J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I
|
|
- Patrycja Jóźwiak
- 6 lat temu
- Przeglądów:
Transkrypt
1 J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy cieczy nielepkiej o grubości h i jednostkowej szerokości po nachylonej płaszczyźnie, pomijając wpływ ścian bocznych kanału. Jest to możliwe przy zaniedbaniu sił tarcia cieczy o powierzchnię kanału. Wprowadzamy dwa układy współrzędnych, układ O x z jest związany z nachyloną płaszczyzną.
2 W tym przypadku równanie zachowania pędu ma postać: p ρg cosα z du ρuh ρghsinα dp h w kierunku w kierunku Z pierwszego otrzymujemy: ρ ( ) α p z x p p + g h z gdzie: - ciśnienie na swobodnej powierzchni du Po wstawieniu do drugiego mamy: ρq ρghsin q u h 1 cos α ρghcosα gdzie: - objętościowe natężenie przepływu w warstwie co prowadzi do: q 1 h ghsinα gh cosα
3 Można to przekształcić do postaci: Widać, że istnieje osobliwość przy wartości ytycznej h równej: q h g cosα gh sinα q 1 cosα cosα Wyrażenie w mianowniku można zapisać w innej formie: Czyli: q u h gh cos α gh cos α sinα Fr 1 cosα 1 Fr u gh cos α ( ) ( ) cosα Fr gdzie spadek niwelacyjny Dla Fr1 mamy prędkość ytyczną: u gh cosα Możliwe przypadki spływu warstwy cieczy można podzielić na podytyczne (Fr<1) czyli ruch spokojny i nadytyczne (Fr>1) czyli ruch rwący.
4 W zależności od rodzaju przepływu inaczej zmienia się grubość warstwy cieczy wzdłuż pochylonej płaszczyzny: Spadek dna Ruch spokojny Ruch rwący Fr <1 Fr > 1 Pochylenie zstępujące Pochylenie wstępujące α > α < Wzrost h > Spadek h < Spadek h < Wzrost h >
5 Analiza równania energii dla przypadku spływu warstwy cieczy o jednostkowej szerokości po nachylonej płaszczyźnie prowadzi do następującej zależności dla tzw. energii właściwej: u q E w + ghcosα + ghcosα h Warunek zachowania energii właściwej: cosα g sinα de d u w + gh Z postaci tej zależności wynika, że dla przepływu o nachyleniu zstępującym energia właściwa zawsze rośnie, a dla przepływu o nachyleniu wstępującym zawsze maleje. Energia właściwa osiąga minimum przy ytycznej grubości warstwy cieczy odpowiadającej Fr1.
6 Laminarny przepływ cieczy rzeczywistej (lepkiej) W takim przypadku możliwe jest uzyskanie rozwiązania analitycznego równania zachowania pędu, które ma postać: u g sinα + υ Warunki brzegowe: u dla: z u z dla: z h Rozwiązanie prowadzi do następujących zależności: 1 g Profil prędkości: u z sinα z h z υ h ~ 1 1 gh sinα Prędkość średnia: u u( z ) dz h υ Prędkość maksymalna: ( ) ( ) 1 gh sinα u u~ max > υ z
7 Wniosek: prędkość przepływu jest proporcjonalna do kwadratu grubości warstwy cieczy, czyli: prędkość przepływu w kanale otwartym rośnie ze wzrostem stopnia napełnienia kanału. Ważność rozwiązania dla przepływu laminarnego jest ograniczona do zaesu wartości liczby Reynoldsa poniżej około, czyli: u h υ max 1 gh sinα < υ h <,74 1 sinα Z powyższego wzoru wynika, że przepływ laminarny w warstwie spływającej po ścianie pionowej wystąpi przy grubościach warstwy mniejszych od,74 [mm], a na ścianie prawie poziomej (nachylonej pod kątem 1 stopnia) przy grubościach mniejszych od,85 [mm]. W rzeczywistych ciekach z reguły występują przepływy turbulentne o w pełni rozwiniętym profilu prędkości.
