G:\WYKLAD IIIBC 2001\FIN2001\Ruch falowy2001.doc. Drgania i fale II rok Fizyki BC
|
|
- Krzysztof Krawczyk
- 7 lat temu
- Przeglądów:
Transkrypt
1 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Ruh falow: Fala rohodąe się w presreni aburenie lub odsałenie (pole). - impuls lub drgania. Jeśli rohodi się prędośią o po asie : ( r) - funja falowa równanie fali
2 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Dla usalonego r punie r : Drgania i fale II ro Fii BC r ( r ) - drgania w Dla usalonego roład whleń: ( ) - presrenn r
3 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Ogólniej: aburenie pola opisująego własność finą pole eleromagnene deformaja iśnienie emperaura pole grawiajne W ależnośi od geomerii wbudenia fale salarne lub weorowe. Dla fali salarnej: ( r) (np. fale dźwięowe). Dla fali weorowej: ( r) (np. fale elasne fale eleromagnene). 3
4 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Fala powaranie opóźnieniem. W uładie porusająm się wdłuż osi wra abureniem sał jes dan pre ( ) mienia się (pr brau dspersji). Po asie i nie ( - w laboraorjnm) : ( ) [ ( ) ] ( ) - sał jes ahowan! Dla ruhu w lewo ( ) : ( ) ( m ) Równanie falowe: m 4
5 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC 5 d d d d d d d d Równanie dla fali jednowmiarowej Fale liniowe: Zasada superpoji: jeżeli funje ( ) ( ) ( ) n... są rowiąaniami równania falowego o ih ombinaja liniowa: ( ) ( ) C n n i i spełnia o równanie. Jeśli dwie fale i : ( ) ( )
6 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Rohodenie się liniowh wbudeń lub pól weorowh nie jes ałóane pre inne wbudenia i pola weorowe. Fala harmonina: funja falowa ma posać ( ) Asin ( m ) lub ( ) Aos ( m ) Asin ( m ) [ Asin ( m ) ] Dla () Asin( m ) m Asin - drgania harmonine sin π sin T Dla ( ) A A π T - aburenie ma w presreni sał harmoninej funji - oresowość presrenna! 6
7 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC ( m nt ) Asin ( m nt ) π Asin T π T m n π T λ - długość fali Asin π T π - liba długośi fali w długośi π λ - liba falowa ( ) Masima i minima presuwają się prędośią - λ poosaje a sama. Fala harmonina presuwa się o λ w iągu oresu. Prędość faowa: Faa ϕ m ϕ f ( ) Dla ϕ m Dla ϕ 7
8 Dla 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do ϕ Drgania i fale II ro Fii BC ϕ m ϕ Ogólnie Dla ϕ ( ) Asin m ϕ i Asin m ; ϕ ϕ ϕ ϕ ± π λ λ ± prędość faowa λ ν T π T ( ) ( ) ( ) Aos Aos Aosπ λ T Aos Bp os C ep Re{ D ( ) Bq sin( ) [ i( ) ] C ep[ i( ) ] ep[ i( ) ] π λ 8
9 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Fala nieharmonina: Bło: dowoln ruh periodn można predsawić jao superpoję ruhów harmoninh o ęsośiah 3... Nieh f ( ) - ruh falow periodn - w danm punie powara się dla f Dla danego T T... nt ( ) f [ ( ± T )] f ( m T ) maleje o nt ( nλ) powara się gd rośnie lub Ruh falow periodn w asie jes periodn w presreni. 9
10 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Nieh f ( ) oresem λ f ( ) f ( λ) Drgania i fale II ro Fii BC - funja periodna w presreni Z wierdenia Fouriera: ( ) gdie drgań) f a a a os a os... an os n... b sin b sin... b sin n... π (odpowiada gd pisaliśm dla λ ( ) a a os( ) a os( )... b sin ( ) b sin ( )... a b a n sin os n n π π f T υ λ υ T f ( ) a os ( )... ( )... b sin( ) ( )... b sin n( )... os Każd periodn ruh falow może bć predsawion jao superpoja harmoninh ruhów falowh o ęsośiah... n i długośiah fali λ λ...
11 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Fala płasa: Równanie powierhni sałej fa: ϕ ± ϕ ons - jeśli płasna fala płasa. Fala płasa haraeruje się jednm ieruniem propagaji opisanm pre wersor u ; u. salarna: ( r ) ( r u ) weorowa: ( r ) ( r u ) Powierhnia falowa fali płasiej: r u C ons Nieh ierune propagaji : salarna: ( r ) ( ) weorowa: ( r ) ( ) u bo [ ] r u [ ( ) ( ) ( ) ] powierhnie falowe równoległe do płasn.
12 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Fala podłużna: Fala poprena: T Drgania i fale II ro Fii BC ( r ) L ( ) ( ) ro L ( r ) [ ] L L T ( r ) T ( ) [ ( ) ( ) ] diυ T ( r ) Polaraja liniowa fali poprenej sała orienaja ależ od asu i położenia. T nie Można opisać jednosowm weorem polaraji p; p ( r ) T ( ) ( )p T T T [ osγ sinγ ] ons p γ - ą w płasźnie faowej wględem pionu (). Równoważność fal salarnh i weorowh: Fala salarna ( r) jes równoważna podłużnej fali weorowej L ( r ) : L ( r ) grad ( r ) fala salarna poenjał fali weorowej ( r ) ro{ grad ( r ) } ro L
13 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Prład: r ( r ) L ( r ) d r r weorowa podłużna salarna Dźwię w gaie lub ie: falę salarną iśnienia (gęsośi) można predsawić jao weorową falę podłużną whlenia. Dla A ( u r ) sin - harmonina fala płasa u - weor propagaji Asin i( r ± Ae ) ( r m ) Asin ( r ) harmonina fala płasa Coło fali powierhnia faowa oddielająa obsar presreni aburon pre rohodąą się falę od obsaru ór jese nie osał aburon. Coło fali jes powierhnią sałej fa. Coło fali płasiej jes płasną r ons. 3
14 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC 4 Fala rójwmiarowa: ( ) ( ) ± i Ae - prędość faowa Rowiąanie harmonine: ( ) ( ) r i Ae r ± ( ) ( ) r r A Ae r r i m sin ±
ρ - gęstość ładunku j - gęstość prądu FALE ELEKTROMAGNETYCZNE W PRÓŻNI: Równania Maxwella: -przenikalność elektryczna próżni=8,8542x10-12 F/m
-- G:\AA_Wklad \FIN\DOC\em.do Drgania i fale III rok Fiki C FAL LKTROMAGNTYCZN W PRÓŻNI: Równania Mawella: di ρ ε ρ di j ρ - gęsość ładunku j - gęsość prądu ro di ro j ε ε -prenikalność elekrna próżni8854
Bardziej szczegółowoψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Bardziej szczegółowo5. Równania Maxwella. 5.1 Równania Maxwella 5.2 Transformacja pól 5.3 Fala elektromagnetyczna
5 Równania Maxwella 5 Równania Maxwella 5 Transformaja pól 53 ala eleromagnezna 86 5 Równania Maxwella Wśród poazanh uprzednio równań Maxwella znajduje się prawo Ampere a j Jedna można pozać, że posać
Bardziej szczegółowoFale biegnące. y t=0 vt. y = f(x), t = 0 y = f(x - vt), t ogólne równanie fali biegnącej w prawo
ale (mechaniczne) ala - rozchodzenie się się zaburzenia (w maerii) nie dzięki ruchowi posępowemu samej maerii ale dzięki oddziałwaniu (sprężsemu) Rodzaje i cech fal Rodzaj zaburzenia mechaniczne elekromagneczne
Bardziej szczegółowoRównanie Fresnela. napisał Michał Wierzbicki
napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)
Bardziej szczegółowover b drgania harmoniczne
ver-28.10.11 b drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne N = n=1 A n cos nω n Fig (...) analiza Fouriera małe drgania E p E E k jeden sopień swobody: E p -A E p A 0
Bardziej szczegółowoANEMOMETRIA LASEROWA
1 Wstęp ANEMOMETRIA LASEROWA Anemometria laserowa pozwala na bezdotykowy pomiar prędkośi zastezek (elementów) rozpraszajayh światło Źródłem światła jest laser, którego wiazka jest dzielona się nadwiewiazki
Bardziej szczegółowoRodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Bardziej szczegółowoPochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:
ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ
Bardziej szczegółowoWykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Bardziej szczegółowodrgania h armoniczne harmoniczne
ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p
Bardziej szczegółowo= sin. = 2Rsin. R = E m. = sin
Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i
Bardziej szczegółowoStudia magisterskie ENERGETYKA. Jan A. Szantyr. Wybrane zagadnienia z mechaniki płynów. Ćwiczenia 6. Wyznaczanie przepływu przez rurociągi II
Sia maiserskie ENERGETYKA Jan A. Sanyr Wyrane aanienia meaniki płynów Ćwienia 6 Wynaanie prepływ pre rroiąi II Prykła W owarym iornik najje się prosokąny owór o serokośi i wysokośi, amykany aswą. Olełość
Bardziej szczegółowoWykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
Bardziej szczegółowoG:\AA_Wyklad 2000\FIN\DOC\Fale wodnem.doc. Drgania i fale III rok Fizyki BC. Model: - długi kanał o prostokątnym przekroju i głębokości h,
13-1-00 G:\AA_Wklad 000\FIN\DOC\Fale Fale wodne: Drgania i fale III rok Fiki BC Model: - długi kanał o prostokątnm prekroju i głębokości h, - ruch fali wdłuż, nieależn od x, wchlenia wdłuż, - woda nieściśliwa
Bardziej szczegółowoFale elektromagnetyczne spektrum
Fale elekroagneyczne spekru w próżni wszyskie fale e- rozchodzą się z prędkością c 3. 8 /s Jaes Clerk Mawell (w połowie XIX w.) wykazał, że świało jes falą elekroagneyczną rozprzesrzeniającą się falą ziennego
Bardziej szczegółowoWykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Bardziej szczegółowoArkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Bardziej szczegółowoDualizm korpuskularno falowy
Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p
Bardziej szczegółowoRuch falowy, ośrodek sprężysty
W-9 (Jaroszewicz) 5 slajdów Ruch falow, ośrodek sprężs ę Pojęcie ruchu falowego rodzaje fal Równanie fali płaskiej paraer fali Równanie falowe prędkość propagacji, energia i pęd przenoszone przez falę
Bardziej szczegółowoElektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Bardziej szczegółowoWykład 21: Studnie i bariery cz.1.
Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera
Bardziej szczegółowoPodstawy fizyki wykład 7
Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale
Bardziej szczegółowoPodstawy fizyki sezon 1 VIII. Ruch falowy
Podstawy fizyki sezon 1 VIII. Ruch falowy Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Gdzie szukać fal? W potocznym
Bardziej szczegółowoRównania Maxwella. roth t
, H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D
Bardziej szczegółowoFALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że
FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej
Bardziej szczegółowoZestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t
Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n
Bardziej szczegółowoW-9 (Jaroszewicz) 15 slajdów. Równanie fali płaskiej parametry fali Równanie falowe prędkość propagacji, Składanie fal fale stojące
Jucaan, Meico, Februar 005 W-9 (Jaroszewicz) 5 slajdów Ruch falow, ośrodek sprężs ę Pojęcie ruchu falowego rodzaje fal Równanie fali płaskiej paraer fali Równanie falowe prędkość propagacji, energia i
Bardziej szczegółowoOptyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Bardziej szczegółowoFizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
Bardziej szczegółowoPowierzchnie stopnia drugiego
Algebra WYKŁAD 3 Powierchnie sopnia drugiego Deinicja Powierchnią sopnia drugiego kwadrką nawam biór punków presreni rójwmiarowej, spełniającch równanie A B C D E F G H I K gdie A, B,, K są sałmi i prnajmniej
Bardziej szczegółowoProwadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy
Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy 12 00-14 00 e-mail: kamil@fizyka.umk.pl Istotne informacje 20 spotkań (40 godzin lekcyjnych) wtorki (s. 22, 08:00-10:00), środy (s.
Bardziej szczegółowoΨ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)
RUCH FALOWY 1 Fale sejsmiczne Fale morskie Kamerton Interferencja RÓWNANIE FALI Fala rozchodzenie się zaburzeń w ośrodku materialnym lub próżni: fale podłużne i poprzeczne w ciałach stałych, fale podłużne
Bardziej szczegółowoobszary o większej wartości zaburzenia mają ciemny odcień, a
Co to jest fala? Falę stanowi rozchodzące się w ośrodku zaburzenie, zmiany jakiejś wielkości (powtarzające się wielokrotnie i cyklicznie zmieniające swoje wychylenie). Fala pojawia się w ośrodkach, których
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie
Bardziej szczegółowoSformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato
Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.
Bardziej szczegółowo2. Rodzaje fal. Fale te mogą rozchodzić się tylko w jakimś ośrodku materialnym i podlegają prawom Newtona.
. Rodzaje fal Wykład 9 Fale mechaniczne, których przykładem są fale wzbudzone w długiej sprężynie, fale akustyczne, fale na wodzie. Fale te mogą rozchodzić się tylko w jakimś ośrodku materialnym i podlegają
Bardziej szczegółowoW siła działająca na bryłę zredukowana do środka masy ( = 0
Popęd i popęd bryły Bryła w ruchu posępowym. Zasada pędu i popędu ma posać: p p S gdie: p m v pęd bryły w ruchu posępowym S c W d popęd siły diałającej na bryłę w ruchu posępowym aś: v c prędkość środka
Bardziej szczegółowoAby nie uszkodzić głowicy dźwiękowej, nie wolno stosować amplitudy większej niż 2000 mv.
Tematy powiązane Fale poprzeczne i podłużne, długość fali, amplituda, częstotliwość, przesunięcie fazowe, interferencja, prędkość dźwięku w powietrzu, głośność, prawo Webera-Fechnera. Podstawy Jeśli fala
Bardziej szczegółowoInterferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.
Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany
Bardziej szczegółowoZasada nieoznaczoności Heisenberga
Fale materii paczki falowe o różnej szerokości Dwa gaussowskie rozkład amplitud fal armonicznc o różnc szerokościac σ p i różnc wartościac średnic pędu p. Części rzeczwista ReΨ i urojona mψ funkcji falowc
Bardziej szczegółowoFale mechaniczne i akustyka
Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem
Bardziej szczegółowoWSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
Bardziej szczegółowoWYKŁAD FIZYKAIIIB 2000 Drgania tłumione
YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie
Bardziej szczegółowoElektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś
Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w
Bardziej szczegółowo1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
Bardziej szczegółowo2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Bardziej szczegółowoMoment pędu fali elektromagnetycznej
napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0
Bardziej szczegółowoRuch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku.
Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Definicje: promień fali kierunek rozchodzenia się fali powierzchnia falowa powierzchnia,
Bardziej szczegółowoĆw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań
KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.
Bardziej szczegółowoZestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t
Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n
Bardziej szczegółowoWykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)
Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością
Bardziej szczegółowogęstością prawdopodobieństwa
Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)
Bardziej szczegółowoPodstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
Bardziej szczegółowoOPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
Bardziej szczegółowoZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE
. Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:
Bardziej szczegółowoFizyka Elementarna rozwiązania zadań. Część 20, 21 i 22 Przygotowanie: Grzegorz Brona,
Fizyka Elementarna rozwiązania zadań. Część 0, 1 i Przygotowanie: Grzegorz Brona, 0.1.008 Seria 0 Zadanie 1 Punkt Q porusza się w płaszczyźnie XOY po okręgu o promieniu A ze stałą prędkością kątową ω.
Bardziej szczegółowoPromieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Bardziej szczegółowoPowtórzenie na kolokwium nr 4. Dynamika punktu materialnego
Powtórzenie na olowiu nr 4 Dynaia puntu aterialnego 1 zadanie dynaii: znany jest ruh, szuay siły go wywołująej. Znane funje opisująe trajetorię ruhu różnizujey i podstawiay do równań ruhu. 2 zadanie dynaii:
Bardziej szczegółowoPodwaliny szczególnej teorii względności
W-6 (Jarosewi) 7 slajdów Na podsawie preenaji prof. J. Rukowskiego Podwalin sególnej eorii wględnośi asada wględnośi Galileusa ekspermen Mihelsona i Morle a ransformaja Lorena pierwsa spreność współesnej
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Bardziej szczegółowoSolitony i zjawiska nieliniowe we włóknach optycznych
Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone
Bardziej szczegółowoPoczątek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
Bardziej szczegółowoFala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Bardziej szczegółowofalowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoPodstawy fizyki sezon 2 8. