Płaska fala monochromatyczna
|
|
- Iwona Szulc
- 6 lat temu
- Przeglądów:
Transkrypt
1 Płaska fala onochroatcna Fala płaska propagująca się w owoln kierunku s P s s - fragent coła fali płaskiej propagującej się w kierunku efiniowan pre wersor s O r,, prawoskrętn ukła współręnch kartejańskich pocątkie ukłau w punkcie O r wektor położenia owolnego punktu P coła
2 Płaska fala onochroatcna c O Ale r s P 2π 2π k n kn s r s Równoważne równanie falowe s Równanie fali płaskiej la ośroka o współcnniku ałaania n Znak onaca ilocn skalarn ep i [( t ks) ] ep i s roga w kierunku wersora s stała aplitua na cole Kołowa licba falowa k w ośroku k w próżni [( t k r) ] Ilocn skalarn wóch wektorów
3 P s s ep i [( t k r) ] k - wektor propagacji O k r r Mouł wektora propagacji ( + s s ) k n s + Wersor k s wnaca kierunek propagacji k 2π 2π k n kn Skłaowe wektora r(,,) s,, kosinus kierunkowe wersora s pr c ( ) ( ) ( s + s + s ) 1
4 Kosinus kierunkowe s cosβ β β β s s s cosβ cosβ Wgoniejse jest stosowanie kątów opełniającch
5 Ropatr la prostot falę cołe i wersore s leżąc w płascźnie β k r α s W t prpaku β 9 s cosβ Ponieważ la coła a a ponato +α 9 ( ) + s+ s kncosβ kn α kn s sin Rokła na cole β więc ep( ik n sin ) ep( i t) fali α Ogólne równanie fali w płascźnie, ( ) [ ik n( sinα cosα )] ep( i t) ep stała aplitua na cole
6 Dla owolnie skierowanego wersora s Kąt α jest kąte opełniając o kąta β a α o kąta β O α α s k r i wte la k ( α + α ) n sin sin Równanie fali płaskiej propagującej się w kierunku wersora s (propagacja fali płaskiej w prestreni) [ ik n( sinα + sinα sinα )] ep( i t) ep
7 Rokła fali onochroatcnej na fale płaskie Prpaek jenowiarow Niech bęie an rokła () la () Transforata Fouriera tego rokłau ( ) ( ) ep( i) jest aplituą haronicnej o kołowej cęstości prestrennej Pojęcie kołowej cęstości prestrennej wprowaone pre analogię o kołowej cęstotliwości la funkcji iennch w casie (t) 2πν 1 ν T ν T - cęstość prestrenna - okres prestrenn haronicnej
8 Prpaek jenowiarow Z owrotnej transforacji Fouriera ożna napisać 1 2π ( ) ( ) ep( i) ( ν) ep( i2πν) ν Funkcja () jest suą haronicnch ( ν ) ep( i2πν ) n () α s o różnch cęstościach prestrennch ν Równanie fali płaskiej la ep 2π ep i ( ik nsinα ) nsinα Haronicne są falai płaskii Równanie prestawia rokła pola () na fale płaskie
9 Prpaek jenowiarow c ( ) ( ν) ep( i2πν) ν n () α s Z porównania kąt propagacji haronicnej Aplitua skłaowej fali płaskiej, gie ( ν ) ( ) ep( i2πν ) Rokła na fale płaskie 2π ep i nsinα sinα n ν T ( ν ) - ługość fali w ośroku o współcnniku ałaania n T okres prestrenn haronicnej
10 Prpaek wuwiarow W płascźnie, an rokła ρ Dla prostot apisu ρ ( ρ) (,) Transforata Fouriera tego rokłau la wektorowego apisu ( ) ( ρ) ep( iρ) ρ jest aplituą haronicnej o kołowej cęstości prestrennej (, ) Owrotna transforata Fouriera ropisana na skłaowe (,) ( ν ) [ ( )], ν ep 2πiν +ν νν Funkcja (,) jest suą wuwiarowch haronicnch ( ν, ν ) ep[ 2πi( ν + ν ) ]