8 Turbulentny przepływ cieczy rzeczywistej (lepkiej) W przypadku w pełni rozwiniętego przepływu turbulentnego w kanale o stałym nachyleniu parametry przepływu nie zmieniają się wzdłuż strumienia. Energia potencjalna cieczy jest zamieniana na energię wewnętrzną (cieplną) cieczy na skutek działania sił tarcia cieczy o ścianki kanału. Nie ma natomiast zamiany energii potencjalnej na energię kinetyczną płynącej cieczy. Energia właściwa jest stała wzdłuż przepływu. p τ l gs sin p C E w const ρ α τ e e 1 e ρ gdzie: l długość odcinka pomiędzy przeojami 1 i p τ - naprężenia lepkościowe na ściance kanału R H S C - promień hydrauliczny kanału W takiej sytuacji istnieje związek pomiędzy spadkiem niwelacyjnym (który jest równy w tym przypadku spadkowi hydraulicznemu) a naprężeniami lepkościowymi: R H H pτ ρgr H
9 Wyznaczanie oporów tarcia w kanałach Z analizy przepływu w kanale o chropowatych ściankach można wyprowadzić przybliżoną zależność na średnią prędkość przepływu: u~ C g R C H R H [ ] gdzie: C m s - wymiarowy współczynnik, oeślony np. według zależności: C R H n n,9 dla powierzchni gładkich (glazura) n,1 dla rur czystych i wygładzonego betonu n,14 dla ściany z betonu n,18 dla kanału ziemnego z warstwą ilastą n,4 dla kanału ziemnego bardzo źle utrzymanego
10 Przykład 1 Objętościowe natężenie przepływu w prostokątnym kanale betonowym (n,14) o szerokości B4, [m] wynosi Q5, [m**/s]. Obliczyć ytyczne parametry przepływu w tym kanale Warunek przepływu ytycznego ma postać: gh q 1 cosα A B Q g h Q B g 5, 4, 9,81,54 [ m] gdzie A pole przeoju przepływu: Q B h A 5, B Prędkość ytyczna: u, [ m s] Krytyczny spadek hydrauliczny: u C R H h 1 4,,54 1 n R 1 6 H R H u ( R ) H n 4,
11 Przykład Niecałkowicie wypełnionym kołowym kolektorem o promieniu r1,5 [m] płynie grawitacyjnie woda. Kolektor zbudowano z tworzywa sztucznego o chropowatości k,5 [mm] i spadku,4 [promile]. Sporządzić zywą natężenia przepływu i zywą prędkości wody w zależności od poziomu napełnienia kolektora. Przyjąć kinematyczny współczynnik lepkości wody: ν 1, 1 [ m s] 6 Objętościowe natężenie przepływu w niecałkowicie wypełnionym przewodzie obliczyć wg wzoru Darcy ego-weisbacha: Q υ A 8 g R λ A
12 Przy napełnieniu kolektora do głębokości h parametry przepływu są następujące: - pole przeoju poprzecznego strumienia gdzie: ϕ β A π r + a 6 6 ( h r) + a ( h r) ϕ 18 - obwód zwilżony kolektora L π r β arcsin a r cos β h r r - promień hydrauliczny R A L g R - prędkość przepływu υ 8 λ Współczynnik oporu liniowego zależy od chropowatości względnej i liczby Reynoldsa. Można go wyznaczyć metodą kolejnych przybliżeń według poniższego schematu: - zakładamy wartość współczynnika oporu liniowego λ - obliczamy prędkość przepływu wody wg wzoru Darcy ego-weisbacha g R υ 8 λ
13 υ 4 R - obliczamy wartość liczby Reynoldsa Re ν - dla znanej chropowatości względnej k/(4r) i liczby Reynoldsa obliczamy współczynnik λ z zależności Colebrook a White a: ( 4 ) 1,51 k log + R λ Re λ,71 - jeżeli założona wartość współczynnika oporu liniowego nie zgadza się z obliczonym, powyższa procedura jest powtarzana, z przyjęciem wartości obliczonej jako kolejnego założenia Poniżej dla przykładu obliczono natężenie przepływu i prędkość średnią przepływu w kolektorze dla głębokości wody h,8 [m] A ϕ r 6 π + a ( h r) gdzie: h r,8 1,5 sin β,469 β 7,818 a r cos β 1,5 cos 7,818 1,7 r 1,5 [ m]
14 ( 7,818 ),14 ( 1,5) + 1,7 (,8 1,5) 1,51[ m ] 18 + A 6 ϕ 18 + β 18 7,818 L π r π r,14 1,5, A 1,51 R, 465 L,56 [ m] Obliczenie współczynnika oporu liniowego według ww. procedury iteracyjnej daje wynik λ,15. Średnia prędkość przepływu wynosi wobec tego: [ m] υ 8 g R λ 8 9,81,465,4,15,98 [ m s] Objętościowe natężenie przepływu wynosi: Q υ A,98 1,51 1,48 [ m s]
15 Po przeprowadzeniu obliczeń dla wszystkich wybranych wartości głębokości wody wyniki można przedstawić graficznie:
J. Szantyr Wykład nr 17 Przepływy w kanałach otwartych
J. Szantyr Wykład nr 7 Przepływy w kanałac otwartyc Przepływy w kanałac otwartyc najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy cieczy
J. Szantyr Wykład nr 20 Warstwy przyścienne i ślady 2
J. Szantyr Wykład nr 0 Warstwy przyścienne i ślady W turbulentnej warstwie przyściennej można wydzielić kilka stref różniących się dominującymi mechanizmami kształtującymi przepływ. Ogólnie warstwę można
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę
Laboratorium. Hydrostatyczne Układy Napędowe
Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez
Przepływy laminarne - zadania
Zadanie 1 Warstwa cieczy o wysokości = 3mm i lepkości v = 1,5 10 m /s płynie równomiernie pod działaniem siły ciężkości po płaszczyźnie nachylonej do poziomu pod kątem α = 15. Wyznaczyć: a) Rozkład prędkości.
WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU. Przygotował: Dr inż. Marian Mikoś
WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU Przygotował: Dr inż. Marian Mikoś Kocierz, 3-5 wrzesień 008 Wstęp Przedmiotem opracowania jest wykazanie, w jakim stopniu
. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz
ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem
Przepływ w korytach otwartych. kanał otwarty przepływ ze swobodną powierzchnią
Przepływ w korytach otwartych kanał otwarty przepływ ze swobodną powierzchnią Przepływ w korytach otwartych Przewody otwarte dzielimy na: Naturalne rzeki strumienie potoki Sztuczne kanały komunikacyjne
WYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH
WYKŁA 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH PRZEPŁYW HAGENA-POISEUILLE A (LAMINARNY RUCH W PROSTOLINIOWEJ RURZE O PRZEKROJU KOŁOWYM) Prędkość w rurze wyraża się wzorem: G p w R r, Gp const 4 dp dz
ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego
34 3.Przepływ spalin przez kocioł oraz odprowadzenie spalin do atmosfery ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego T0
PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B
Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
ANALIZA PRZEKAZYWANIA CIEPŁA I FORMOWANIA SIĘ PROFILU TEMPERATURY DLA NIEŚCIŚLIWEGO, LEPKIEGO PRZEPŁYWU LAMINARNEGO W PRZEWODZIE ZAMKNIĘTYM Cel ćwiczenia Celem ćwiczenia będzie obserwacja procesu formowania
Aerodynamika I Efekty lepkie w przepływach ściśliwych.
Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe
OPŁYW PROFILU. Ciała opływane. profile lotnicze łopatki. Rys. 1. Podział ciał opływanych pod względem aerodynamicznym
OPŁYW PROFILU Ciała opływane Nieopływowe Opływowe walec kula profile lotnicze łopatki spoilery sprężarek wentylatorów turbin Rys. 1. Podział ciał opływanych pod względem aerodynamicznym Płaski np. z blachy
J. Szantyr - Wykład 3 Równowaga płynu
J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania
Hydrostatyczne Układy Napędowe Laboratorium
Hydrostatyczne Układy Napędowe Laboratorium Temat: Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracował: Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak CEL
RÓWNANIE MOMENTÓW PĘDU STRUMIENIA
RÓWNANIE MOMENTÓW PĘDU STRUMIENIA Przepływ osiowo-symetryczny ustalony to przepływ, w którym parametry nie zmieniają się wzdłuż okręgów o promieniu r, czyli zależą od promienia r i długości z, a nie od
POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji
POLITECHNIKA CZĘSTOCHOWSKA Instytut Maszyn Cieplnych Optymalizacja Procesów Cieplnych Ćwiczenie nr 3 Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji Częstochowa 2002 Wstęp. Ze względu
OPORY RUCHU w ruchu turbulentnym
Katedra Inżynierii Wodnej i Geotechniki Wydział Inżynierii Środowiska i Geodezji Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie dr hab. inż. Leszek Książ ążek OPORY RUCHU w ruchu turbulentnym Hydraulika
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny o
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer 2 Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny
Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I
Aerodynamika I Ściśliwy opływ profilu transoniczny przepływ wokół RAE-8 M = 0.73, Re = 6.5 10 6, α = 3.19 Ściśliwe przepływy potencjalne Teoria pełnego potencjału Wprowadźmy potencjał prędkości (zakładamy
WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO 1. Cel ćwiczenia Doświadczalne wyznaczenie zaleŝności współczynnika oporu linioweo przepływu
Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości
LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne
WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH
WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH Pomiar strumienia masy i strumienia objętości metoda objętościowa, (1) q v V metoda masowa. (2) Obiekt badań Pomiar
Awarie. 4 awarie do wyboru objawy, możliwe przyczyny, sposoby usunięcia. (źle dobrana pompa nie jest awarią)
Awarie 4 awarie do wyboru objawy możliwe przyczyny sposoby usunięcia (źle dobrana pompa nie jest awarią) Natężenie przepływu DANE OBLICZENIA WYNIKI Qś r d M k q j m d 3 Mk- ilość mieszkańców równoważnych
MECHANIKA PŁYNÓW Płyn
MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać
Parametry układu pompowego oraz jego bilans energetyczny
Parametry układu pompowego oraz jego bilans energetyczny Układ pompowy Pompa może w zasadzie pracować tylko w połączeniu z przewodami i niezbędną armaturą, tworząc razem układ pompowy. W układzie tym pompa
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
STRATY ENERGII. (1) 1. Wprowadzenie.
STRATY ENERGII. 1. Wprowadzenie. W czasie przepływu płynu rzeczywistego przez układy hydrauliczne lub pneumatyczne następuje strata energii płynu. Straty te dzielimy na liniowe i miejscowe. Straty liniowe
I. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II
J. Szantyr Wykład nr 6 Przepływy w przewodach zamkniętych II W praktyce mamy do czynienia z mniej lub bardziej złożonymi rurociągami. Jeżeli strumień płynu nie ulega rozgałęzieniu, mówimy o rurociągu prostym.
PRZEPŁYW CIECZY W KORYCIE VENTURIEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 9 PRZEPŁYW CIECZY W KORYCIE VENTURIEGO . Cel ćwiczenia Sporządzenie carakterystyki koryta Venturiego o przepływie rwącym i wyznaczenie średniej wartości współczynnika
J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych
J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych a) Wentylator lub pompa osiowa b) Wentylator lub pompa diagonalna c) Sprężarka lub pompa odśrodkowa d) Turbina wodna promieniowo-
Opory przepływu powietrza w instalacji wentylacyjnej
Wentylacja i klimatyzacja 2 -ćwiczenia- Opory przepływu powietrza w instalacji wentylacyjnej Przepływ powietrza w przewodach wentylacyjnych Powietrze dostarczane jest do pomieszczeń oraz z nich usuwane
OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH
ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczeń
Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO . Cel ćwiczenia Doświadczalne wyznaczenie rozkładu ciśnienia piezometrycznego w zwęŝce Venturiego i porównanie go z
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała
Statyka płynów - zadania
Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły
Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów
Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe
Aerodynamika i mechanika lotu
Prędkość określana względem najbliższej ścianki nazywana jest prędkością względną (płynu) w. Jeśli najbliższa ścianka porusza się względem ciał bardziej oddalonych, to prędkość tego ruchu nazywana jest
Obliczenie objętości przepływu na podstawie wyników punktowych pomiarów prędkości
Obliczenie objętości przepływu na podstawie wyników punktowych pomiarów prędkości a) metoda rachunkowa Po wykreśleniu przekroju poprzecznego z zaznaczeniem pionów hydrometrycznych, w których dokonano punktowego
OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH
ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczęń
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika
III r. EiP (Technologia Chemiczna)
AKADEMIA GÓRNICZO HUTNICZA WYDZIAŁ ENERGETYKI I PALIW III r. EiP (Technologia Chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) Prof. dr hab. Leszek CZEPIRSKI Kontakt: A4, p. 424 Tel. 12
Zajęcia laboratoryjne
Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 3 Metody ograniczenia strat mocy w układach hydraulicznych Opracowanie: Z. Kudźma, P. Osiński, U. Radziwanowska, J. Rutański, M. Stosiak
Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża
Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża D.1 e używane w załączniku D (1) Następujące symbole występują w Załączniku D: A' = B' L efektywne obliczeniowe pole powierzchni
Laminarna warstwa graniczna. 3 listopada Hydrodynamika Prawo Darcy ego równanie Eulera
Hydrodynamika Prawo Darcy ego równanie Eulera i Bernoulliego Laminarna warstwa graniczna 3 listopada 2013 Prawo Darcy ego przepływ przez ośrodki porowate Henri Darcy, francuski inżynier-hydrolog. W połowie
J. Szantyr Wykład nr 25 Przepływy w przewodach zamkniętych I
J. Szantyr Wykład nr 5 Przeływy w rzewodach zamkniętych I Przewód zamknięty kanał o dowonym kształcie rzekroju orzecznego, ograniczonym inią zamkniętą, całkowicie wyełniony łynem (bez swobodnej owierzchni)
[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne
WYKŁAD 1 1. WPROWADZENIE 1.1. Definicje wstępne Płyn - ciało o module sprężystości postaciowej równym zero; do płynów zaliczamy ciecze i gazy (brak sztywności) Ciecz - płyn o małym współczynniku ściśliwości,
Straty energii podczas przepływu wody przez rurociąg
1. Wprowadzenie Ć w i c z e n i e 11 Straty energii podczas przepływu wody przez rurociąg Celem ćwiczenia jest praktyczne wyznaczenie współczynników strat liniowych i miejscowych podczas przepływu wody
Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.
Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie
Filtracja - zadania. Notatki w Internecie Podstawy mechaniki płynów materiały do ćwiczeń
Zadanie 1 W urządzeniu do wyznaczania wartości współczynnika filtracji o powierzchni przekroju A = 0,4 m 2 umieszczono próbkę gruntu. Różnica poziomów h wody w piezometrach odległych o L = 1 m wynosi 0,1
STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY)
STTYK I DYNMIK PŁYNÓW (CIECZE I GZY) Ciecz idealna: brak sprężystości postaci (czyli brak naprężeń ścinających) Ciecz rzeczywista małe naprężenia ścinające - lepkość F s F n Nawet najmniejsza siła F s
Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ]
Mechanika płynów Płyn każda substancja, która może płynąć, tj. dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje oraz może swobodnie się przemieszczać (przepływać), np. przepompowywana
1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome
1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,
Pomiar współczynnika lepkości wody. Badanie funkcji wykładniczej.
Ćwiczenie C- Pomiar współczynnika lepkości wody. Badanie funkcji wykładniczej. I. Cel ćwiczenia: wyznaczenie współczynnika lepkości wody η w oparciu o wykres zależności wysokości słupa wody w cylindrze
5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 )
Zadania zamknięte 1 1) Ciało zostało wyrzucono z prędkością V 0 skierowną pod kątem α względem poziomu (x). Wiedząc iż porusza się ono w polu grawitacyjnym o przyspieszeniu g skierowanym pionowo w dół
Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu.
1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,
J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i
J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA
Ćwiczenie 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa,
Obliczenie natężenia promieniowania docierającego do powierzchni absorpcyjnej
Kolektor słoneczny dr hab. inż. Bartosz Zajączkowski, prof. uczelni Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych email: bartosz.zajaczkowski@pwr.edu.pl
Grupa 1 1.1). Obliczyć średnicę zastępczą przewodu o przekroju prostokątnym o długości boków A i B=2A wypełnionego wodą w 75%. Przewód ułożony jest w
Grupa 1 1.1). Obliczyć średnicę zastępczą przewodu o przekroju prostokątnym o długości boków A i B=2A wypełnionego wodą w 75%. Przewód ułożony jest w taki sposób, że dłuższy bok przekroju znajduje się
Ermeto Original Rury / Łuki rurowe
Ermeto Original Rury / Łuki rurowe R2 Parametry rur EO 1. Gatunki stali, własności mechaniczne, wykonanie Rury stalowe EO Rodzaj stali Wytrzymałość na Granica Wydłużenie przy zerwaniu rozciąganie Rm plastyczności
Modele matematyczne procesów, podobieństwo i zmiana skali
Modele matematyczne procesów, podobieństwo i zmiana skali 20 kwietnia 2015 Zadanie 1 konstrukcji balonu o zadanej sile oporu w ruchu. Obiekt do konstrukcji (Rysunek 1) opisany jest następującą F = Φ(d,
BEZWYMIAROWA POSTAĆ RÓWNANIA NAVIERA-STOKESA
BEZWYMIAROWA POSTAĆ RÓWNANIA NAVIERA-STOKESA Równania Naviera-Stokesa (zakładamy, że -ga lepkość 0 ) zapisane w postaci υ 1 ( υ ) υ 1 p υ ( υ) f t 3 to oczywiście równanie opisujące bilans wielkości posiadających
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich
Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy
WYDZIAŁ LABORATORIUM FIZYCZNE
1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze
Aparatura Chemiczna i Biotechnologiczna Projekt: Filtr bębnowy próżniowy
Aparatura Chemiczna i Biotechnologiczna Projekt: Filtr bębnowy próżniowy Opracowanie: mgr inż. Anna Dettlaff Obowiązkowa zawartość projektu:. Strona tytułowa 2. Tabela z punktami 3. Dane wyjściowe do zadania
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Występują dwa zasadnicze rodzaje skraplania: skraplanie kroplowe oraz skraplanie błonkowe.
Wymiana ciepła podczas skraplania (kondensacji) 1. Wstęp Do skraplania dochodzi wtedy, gdy para zostaje ochłodzona do temperatury niższej od temperatury nasycenia (skraplania, wrzenia). Ma to najczęściej
Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.
PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer 3 Pomiar współczynnika oporu lokalnego 1 Wprowadzenie Stanowisko umożliwia wykonanie szeregu eksperymentów związanych z pomiarami oporów przepływu w różnych elementach rzeczywistych układów
AERODYNAMIKA I WYKŁAD 4 ELEMENTY TEORII WARSTWY PRZYŚCIENNEJ CZĘŚĆ 1
WYKŁAD 4 ELEMENTY TEORII WARSTWY PRZYŚCIENNEJ CZĘŚĆ 1 Pojęcie warstwy przyściennej w płynie. Równania Prandtla Warstwa przyścienna (WP) warstwa płynu przylegająca do powierzchni opływanego ciała, charakteryzującą
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
TENSOMETRIA ZARYS TEORETYCZNY
TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba
WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA 1/17
WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA /7 Zaczniemy od wyprowadzenia równania ruchu dla płynu newtonowskiego. Wcześniej wyprowadziliśmy z -ej Zasady Dynamiki ogólne równanie ruchu, którego postać indeksowa
Podstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
Ćw. 4. BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM
Ćw. 4 BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM WYBRANA METODA BADAŃ. Badania hydrodynamicznego łoŝyska ślizgowego, realizowane na stanowisku
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Projekt skrzydła. Dobór profilu
Projekt skrzydła Dobór profilu Wybór profilu ze względu na jego charakterystyki aerodynamiczne (K max, C Zmax, charakterystyki przeciągnięcia) Wybór profilu ze względu na strukturę płata; 1 GEOMETRIA PROFILU
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
ROZWIĄZANIA DO ZADAŃ
TURNIRJ MATEMATYCZNY ELIPSA dla klas LO ROZWIĄZANIA DO ZADAŃ Zadanie. (2 pkt.) Dla jakich wartości parametru m (m R), część wspólna przedziałów A = (, m m i B = 2m 2, + ) jest zbiorem pustym? / Jeśli A
Zadanie 21. Stok narciarski
KLUCZ DO ZADAŃ ARKUSZA II Jeżeli zdający rozwiąże zadanie inną, merytorycznie poprawną metodą otrzymuje maksymalną liczbę punktów Numer zadania Zadanie. Stok narciarski Numer polecenia i poprawna odpowiedź.
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Przygotowanie zadania sterowania do analizy i syntezy zestawienie schematu blokowego
Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział 2. Składanie ruchów Rozdział 3. Modelowanie zjawisk fizycznych...43 Numeryczne całkowanie,
Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział. Składanie ruchów... 11 Rozdział 3. Modelowanie zjawisk fizycznych...43 Rozdział 4. Numeryczne całkowanie, czyli obliczanie pracy w polu grawitacyjnym
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
MECHANIKA PŁYNÓW LABORATORIUM
MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta