Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś
|
|
- Maja Nowakowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
2 Spis treści 10 Potencjały i pola źródeł zmiennych w czasie Wprowadzenie potencjałów Rozkłady ciągłe
3 10 Potencjały i pola źródeł zmiennych w czasie 10.1 Wprowadzenie potencjałów Potencjały skalarny i wektorowy (i E = 1 ɛ 0 ρ, (iii E = B, (ii B = 0, (iv B = µ 0 J + µ 0 ɛ 0 E, równania Maxwella
4 10 Potencjały i pola źródeł zmiennych w czasie 10.1 Wprowadzenie potencjałów Potencjały skalarny i wektorowy (i E = 1 ɛ 0 ρ, (iii E = B, (ii B = 0, (iv B = µ 0 J + µ 0 ɛ 0 E, równania Maxwella Jakie są pola E(r, t i B(r, t jeśli znamy ρ(r, t i J(r, t?
5 10 Potencjały i pola źródeł zmiennych w czasie 10.1 Wprowadzenie potencjałów Potencjały skalarny i wektorowy (i E = 1 ɛ 0 ρ, (iii E = B, (ii B = 0, (iv B = µ 0 J + µ 0 ɛ 0 E, równania Maxwella Jakie są pola E(r, t i B(r, t jeśli znamy ρ(r, t i J(r, t? B = A
6 10 Potencjały i pola źródeł zmiennych w czasie 10.1 Wprowadzenie potencjałów Potencjały skalarny i wektorowy (i E = 1 ɛ 0 ρ, (iii E = B, (ii B = 0, (iv B = µ 0 J + µ 0 ɛ 0 E, równania Maxwella Jakie są pola E(r, t i B(r, t jeśli znamy ρ(r, t i J(r, t? B = A E = ( A z prawa Faradaya
7 ( E + A = 0
8 ( E + A = 0 E + A = V
9 ( E + A = 0 E + A = V E = V A
10 ( E + A = 0 E + A = V E = V A V + ( A = 1 ɛ 0 ρ z (i
11 ( E + A = 0 E + A = V E = V A V + ( A = 1 ɛ 0 ρ z (i ( A = µ 0 J µ 0 ɛ 0 ( V µ 0 ɛ 0 2 A 2 z (iv
12 ( E + A = 0 E + A = V E = V A V + ( A = 1 ɛ 0 ρ z (i ( A = µ 0 J µ 0 ɛ 0 ( V µ 0 ɛ 0 2 A 2 z (iv ( A = ( A A tożsamość wektorowa
13 ( A µ 0 ɛ 0 2 A 2 ( A + µ 0 ɛ 0 V = µ 0 J Przekształcenia cechowania Możemy narzucić dodatkowe warunki na potencjały, które nie zmienią pól E i B.
14 ( A µ 0 ɛ 0 2 A 2 ( A + µ 0 ɛ 0 V = µ 0 J Przekształcenia cechowania Możemy narzucić dodatkowe warunki na potencjały, które nie zmienią pól E i B. A = A + α, V = V + β zmieniamy potencjały
15 ( A µ 0 ɛ 0 2 A 2 ( A + µ 0 ɛ 0 V = µ 0 J Przekształcenia cechowania Możemy narzucić dodatkowe warunki na potencjały, które nie zmienią pól E i B. A = A + α, V = V + β zmieniamy potencjały α = 0 α = λ
16 ( A µ 0 ɛ 0 2 A 2 ( A + µ 0 ɛ 0 V = µ 0 J Przekształcenia cechowania Możemy narzucić dodatkowe warunki na potencjały, które nie zmienią pól E i B. A = A + α, V = V + β zmieniamy potencjały α = 0 α = λ β + α = 0 ( β + λ = 0 nawias nie zależy od położenia
17 β = λ + k(t, k(t można włączyć do λ
18 β = λ + k(t, A = A + λ V = V λ k(t można włączyć do λ przekształcenia cechowania
19 Cechowanie Coulomba i cechowanie Lorentza A = 0 cechowanie Coulomba
20 Cechowanie Coulomba i cechowanie Lorentza A = 0 cechowanie Coulomba V = 1 ɛ 0 ρ równanie Poissona
21 Cechowanie Coulomba i cechowanie Lorentza A = 0 cechowanie Coulomba V = 1 ɛ 0 ρ równanie Poissona V (r, t = 1 4πɛ 0 ρ(r, t R dτ rozwiązanie gdy V = 0 w nieskończoności
22 Cechowanie Coulomba i cechowanie Lorentza A = 0 cechowanie Coulomba V = 1 ɛ 0 ρ równanie Poissona V (r, t = 1 4πɛ 0 A µ 0 ɛ 0 2 A 2 ρ(r, t R dτ rozwiązanie gdy V = 0 w nieskończoności = µ 0J + µ 0 ɛ 0 ( V
23 Cechowanie Coulomba i cechowanie Lorentza A = 0 cechowanie Coulomba V = 1 ɛ 0 ρ równanie Poissona V (r, t = 1 4πɛ 0 A µ 0 ɛ 0 2 A 2 ρ(r, t R dτ rozwiązanie gdy V = 0 w nieskończoności = µ 0J + µ 0 ɛ 0 ( V Samo V (r, t nie wystarcza do wyznaczenia pola E(r, t!
24 A = µ 0 ɛ 0 V cechowanie Lorentza
25 A = µ 0 ɛ 0 V cechowanie Lorentza A µ 0 ɛ 0 2 A 2 = µ 0J
26 A = µ 0 ɛ 0 V cechowanie Lorentza A µ 0 ɛ 0 2 A 2 = µ 0J V µ 0 ɛ 0 2 V 2 = 1 ɛ 0 ρ
27 A = µ 0 ɛ 0 V cechowanie Lorentza A µ 0 ɛ 0 2 A 2 V µ 0 ɛ 0 2 V 2 = µ 0J = 1 ɛ 0 ρ µ 0 ɛ dalambercjan
28 A = µ 0 ɛ 0 V cechowanie Lorentza A µ 0 ɛ 0 2 A 2 V µ 0 ɛ 0 2 V 2 = µ 0J = 1 ɛ 0 ρ µ 0 ɛ dalambercjan (i (ii V = 1 ɛ 0 ρ A = µ 0 J niejednorodne równania falowe
29 10.2 Rozkłady ciągłe Potencjały opóźnione dτ R P r θ r V = 1 ɛ 0 ρ, A = µ 0 J dla pól statycznych
30 10.2 Rozkłady ciągłe Potencjały opóźnione dτ R P r θ r V = 1 ɛ 0 ρ, A = µ 0 J dla pól statycznych V (r = 1 4πɛ 0 ρ(r R dτ, A(r = µ 0 4π J(r R dτ
31 Wieści elektromagnetyczne rozchodzą się z prędkością światła! t r t R c czas opóźniony
32 Wieści elektromagnetyczne rozchodzą się z prędkością światła! t r t R c czas opóźniony V (r, t = 1 4πɛ 0 A(r, t = µ 0 4π ρ(r, t r R dτ J(r, t r R dτ potencjały opóźnione
33 Wieści elektromagnetyczne rozchodzą się z prędkością światła! t r t R c czas opóźniony V (r, t = 1 4πɛ 0 A(r, t = µ 0 4π ρ(r, t r R dτ J(r, t r R dτ potencjały opóźnione Czy wzory te są poprawne?
34 Wieści elektromagnetyczne rozchodzą się z prędkością światła! t r t R c czas opóźniony V (r, t = 1 4πɛ 0 A(r, t = µ 0 4π ρ(r, t r R dτ J(r, t r R dτ potencjały opóźnione Czy wzory te są poprawne? V = 1 4πɛ 0 [ ( ρ 1 R + ρ ( 1 R ] dτ
35 1 ρ = ρ tr = ρ R c
36 ρ = ρ t r = 1 c ρ R R = ˆR, ( 1 R = ˆR R 2
37 ρ = ρ t r = 1 c ρ R R = ˆR, V = 1 4πɛ 0 [ ρ c ( 1 R = ˆR R 2 ˆR R ρ ˆR ] R 2 dτ
38 ρ = ρ t r = 1 c ρ R R = ˆR, V = 1 4πɛ 0 [ ρ c ( 1 R = ˆR R 2 ˆR R ρ ˆR ] R 2 dτ V = 1 4πɛ 0 1 c ˆR R ( ρ + ρ ˆR ( ρ + ρ R2 ( ˆR R ( ˆR R 2 dτ
39 ρ = 1 c ρ R = 1 c ρ ˆR
40 ρ = 1 c ρ R = 1 c ρ ˆR ( ˆR R = 1 ( ˆR R 2, R 2 = 4πδ 3 (R
41 ρ = 1 c ρ R = 1 c ρ ˆR ( ˆR R = 1 ( ˆR R 2, R 2 = 4πδ 3 (R V = 1 4πɛ 0 [ ] 1 ρ c 2 R 4πρδ3 (R dτ = 1 c 2 2 V 2 1 ɛ 0 ρ(r, t
42 ρ = 1 c ρ R = 1 c ρ ˆR ( ˆR R = 1 ( ˆR R 2, R 2 = 4πδ 3 (R V = 1 4πɛ 0 [ ] 1 ρ c 2 R 4πρδ3 (R dτ = 1 c 2 2 V 2 1 ɛ 0 ρ(r, t V 1 c 2 2 V 2 = 1 ɛ 0 ρ(r, t
43 ρ = 1 c ρ R = 1 c ρ ˆR ( ˆR R = 1 ( ˆR R 2, R 2 = 4πδ 3 (R V = 1 4πɛ 0 [ ] 1 ρ c 2 R 4πρδ3 (R dτ = 1 c 2 2 V 2 1 ɛ 0 ρ(r, t V 1 c 2 2 V 2 = 1 ɛ 0 ρ(r, t Potencjał opóźniony spełnia niejednorodne równanie falowe.
Równania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 11 Promieniowanie 3 11.1 Promieniowanie dipolowe............... 3 11
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace
Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2
Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 4 Pola elektryczne w materii 3 4.1 Polaryzacja elektryczna..................
Pole elektromagnetyczne. Równania Maxwella
Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna.................. 3
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19
Wyprowadzenie prawa Gaussa z prawa Coulomba
Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................
Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Wprowadzenie do optyki nieliniowej
Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektroynamika Część 2 Specjalne metoy elektrostatyki Ryszar Tanaś Zakła Optyki Nieliniowej, UAM http://zon8.phys.amu.eu.pl/\~tanas Spis treści 3 Specjalne metoy elektrostatyki 3 3. Równanie Laplace a....................
Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych
6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14
dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi
Elektrodynamika #
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Nazwa przedmiotu Elektrodynamika Nazwa jednostki prowadzącej przedmiot Kod ECTS 13.2.0052 Instytut Fizyki Teoretycznej
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Równania Maxwella. roth t
, H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D
Elementy elektrodynamiki klasycznej S XX
kierunek studiów: FIZYKA specjalność: FIZYKA MEDYCZNA WYDZIAŁ FIZYKI UwB KOD USOS: 0900 FS1 Karta przedmiotu Przedmiot grupa ECTS Elementy elektrodynamiki klasycznej S XX Formy zajęć wykład konwersatorium
Elementy elektrodynamiki klasycznej S XX
kierunek studiów: FIZYKA specjalność: FIZYKA s I WYDZIAŁ FIZYKI UwB KOD USOS: 0900 FS1 Karta przedmiotu Przedmiot grupa ECTS Elementy elektrodynamiki klasycznej S XX Formy zajęć wykład konwersatorium seminarium
Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19
Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie
Moment pędu fali elektromagnetycznej
napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
10 Udowodnić, że rozwiązanie równania Laplace a nie może posiadać lokalnych ekstremów we wnętrzu obszaru na którym może być określone.
1 Elektrostatyka 1 Z prawa Coulomba obliczyć pole elektryczne od jednorodnie naładowanego odcinka. Wykonać przejście graniczne l 0 (przy ustalonym ładunku odcinka) oraz l (przy ustalonej gęstości liniowej
Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Podstawy elektrodynamiki Nazwa w języku angielskim: Introduction to Electrodynamics Kierunek studiów (jeśli
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Fizyka 2 Wróbel Wojciech
Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13
Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ
Materiał jest podany zwięźle, konsekwentnie stosuje się w całej książce rachunek wektorowy.
W pierwszej części są przedstawione podstawowe wiadomości z mechaniki, nauki o cieple, elektryczności i magnetyzmu oraz optyki. Podano także przykłady zjawisk relatywistycznych, a na końcu książki zamieszczono
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.
Elektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
Niestandardowe ujęcie dynamiki relatywistycznej oraz klasycznej teorii elektromagnetyzmu
Niestandardowe ujęcie dynamiki relatywistycznej oraz klasycznej teorii elektromagnetyzmu Krzysztof Rębilas Katedra Chemii i Fizyki, Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie Al. Mickiewicza
Różniczkowe prawo Gaussa i co z niego wynika...
Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni
Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska
Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 3, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 3, 12.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 2 - przypomnienie
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Podstawy Fizyki Współczesnej I. Blok I
Podstawy Fizyki Współczesnej I Podsumowanie wykładu (17.06.2008) Uwaga: zagadnienia oznaczone gwiazdką są nieco bardziej złożone i na ocenę dostateczną jest wymagana jedynie ich pobieżna znajomość. Zadania
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
II.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych
r. akad. 004/005 II.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych Sprzężenie spin - orbita jest drugim, po efektach relatywistycznych, źródłem rozszczepienia subtelnego
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I
Aerodynamika I Ściśliwy opływ profilu transoniczny przepływ wokół RAE-8 M = 0.73, Re = 6.5 10 6, α = 3.19 Ściśliwe przepływy potencjalne Teoria pełnego potencjału Wprowadźmy potencjał prędkości (zakładamy
Fotonika. Plan: Wykład 3: Polaryzacja światła
Fotonika Wykład 3: Polaryzacja światła Plan: Równania Maxwella w ośrodku optycznie liniowym Równania Maxwella dla fal monochromatycznych Polaryzacja światła Fala płaska spolaryzowana Polaryzacje liniowe,
Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów
Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe
Równania Maxwella. prawo Faraday a. I i uogólnione prawo Ampera. prawo Gaussa. D ds = q. prawo Gaussa dla magnetyzmu. si la Lorentza E + F = q( Fizyka
Równania Maxwella L L S S Φ m E dl = t Φ e H dl = + t D ds = q B ds = 0 prawo Faraday a n I i uogólnione prawo Ampera i=1 prawo Gaussa prawo Gaussa dla magnetyzmu F = q( E + v B) si la Lorentza 1 Równania
Zadania z Elektrodynamiki
Zadania z Elektrodynamiki literatura: 1. J.D. Jackson, Elektrodynamika klasyczna, PWN 1987 2. D.J. Griffiths, Podstawy Elektrodynamiki, PWN 2001 3. M. Suffczyński, Elektrodynamika, PWN 1980 4. W. Panofsky,
SYLABUS/KARTA PRZEDMIOTU
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W GŁOGOWIE SYLABUS/KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU Fizyka. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny. STUDIA kierunek stopień tryb język status
Fizyka bez stałych fizycznych
Fizyka bez stałych fizycznych Edward Kapuścik WFiIS AGH 24 marzec 2014 Fizycy stale zajęci są różnorakimi pomiarami. Pomiary wymagają opracowania określonych metod pomiarowych oraz przyjęcia pewnych jednostek,
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
KATEDRA TELEKOMUNIKACJI I FOTONIKI
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować
Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.
Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego
Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
V.6 Pęd i energia przy prędkościach bliskich c
r. akad. 005/ 006 V.6 Pęd i energia przy prędkościach bliskich c 1. Relatywistyczny pęd. Relatywistyczne równanie ruchu. Relatywistyczna energia kinetyczna 3. Relatywistyczna energia całkowita i energia
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii
Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego
Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia
Mechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Fale elektromagnetyczne
Rozdział 7 Fale elektromagnetyczne 7.1 Prąd przesunięcia. II równanie Maxwella Poznane dotąd prawa elektrostatyki, magnetostatyki oraz indukcji elektromagnetycznej można sformułować w czterech podstawowych
POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola
POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania
(U.14) Oddziaływanie z polem elektromagnetycznym
3.10.2004 35. U.14 Oddziaływanie z polem elektromagnetycznym 131 Rozdział 35 U.14 Oddziaływanie z polem elektromagnetycznym 35.1 Niezmienniczość ze względu na W rozdziale 16 wspominaliśmy jedynie o podstawowych
Równania Maxwella i równanie falowe
Równania Maxwella i równanie falowe Prezentacja zawiera kopie folii omawianch na wkładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wkorzstanie niekomercjne dozwolone pod warunkiem podania
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Szczególna teoria względności
Szczególna teoria względności Wykład II: Transformacja Galileusza prof. dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Ogólna postać transformacji
Równanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
I. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Fizyka - opis przedmiotu
Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu 06.1-WM-MiBM-P-09_15gen Wydział Kierunek Wydział Mechaniczny Mechanika i budowa maszyn / Automatyzacja i organizacja procesów
Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki
Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię
Zadania na zaliczenie ćwiczeń z Elektrodynamiki
Zadania na zaliczenie ćwiczeń z Elektrodynamiki semest letni 2009 literatura: J. D. Jackson, Elektrodynamika klasyczna, PWN 1987 D. J. Griffiths, Podstawy Elektrodynamiki, PWN 2001 M. Suffczyński, Elektrodynamika,
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 6 Janusz Andrzejewski Pole Ea pole B (przypomnienie) Prawo Gaussa ε 0 r r E ds = q wewn Prawo Ampera: r r B ds = µ 0I Janusz Andrzejewski 2 Strumień magnetyczny Strumień pola elektrycznego
Arkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
17 Naturalne jednostki w fizyce atomowej
7 Naturalne jednostki w fizyce atomowej W systemie CGS wszystkie wielkości fizyczne wyrażane są jako potęgi trzech fundamentalnych jednostek:. długości (l) cm,. masy (m) g, 3. czasu (t) s. Wymiary innych
Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014
Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.
Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017
Optyka Wykład VII Krzysztof Golec-Biernat Prawa odbicia i załamania Uniwersytet Rzeszowski, 22 listopada 2017 Wykład VII Krzysztof Golec-Biernat Optyka 1 / 20 Plan Zachowanie pola elektromagnetycznego
Struktury Geometryczne Mechaniki
Struktury Geometryczne Mechaniki Paweł Urbański u rb a n ski@fuw.ed u.p l Kat edra Met od Mat ematycznych Fizyki Uniwersyt et Warszawski Sympozjum IFT, 08.12.2007 p. 1/23 MOTYWACJE Dlaczego mechanika (analityczna)?
Rozdział 6. Równania Maxwella. 6.1 Pierwsza para
Rozdział 6 Równania Maxwella Podstawą elektrodynamiki klasycznej są równania Maxwella, które wiążą pola elektryczne E i magnetyczne B ze sobą oraz z ładunkami i prądami elektrycznymi. Pola E i B są funkcjami
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej
PODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
A. Odrzywołek. Dziura w Statycznym Wszechświecie Einsteina
/28 A. Odrzywołek Dziura w Statycznym Wszechświecie Einsteina Seminarium ZTWiA IFUJ, Środa, 26..22 2/28 A. Odrzywołek 3-sfera o promieniu R(t): Równania Einsteina: Zachowanie energii-pędu: Równanie stanu