11 Porównanie równania haronicnej równanie fali płaskiej Tak jak la jenowiarowego prpaku ( ν, ν ) ep[ 2πi( ν + ν ) ] [ ik n( sinα + α )] ep sin aplitua fali ( ν ν ), kąt propagacji haronicnej sinα ν sinα ν - ługość fali w ośroku o współcnniku ałaania n O α α s s kierunek propagacji haronicnej o cęstości prestrennej ν(ν,ν ) jako fali płaskiej
12 Posuowanie (t) Funkcja ienna w casie t T Wio tej funkcji ( ν) t ( ) ep( i2πνt) t (ν) aplitua haronicnej o cęstotliwości ν (ν) ouł ν 1 T ν O ν
13 Posuowanie funkcja ienna w prestreni Prpaek jenowiarow () α s Ma rokła () Wio prestrenne tego rokłau Ponieważ ν sinα ν cęstość prestrenna ( ν ) ( ) ep( i2πν ) aplitua fali płaskiej propagującej się po kąte α Rokła () jest równoważn biorowi fal płaskich propagującch się po różni kątai α
14 Haronicna prestrenna o cęstości prestrennej ν rsunek pogląow T 1/ν α Kierunek propagacji haronicnej o cęstości ν Kierunek propagacji haronicnej o cęstości -ν 2 (ν )
15 Posuowanie Prkła prpaku jenowiarowego () (ν ) (α ) 2a ν sinα Wio prestrenne ν a ( ν ) Π( ) ep( i2πν ) 2a sinc( 2πaν ) a
16 Prpaek wuwiarow W płascźnie, an rokła ( ρ), ( ) ρ Funkcja (,) jest suą wuwiarowch haronicnch Transforata Fouriera tego rokłau ν, ν, ep[ i2πν + ν ] ( ) ( ) ( ) jest aplituą haronicnej o cęstości prestrennej ν, ν ( ν, ν ) ep[ 2πi( ν + ν ) ] suą fal płaskich o aplituach propagującch się po kątai sinα ν sinα ν α s α
17 Prkła jenowiarowej siatki frakcjnej Periocn biór jenakowch eleentów () Prkła eleentów stała (okres) siatki Zbiór scelin Zbiór eleentów faowch Niech na siatkę paa fala płaska cołe fali Pole () bepośrenio a siatką jest periocn biore eleentów T e () - aplitua fali T e () transitancja eleentu
18 Ponieważ T e ( ) δ( a) T ( a) fakt periocności ożna apisać jako e - operator splotu ( ) T ( ) T ( ) δ( ) III() e e Zbiór fal płaskich wnacan pre transforację Fouriera funkcji () Ale FT ( ) ( ) ep( i ) FT [ ( ) ] gż FT [ f g] FT [ f] FT [ g] ( ) FT [ T ( ) ] FT δ( ) δ e 1 ( ) δ( ) gie 2π
19 ( ) ( ) ( ) δ e t 2 π więc ( ) ( ) ( ) δ e t gie ( ) ( ) [ ] T t e e FT albo jest transforatą Fouriera jenego eleentu a skretn biór fal płaskich ( ) ( ) π e e 2 t t Ponieważ ( ) ( ) a f(a) a () f δ δ którch aplitua jest proporcjonalna o transforat Fouriera t e jenego eleentu la arguentu
20 Kąt α propagacji fali płaskiej n α s sinα T 2π 2π 2π Ostatecnie α sinα, ± 1, ± 2,... Kierunki propagacji fal płaskich pre siatkę frakcjną Mówi się o ręach frakcjnch
21 s Roważ la prostot siatkę frakcjną jako biór scelin o serokości s Transitancja jenego eleentu Te( ) ( ) gż 2π t e gie funkcja prostokątna (brakująca) 1 la.5s ( ) s la >.5s ( ) FT [ T ( ) ] ssinc(.5 s) ssinc π e Wio fal płaskich la siatki frakcjnej w postaci bioru scelin s π ( ) ( ) sinc s s gie ( ) s sinc π s s
