86 o = 57,8 kncm Podstawiając otrzymane powyżej wartości do wzoru na naprężenia normalne określane we współrzędnych głównych centralnych otrzymujemy: σ x = σ N x + σ Mz x + σ My x =,y,048z = N A M z I z y + M y I y z = ,8 8,4 y + 84,7 80,48 z = Przyrównując wzór na naprężenie normalne do zera otrzymujemy równanie osi obojętnej. σ x = 0 =,y c,048z c = 0 = = y c, + z c,048 = = y c 0,4 + z c 0,959 = 5
6 Tak więc oś obojętna przechodzi przez punkty 0; 0,959 cm) i 0,4 cm; 0). M 00 knm 0 knm 0 kn Najbardziej oddalone od osi obojętnej są punkty A i B. Współrzędne tych punktów, liczone w układzie Y c Z c, są równe: y A c = 5 z A c = 8 yc B = 5 zc B = 6 Stosując wyprowadzony wcześniej wzór na transformację współrzędnych obliczamy: y A = 0,94yc A + 0,885zc A = 0,94 5 ) + 0,885 8 ) =,57 cm z A = 0,885yc A + 0,94zA c = 0,885 5 ) + 0,94 8 ) =,80 cm y B = 0,94yc B + 0,885zB c = 0,94 5 ) + 0,885 6 = 0,564 cm z B = 0,885yc B + 0,94zc B = 0,885 5 ) + 0,94 6 = 5,56 cm Obliczone współrzędne punktów A i B wstawiamy do wzoru na naprężenia normalne i uzyskujemy wartości naprężeń ekstremalnych w przekroju. σx A = σ x,57 cm;,80 cm) =,,57),048,80) = = 8,9 kn = 89 MPa cm σx B = σ x 0,564 cm; 5,56 cm) =, 0,564,048 5,56 = 8,5 kn cm = = 85 MPa 6
7 Z B Y A σ x [MPa] Warunek nośności nie jest spełniony gdyż: σ max = 89 MPa k r = 80 MPa σ min = 85 MPa < k c = 0 MPa 7
Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
PROJEKT NR 1 METODA PRZEMIESZCZEŃ
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr
Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m
Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany
2. Charakterystyki geometryczne przekroju
. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi
Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania
Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać
Wytrzymałość materiałów
Wytrzymałość materiałów Wykład 3 Analiza stanu naprężenia i odkształcenia w przekroju pręta Poznań 1 3.1. Podstawowe założenia Charakterystyka materiału Zakładamy na początek, że mamy do czynienia z ośrodkiem
700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:
Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny
wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe
Ćwiczenie 15 ZGNANE UKOŚNE 15.1. Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe
2. Charakterystyki geometryczne przekroju
. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi
3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA
3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie
Węzeł nr 28 - Połączenie zakładkowe dwóch belek
Projekt nr 1 - Poz. 1.1 strona nr 1 z 12 Węzeł nr 28 - Połączenie zakładkowe dwóch belek Informacje o węźle Położenie: (x=-12.300m, y=1.300m) Dane projektowe elementów Dystans między belkami s: 20 mm Kategoria
Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:
adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,
Dane. Biuro Inwestor Nazwa projektu Projektował Sprawdził. Pręt - blacha węzłowa. Wytężenie: TrussBar v
Biuro Inwestor Nazwa projektu Projektował Sprawdził TrussBar v. 0.9.9.22 Pręt - blacha węzłowa PN-90/B-03200 Wytężenie: 2.61 Dane Pręt L120x80x12 h b f t f t w R 120.00[mm] 80.00[mm] 12.00[mm] 12.00[mm]
POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y := 215MPa, f u := 360MPa, E:= 210GPa, G:=
POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y : 25MPa, f u : 360MPa, E: 20GPa, G: 8GPa Współczynniki częściowe: γ M0 :.0, :.25 A. POŁĄCZENIE ŻEBRA Z PODCIĄGIEM - DOCZOŁOWE POŁĄCZENIE KATEGORII
1. Połączenia spawane
1. Połączenia spawane Przykład 1a. Sprawdzić nośność spawanego połączenia pachwinowego zakładając osiową pracę spoiny. Rysunek 1. Przykład zakładkowego połączenia pachwinowego Dane: geometria połączenia
Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)
Belka - podciąg EN :2006
Biuro Inwestor Nazwa projektu Projektował Sprawdził BeamGirder v. 0.9.9.22 Belka - podciąg EN 1991-1-8:2006 Wytężenie: 0.76 Dane Podciąg IPE360 h p b fp t fp t wp R p 360.00[mm] 170.00[mm] 12.70[mm] 8.00[mm]
Współczynnik określający wspólną odkształcalność betonu i stali pod wpływem obciążeń długotrwałych:
Sprawdzić ugięcie w środku rozpiętości przęsła belki wolnopodpartej (patrz rysunek) od quasi stałej kombinacji obciążeń przyjmując, że: na całkowite obciążenie w kombinacji quasi stałej składa się obciążenie
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią
Belka - podciąg PN-90/B-03200
Biuro Inwestor Nazwa projektu Projektował Sprawdził BeamGirder v. 0.9.9.22 Belka - podciąg PN-90/B-03200 Wytężenie: 0.98 Dane Podciąg I_30_25_2_1 h p b fp t fp t wp R p 300.00[mm] 250.00[mm] 20.00[mm]
9. Mimośrodowe działanie siły
9. MIMOŚRODOWE DZIŁIE SIŁY 1 9. 9. Mimośrodowe działanie siły 9.1 Podstawowe wiadomości Mimośrodowe działanie siły polega na jednoczesnym działaniu w przekroju pręta siły normalnej oraz dwóc momentów zginającyc.
Mechanika i Budowa Maszyn
Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach
5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY
Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy 1. Położenie osi obojętnej przekroju rozciąganego mimośrodowo zależy od: a) punktu przyłożenia
Uwaga: Linie wpływu w trzech prętach.
Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać
ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią
ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej.
10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. OBCIĄŻENIA: 6,00 6,00 4,11 4,11 1 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P1(Tg): P2(Td): a[m]: b[m]: Grupa:
ZGINANIE PŁASKIE BELEK PROSTYCH
ZGINNIE PŁSKIE EEK PROSTYCH WYKRESY SIŁ POPRZECZNYCH I OENTÓW ZGINJĄCYCH Zginanie płaskie: wszystkie siły zewnętrzne czynne (obciążenia) i bierne (reakcje) leżą w jednej wspólnej płaszczyźnie przechodzącej
Przykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
9.0. Wspornik podtrzymujący schody górne płytowe
9.0. Wspornik podtrzymujący schody górne płytowe OBCIĄŻENIA: 55,00 55,00 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P(Tg): P2(Td): a[m]: b[m]: Grupa: A "" Zmienne γf=,0 Liniowe 0,0 55,00 55,00
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Dr inż. Janusz Dębiński. Wytrzymałość materiałów zbiór zadań
Wytrzymałość materiałów zbiór zadań 1. Charakterystyki geometryczne przekroju pręta 1.1. Zadanie 1 Wyznaczyć położenie środka ciężkości prętów stalowych w elemencie żelbetowym przedstawionym na rysunku
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02
gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1
1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek konieczny geometrycznej
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
Mechanika i Budowa Maszyn. Przykład obliczeniowy geometrii mas i analiza wytrzymałości
Mechanika i Budowa Maszyn Materiały pomocnicze do laboratorium Przykład obliczeniowy geometrii mas i analiza wytrzymałości Środek ciężkości Moment bezwładności Wskaźnik wytrzymałości na zginanie Naprężenia
Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3
Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych
Raport wymiarowania stali do programu Rama3D/2D:
2. Element poprzeczny podestu: RK 60x40x3 Rozpiętość leff=1,0m Belka wolnopodparta 1- Obciążenie ciągłe g=3,5kn/mb; 2- Ciężar własny Numer strony: 2 Typ obciążenia: Suma grup: Ciężar własny, Stałe Rodzaj
Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej
Wewnętrzny stan bryły
Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez
Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE
WIADOMOŚCI OGÓLNE O zginaniu mówimy wówczas, gdy prosta początkowo oś pręta ulega pod wpływem obciążenia zakrzywieniu, przy czym włókna pręta od strony wypukłej ulegają wydłużeniu, a od strony wklęsłej
Redukcja płaskiego układu wektorów, redukcja w punkcie i redukcja do najprostszej postaci
Redukcja płaskiego układu wektorów, redukcja w punkcie i redukcja do najprostszej postaci Twierdzenie o redukcji: Każdy układ wektorów równoważny jest układowi złożonemu ze sumy o początku w dowolnym punkcie
Wytrzymałość Materiałów
Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,
Ć w i c z e n i e K 3
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Z1/1. ANALIZA BELEK ZADANIE 1
05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej
ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3
ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań
Wytrzymałość Materiałów
Wytrzymałość Materiałów Stateczność prętów prostych Równowaga, utrata stateczności, siła krytyczna, wyboczenie w zakresie liniowo sprężystym i poza liniowo sprężystym, projektowanie elementów konstrukcyjnych
Przykład Łuk ze ściągiem, obciążenie styczne. D A
Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości
10.0. Schody górne, wspornikowe.
10.0. Schody górne, wspornikowe. OBCIĄŻENIA: Grupa: A "obc. stałe - pł. spocznik" Stałe γf= 1,0/0,90 Q k = 0,70 kn/m *1,5m=1,05 kn/m. Q o1 = 0,84 kn/m *1,5m=1,6 kn/m, γ f1 = 1,0, Q o = 0,63 kn/m *1,5m=0,95
P R O J E K T N R 1 WYTRZYMAŁOŚCI MATERIAŁÓW. Zawiera: Wyznaczenie wymiarów przekroju poprzecznego belki zginanej poprzecznie
atedra Wtrzmałości Materiałów Rok akad. 005/06 Wdział Inżnierii Lądowej emestr zimow Politechniki rakowskiej P R O J E T N R 1 Z WYTRZYMAŁOŚCI MATERIAŁÓW Zawiera: Wznaczenie wmiarów przekroju poprzecznego
Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW
Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI
Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI
{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.
Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe
Liczba godzin Liczba tygodni w tygodniu w semestrze
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze
1. Projekt techniczny Podciągu
1. Projekt techniczny Podciągu Podciąg jako belka teowa stanowi bezpośrednie podparcie dla żeber. Jest to główny element stropu najczęściej ślinie bądź średnio obciążony ciężarem własnym oraz reakcjami
1 9% dla belek Strata w wyniku poślizgu w zakotwieniu Psl 1 3% Strata od odkształceń sprężystych betonu i stali Pc 3 5% Przyjęto łącznie: %
1.7. Maksymalne siły sprężające - początkowa siła sprężająca po chwilowym przeciążeniu stosowanym w celu zmniejszenia strat spowodowanych tarciem oraz poślizgiem w zakotwieniu maxp0 = 0,8 fpk Ap - wstępna
SKRĘCANIE WAŁÓW OKRĄGŁYCH
KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami
Obciążenia. Wartość Jednostka Mnożnik [m] oblicz. [kn/m] 1 ciężar [kn/m 2 ]
Projekt: pomnik Wałowa Strona 1 1. obciążenia -pomnik Obciążenia Zestaw 1 nr Rodzaj obciążenia 1 obciążenie wiatrem 2 ciężar pomnika 3 ciężąr cokołu fi 80 Wartość Jednostka Mnożnik [m] obciążenie charakter.
NOŚNOŚĆ GRANICZNA
4. NOŚNOŚĆ GRANICZNA 4. 4. NOŚNOŚĆ GRANICZNA 4.. Wstęp Nośność graniczna wartość obciążenia, przy którym konstrukcja traci zdoność do jego przenoszenia i staje się układem geometrycznie zmiennym. Zastosowanie
Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów
1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek
1. Projekt techniczny żebra
1. Projekt techniczny żebra Żebro stropowe jako belka teowa stanowi bezpośrednie podparcie dla płyty. Jest to element słabo bądź średnio obciążony siłą równomiernie obciążoną składającą się z obciążenia
rectan.co.uk 1. Szkic projektu Strona:1
Zadanie: Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności 1. Szkic projektu * Rozwiązanie zadania * Oznaczenia: A [cm²] - pole powierzchni figury
Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną
Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną Analizując równowagę układu w stanie granicznym wyznaczyć obciąŝenie graniczne dla zadanych wartości
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład
Sprawdzenie stanów granicznych użytkowalności.
MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:
Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE
METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody
PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych
PaleZbrojenie 5.0. Instrukcja użytkowania
Instrukcja użytkowania ZAWARTOŚĆ INSTRUKCJI UŻYTKOWANIA: 1. WPROWADZENIE 3 2. TERMINOLOGIA 3 3. PRZEZNACZENIE PROGRAMU 3 4. WPROWADZENIE DANYCH ZAKŁADKA DANE 4 5. ZASADY WYMIAROWANIA PRZEKROJU PALA 8 5.1.
Widok ogólny podział na elementy skończone
MODEL OBLICZENIOWY KŁADKI Widok ogólny podział na elementy skończone Widok ogólny podział na elementy skończone 1 FAZA I odkształcenia od ciężaru własnego konstrukcji stalowej (odkształcenia powiększone
KONSTRUKCJE DREWNIANE I MUROWE
POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 5 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska 1 CHARAKTERYSTYKI MATERIAŁOWE drewno lite sosnowe klasy C35: - f m,k =
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
Statyka płynów - zadania
Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły
J. Szantyr - Wykład 5 Pływanie ciał
J. Szantyr - Wykład 5 Pływanie ciał Prawo Archimedesa Na każdy element pola ds działa elementarny napór Napór całkowity P ρg S nzds Główny wektor momentu siły naporu M ρg r nzds S dp Αρχίµηδης ο Σΰρακοσιος
OBLICZENIA STATYCZNE konstrukcji wiaty handlowej
OBLICZENIA STATYCZNE konstrukcji wiaty handlowej 1.0 DŹWIGAR DACHOWY Schemat statyczny: kratownica trójkątna symetryczna dwuprzęsłowa Rozpiętości obliczeniowe: L 1 = L 2 = 3,00 m Rozstaw dźwigarów: a =
1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia
Poz.1.Dach stalowy Poz.1.1.Rura stalowa wspornikowa
Poz..Dach stalowy Poz...Rura stalowa wspornikowa Zebranie obciążeń *obciążenia zmienne - obciążenie śniegiem PN-80/B-0200 ( II strefa obciążenia) = 5 0 sin = 0,087 cos = 0,996 - obc. charakterystyczne
ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych
ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych bez pisania funkcji Układ płaski - konwencja zwrotu osi układu domniemany globalny układ współrzędnych ze zwrotem osi jak na rysunku (nawet jeśli
Ć w i c z e n i e K 2 b
Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:
Z1/2 ANALIZA BELEK ZADANIE 2
05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu
ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI
Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe
Lista węzłów Nr węzła X [m] Y [m] 1 0.00 0.00 2 0.35 0.13 3 4.41 1.63 4 6.85 2.53 5 9.29 1.63 6 13.35 0.13 7 13.70 0.00 8 4.41-0.47 9 9.29-0.
7. Więźba dachowa nad istniejącym budynkiem szkoły. 7.1 Krokwie Geometria układu Lista węzłów Nr węzła X [m] Y [m] 1 0.00 0.00 2 0.35 0.13 3 4.41 1.63 4 6.85 2.53 5 9.29 1.63 6 13.35 0.13 7 13.70 0.00
WSTĘP DO TEORII PLASTYCZNOŚCI
13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają
XXVI OLIMPIADA WIEDZY I UMIEJĘTNOŚCI BUDOWLANYCH 2013 ELIMINACJE CENTRALNE Godło nr CZĘŚĆ A PYTANIA I ZADANIA
XXVI OLIMPIADA WIEDZY I UMIEJĘTNOŚCI BUDOWLANYCH 2013 ELIMINACJE CENTRALNE Godło nr CZĘŚĆ A Czas 120 minut PYTANIA I ZADANIA 1 2 PUNKTY Na rysunku pokazano przykłady kratownic dachowych dwutrapezowych.
Wprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
Prosta i płaszczyzna w przestrzeni
Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego
Układy współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
Zadanie : Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności Strona :1
Zadanie : Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności * Rozwiązanie zadania * Oznaczenia : A [cm²] - pole powierzchni figury Xo [cm] - współrzędna
gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:
1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]
TENSOMETRIA ZARYS TEORETYCZNY
TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba
KOMINY MUROWANE. Przekroje trzonu wymiaruje się na stan graniczny użytkowania. Sprawdzenie należy wykonać:
KOMINY WYMIAROWANIE KOMINY MUROWANE Przekroje trzonu wymiaruje się na stan graniczny użytkowania. Sprawdzenie należy wykonać: w stadium realizacji; w stadium eksploatacji. KOMINY MUROWANE Obciążenia: Sprawdzenie
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej
8. WIADOMOŚCI WSTĘPNE
Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 1 8. WIDOMOŚCI WSTĘPNE 8.1. KLSYFIKCJ ZSDNICZYCH ELEMENTÓW KONSTRUKCJI Podstawą klasyfikacji zasadniczych elementów konstrukcji jest kształt geometryczny