22 Rokła aplitu fal płaskich w ręach la 4s Serokość scelin.25 okresu siatki () () sinc(.25π) Dla siatki frakcjne jako bioru scelin o serokości s /4 Owrócona faa brak jest ręów ±4, ±8, it Uwaga: skretn rokła fal płaskich tlko la nieograniconej siatki frakcjnej
23 Rokła obciętej fali płaskiej na fale płaskie 2a Niech fala płaska cołe fali paa na prsłonę o serokości 2a Za prsłoną a rokła pola ( ) ( ) Wio fal płaskich la obciętej fali ( ) FT [ ( ) ] 2a sinc( a) 2a 2π Ponieważ sinα ( ) 2a sinc asinα 2π sinc asinα albo ( ) ( ) α 2π 2a gie ( )
24 Rokła obciętej fali płaskiej na fale płaskie c Dla 2a >> nacące wartości aplitu (α ) achoą la ałch kątów α i wte sin(α ) α więc 2π ( α ) ( ) sinc aα () (α ) α α α Miara kąta robieżności fal płaskich serokość głównego aksiu α a
25 Wpłw ograniconego wiaru siatki frakcjnej na wio fal płaskich Rokła fal płaskich la nieograniconej siatki frakcjnej bł skretn ( ) t ( ) FT δ( ) gż la (-, ) e Tera licba eleentów skońcona, więc 1 δ ( ) 2a FT FT 2a ( ) δ( ) FT ( ) FT δ( ) gż 2a [ fg] FT [ f] FT [ g] sinc 2a ( ) a δ( )
26 sin 2 α π 2 π Ponieważ ( ) + α π + α π e a sin 2 sinc sin 2 t 2a Gb a nieogranicon wiar siatki frakcjnej wrażenie a sens tlko la. 2,.. 1,, sin ± ± α skretn rokła fal płaskich ( ) ( ) ( ) ( ) δ e a sinc t 2a Wpłw ograniconego wiaru siatki frakcjnej c ( ) ( ) ( ) [ ] e a sinc t 2a ( ) ( ) ( ) a T a T e e δ więc
27 Wpłw ograniconego wiaru siatki frakcjnej c ( ) 2a t e 2π sin α + sinc 2π sin α + a wpłw na aplituę fali płaskiej kstałtu eleentu G a a wartości skońcone, pr c 2a >> wpłw obcięcia 2a a rot biór fal płaskich w akresach α sinc a końcone wartości la innch kątów niż Onacając pre b sinα + serokość głównego aksiu funkcji sinc b a b α cosα sinα α Każ ręów frakcjnch a inn kąt robieżności α bioru fal płaskich acosα
28 Wpłw ograniconego wiaru siatki frakcjnej c 2a α α, α acosα Kąt robieżności bioru fal płaskich w każ ręie frakcjn jest więks la niejsego wiar siatki 2a la więksego kąta α wżsego ręu frakcjnego Gb na siatkę paała fala gaussowska wiąki ugięte błb również wiąkai gaussowskii
29 Wnacenie rokłau pola w prestreni la nieograniconej siatki frakcjnej M Do punktu M( M, M ), gie chce wnacć aplituę espoloną, ocierają wie fale płaskie cołai fal i -1 ( ) ( ikr s + ep ikr ) s, ep M, 1 M gie wersor s (,1) i s -1(sinα 1, cosα 1 ) M s -1 r M α 1 M s -1 a więc ( ik ) + ep[ ik( sinα cosα )], ep M, 1 Dla prostot ropatruje tlko wa rę frakcjne i -1 Dla bioru fal płaskich rokła pola M, ep M ( ikr s ) M 1 M 1 1
30 Wnacenie propagacji pola w wolnej prestreni - posuowanie Prpaek jenowiarow () α ( )? Znane () naleźć ( ) Aplitu espolone prestrennch haronicnch (fal płaskich) ( ) ( ) ep( i ) FT [ ( )] propagującch się po kąte α Ponieważ ' ' sinα ν 2π ( ) ( ) [ ( )] 2 ' ν ep ik'sinα 1 sin α ( ) ( ) [( )] 2 ' ν epi' + k 1 sin α
31 Wnacenie propagacji pola w wolnej prestreni - c ' ' ( ) ( ) [( )] 2 ' ν epi' + k 1 sin α ν ( ) ( ) ( ) 2 ' ep ik 1 sin α ep( i' ) ( ) [ ( ) ( )] ' 2 ' 2π ν ep ik 1 sin ' α gie albo sinα k
32 Wnacenie propagacji pola w wolnej prestreni prpaek jenowiarow biór worów () ( ) ( ) FT [ ( )] ' ' ( ' ) 2πFT ν( ) ep ik 1 k 2
33 Wniki obliceń propagacji płaskiej fali pre otwór o serokości 2a 2a
34 Wnacenie propagacji pola w wolnej prestreni frakcja Fresnela () i wte α prpaek jenowiarow biór worów ( ) FT [ ( )] ' ( ) Kąt α ałe i ał sinα '.25 2 ( ' ) 2πep( ik) FT ν( ) ep i k π k k
35 Funkcja prenosenia wolnej prestreni la prostot prpaek jenowiarow () α π π ( ) Dla nanego rokłau () ożna naleźć ( ) w oległości suując wsstkie haronicne prestrenne (fale płaskie) Dla haronicnej propagującej się po kąte α h ( ν ) ep[ ik( sinα + cosα )] gie (ν ) jest aplituą haronicnej o cęstości prestrennej ν h pr c ( ν ) sinα ν ep i2π ν ν 2
36 Funkcja prenosenia wolnej prestreni c Jeżeli nie na rokłau pocątkowego operowanie pojęcie funkcji prenosenia Wnioski: la ν t ( ν ) la h ν (, ) ( ) 1 2 ep 2πi ν 2, h < 1 ouł t( ν ) 1 > 1 t faa aleje o wartości 2 1 ν ep 2π ν 2 ( ) k la ν o la ν 1/ haronicne o tch cęstościach są tłuione
37 Fala anikająca eanescent wae s - α Propagacja fali płaskiej po kąte α ep [ ik( sinα + cosα )] ep( i t) la ręu frakcjnego - sinα Wra e wroste ręu rośnie kąt α i la ostatecnie użego, takiego że < bęie sinα >1 Co to onaca?
38 Fala anikająca c s - [ ik( sinα + cosα )] ep( i t) ep α Ponieważ sinα >1 2 2 cosα i sin α 1 pr c sin α 1> 1 fenoenologicn wbór naku inus ( ) 2 k sin α 1 epi( t k α ) [ ] ep sin aplitua fali Fala silnie tłuiona Praktcnie suuje się fale la sinα < 1
Płaska fala monochromatyczna
Płaska fala onochroatcna Fala płaska propagująca się w owoln kierunku s Σ P s s Σ - fragent coła fali płaskiej propagującej się w kierunku efiniowan pre wersor s O r,, prawoskrętn ukła współręnch kartejańskich
Propagacja impulsu. Literatura. B.E.A. Saleh i M.C. Teich: Fundamentals of Photonics. John Wiley & Sons, Inc. New York 1991, rozdział 5 ( 5.
Literatura Propagacja impulsu B.E.A. Saleh i M.C. Teich: Funamentals of Photonics. John Wiley & Sons, Inc. New York 99, roiał 5 ( 5.6) pomocnica alecana naukowa Propagacja impulsu w ośroku yspersyjnym
1. Podstawy rachunku wektorowego
1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle
1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił
. REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
x od położenia równowagi
RUCH HARMONICZNY Ruch powtarając się w regularnch odstępach casu nawa ruche okresow. Jeżeli w taki ruchu seroko rouiane odchlenie od stanu równowagi ( np. odchlenie as podcepionej do sprężn, wartość wektora
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 16, Radosław Chrapkiewicz, Filip Ozimek
Podstaw Fiki IV Optka elementami fiki współcesnej wkład 16, 16.04.01 wkład: poka: ćwicenia: Cesław Radewic Radosław Chrapkiewic, Filip Oimek Ernest Grodner Wkład 15 - prpomnienie prepis Hugensa na propagację
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Przestrzeń liniowa R n.
MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie
ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE
. Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 16, Mateusz Winkowski, Łukasz Zinkiewicz
Podstaw Fiki III Optka elementami fiki współcesnej wkład 16, 4.11.017 wkład: poka: ćwicenia: Cesław Radewic Mateus Winkowski, Łukas Zinkiewic Radosław Łapkiewic Wkład 15 - prpomnienie prepis Hugensa na
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 0.04.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 16 - przypomnienie dyfrakcja
PITAGORAS ARYSTOTELES ERATOSTENES. Wprowadzenie. O kulistości Ziemi. Starożytni postulatorzy kulistości Ziemi
O kulistości Ziemi Starożtni postulator kulistości Ziemi Wprowaenie PITAGOAS sugerował, iż Ziemia jest kstałtu kulistego. Jenak postulat ten opierał się racej na tm, iż kula bła uważana a figurę oskonałą,
Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot
- podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.
Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Optka Projekt współinansowan przez Unię Europejską w ramach Europejskiego Funuszu Społecznego Optka II Promień świetln paając na powierzchnię zwierciała obija się zgonie z prawem obicia omówionm w poprzeniej
Zjawiska dyfrakcji. Propagacja dowolnych fal w przestrzeni
Zjawiska dyfrakcji Propagacja dowolnych fal w przestrzeni W przestrzeni mogą się znajdować różne elementy siatki dyfrakcyjne układy optyczne przysłony filtry i inne Analizy dyfrakcyjne należą do najważniejszych
Równania Maxwella. Wstęp E B H J D
Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),
J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie
J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-2
INTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCEOWEJ, MATERIAŁOWEJ I FIZYKI TOOWANEJ POLITECHNIKA CZĘTOCHOWKA LABORATORIUM Z PRZEDMIOTU METODY REZONANOWE ĆWICZENIE NR MR- EPR JONÓW Ni W FLUOROKRZEMIANIE NIKLU I.
Belki złożone i zespolone
Belki łożone i espolone efinicja belki łożonej siła rowarswiająca projekowanie połąceń prkła obliceń efinicja belki espolonej ałożenia echnicnej eorii ginania rokła naprężeń normalnch prkła obliceń Belki
Elementy optyki zintegrowanej
Eleety optyki itegrowaej Dlacego w falowoie pole e- ie aika? W jaki sposób wygląa pole e- w falowoie? Jak buowae są struktury falowoowe o astosowań iterferoetrycych? Propagacja fali w falowoie Falowoy
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA Krzysztof
PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA prof. dr hab. inż. Krzysztof Patorski Krzysztof Niniejsza część wykładu obejmuje wprowadzenie do dyfrakcji, opis matematyczny z wykorzystaniem
G:\WYKLAD IIIBC 2001\FIN2001\Ruch falowy2001.doc. Drgania i fale II rok Fizyki BC
3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Ruh falow: Fala rohodąe się w presreni aburenie lub odsałenie (pole). - impuls lub drgania. Jeśli rohodi się prędośią o po asie : ( r)
SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: I. Animacje na slajdach przygotował mgr inż.
SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE CZĘŚĆ: I DR INŻ. TOMASZ LASKOWSKI Animacje na slajdach 13-30 prgotował mgr inż. Marcin Płosiński MOTTO WYKŁADU Nie treba końcć studiów na kierunku elektronika, ab
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Równania Maxwella. roth t
, H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Zadania z AlgebryIIr
Zadania AlgebrIIr Seria () Rowia ι ać uk lad równań: + + t = + = 7 + + t = ; + + = ; + 7 6t = + = 7 + + = 8 = 8 + + t = + 9 = 9 ; + 7t = + = 7 + + t = + 8 7 = () Podać bae ι prestreni rowia ι ań uk ladu:
Podstawy wytrzymałości materiałów
Podstaw wtrmałości materiałów IMiR - MiBM - Wkład Nr 5 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja
Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.
Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany
ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne
I. Rachunek wektorowy i jego zastosowanie w fizyce.
Blok 1: Rachunek wektorow i jego astosowanie w fice Podstawowe wielkości ficne w kinematce Opis ruchu w różnch układach odniesienia Ruch wględn I Rachunek wektorow i jego astosowanie w fice Wsstkie wielkości
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Rozdział 9. Baza Jordana
Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,
Matematyka 2. Elementy analizy wektorowej cz I Pole wektorowe
Matematka Element anali wektorowej c I Pole wektorowe Literatura M.Gewert Z.Skoclas; Element anali wektorowej; Oficna Wdawnica GiS Wrocław 000 W.Żakowski W.Kołodiej; Matematka c II; WNT Warsawa 1984 W.Leksiński
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie
Przykład 6.3. Uogólnione prawo Hooke a
Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W
Propagacja fali w falowodzie Falowody
Propagacja fali w falowoie Falowoy Kąt graicy > si i g płytkowy paskowy Fala prowaoa w falowoie la i>ig i Brak spełieia waruku fala cęściowo wycieka poa falowó α płasc A i reń płasc α B α C Moy falowou
1. Podstawowe pojęcia w wymianie ciepła
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Wykład VI Dalekie pole
Wykład VI Dalekie pole Schemat przypomnienie Musimy znać rozkład fali padającej u pad (x,y) w płaszczyźnie układu optycznego Musimy znać funkcję transmitancji układu optycznego t(x,y) Określamy falę właśnie
G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ
Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera
REDUKCJA PŁASKIEGO UKŁADU SIŁ
olitechnika rocławska dział Budownictwa lądowego i odnego Katedra echaniki Budowli i Inżnierii iejskiej EDUKCJA ŁASKIEG UKŁADU SIŁ ZIĄZANIE ANALITYCZNE I GAFICZNE Zadanie nr. Dokonać redukcji układu sił
Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
9. Optyka Interferencja w cienkich warstwach. λ λ
9. Optyka 9.3. nterferencja w cienkich warstwach. Światło odbijając się od ośrodka optycznie gęstszego ( o większy n) zienia fazę. Natoiast gdy odbicie zachodzi od powierzchni ośrodka optycznie rzadszego,
Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.
Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny.
Ćwiczenie 7 Samoobrazowanie obiektów periodycznych Wprowadzenie teoretyczne Jeśli płaski obiekt optyczny np. przezrocze z czarno-białym wzorem (dokładniej mówiąc z przeźroczysto-nieprzeźroczystym wzorem)
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie
Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:
ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ
Funkcja falowa i związek między gęstością mocy i funkcją falową to postulaty skalarnego modelu falowego światła.
WPROWADZENIE OPTYKA FALOWA prof. dr hab. inż. Krzysztof Patorski Światło propaguje się w postaci fal. W próżni prędkość światła wynosi około 3.0 x 10 8 m/s (co odpowiada 30 cm/ns lub 0.3 mm/ps). Wyróżnia
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek
Podstaw Fizki IV Optka z elementami fizki współczesnej wkład 5, 27.02.2012 wkład: pokaz: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wkład 4 - przpomnienie dielektrki
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie
P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).
Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie
1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
2 5 C). Bok rombu ma długość: 8 6
Zadanie 1 W trójkącie prostokątnym o przeciwprostokątnej 6 i przyprostokątnej sinus większego z kątów ostrych ma wartość: C) Zadanie Krótsza przekątna rombu o długości tworzy z bokiem rombu kąt 60 0. Bok
Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji
Sprawdzian nr 2: 25..204, godz. 8:5-8:40 (materiał zad. -48) Sprawdzian nr 3: 9.2.204, godz. 8:5-8:40 (materiał zad. -88) Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji
Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś
Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w
Moment pędu fali elektromagnetycznej
napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH
Oga Kopac, am Łogowski, Wojciech Pawłowski, ichał Płotkowiak, Krstof mber Konsutacje naukowe: prof. r hab. JERZY RKOWSKI Ponań /3 ECHIK BUDOWI Praca sił normanch Siła normana prpomnienie (): Jest to siła
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 14, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fiyki IV Optyka elementami fiyki współcesnej wykład 4, 30.03.0 wykład: pokay: ćwicenia: Cesław Radewic Radosław Chrapkiewic, Filip Oimek Ernest Grodner Wykład 3 - prypomnienie płasko-równoległy
Podstawy wytrzymałości materiałów
Podstaw wtrmałości materiałów IMiR -IA- Wkład Nr 9 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja
DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE
YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem yfrakcji światła na pojeynczej i powójnej szczelinie. Pomiar ługości fali światła laserowego, oległości mięzy śrokami szczelin
Równania Maxwella. prawo Faraday a. I i uogólnione prawo Ampera. prawo Gaussa. D ds = q. prawo Gaussa dla magnetyzmu. si la Lorentza E + F = q( Fizyka
Równania Maxwella L L S S Φ m E dl = t Φ e H dl = + t D ds = q B ds = 0 prawo Faraday a n I i uogólnione prawo Ampera i=1 prawo Gaussa prawo Gaussa dla magnetyzmu F = q( E + v B) si la Lorentza 1 Równania
BUDOWA ATOMU cd. MECHANIKA KWANTOWA
BUDOWA ATOMU cd. ajmuje się opisem ruchu cąstek elementarnch, układ można opiswać posługując się współrędnmi określającmi położenie bądź pęd, współrędne określa się pewnm prbliżeniem, np. współrędną dokładnością
Matematyka kompendium 2
Matematyka kompendium 2 Spis treści Trygonometria Funkcje trygonometryczne Kąt skierowany Kąt skierowany umieszczony w układzie współrzędnych Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o
Propagacja w przestrzeni swobodnej (dyfrakcja)
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Propagacja
G:\AA_Wyklad 2000\FIN\DOC\Fale wodnem.doc. Drgania i fale III rok Fizyki BC. Model: - długi kanał o prostokątnym przekroju i głębokości h,
13-1-00 G:\AA_Wklad 000\FIN\DOC\Fale Fale wodne: Drgania i fale III rok Fiki BC Model: - długi kanał o prostokątnm prekroju i głębokości h, - ruch fali wdłuż, nieależn od x, wchlenia wdłuż, - woda nieściśliwa
cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka
Równania Maxwella i równanie falowe
Równania Maxwella i równanie falowe Prezentacja zawiera kopie folii omawianch na wkładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wkorzstanie niekomercjne dozwolone pod warunkiem podania
Ośrodki dielektryczne optycznie nieliniowe
Ośrodki dielektryczne optycznie nieliniowe Równania Maxwella roth rot D t B t = = przy czym tym razem wektor indukcji elektrycznej D ε + = ( ) Wektor polaryzacji jest nieliniową funkcją natężenia pola
J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I
J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
BUDOWA ATOMU cd. MECHANIKA KWANTOWA
BUDOWA ATOMU cd. ajmuje się opisem ruchu cąstek elementarnch, układ można opiswać posługując się współrędnmi określającmi położenie bądź pęd, współrędne określa się pewnm prbliżeniem, np. współrędną dokładnością
Różne reżimy dyfrakcji
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy
Funkcje trygonometryczne
Funkcje trygonometryczne Sinus kąta ostrego α stosunek długości przyprostokątnej leżącej naprzeciw kąta α do długości przeciwprostokątnej: sin α = a : c = a/c Cosinus kąta ostrego α stosunek długości przyprostokątnej
KOOF Szczecin: www.of.szc.pl
LVIII OLIMPIADA FIZYCZNA (2008/2009). Stopień II, zaanie oświaczalne D. Źróło: Autor: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej. Ernest Groner Komitet Główny Olimpiay Fizycznej,
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba
Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła
Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe
Funkcje wielu zmiennych
Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem II, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2
TENSOMETRIA ZARYS TEORETYCZNY
TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba
J. Szantyr - Wykład 7 Ruch ogólny elementu płynu
J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia
σ x σ y σ z σ z, Adam Bodnar: Wytrzymałość Materiałów. Równania fizyczne.
Ada Bodnar: Wtrałość Materiałów. Równania ficne. 7. RÓWNANIA FIZCZN 7.. Zwiąki ięd stane odkstałcenia i naprężenia. I i II postać równań Hooke a Zależność deforacji brł od obciążeń ewnętrnch naruca istnienie
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich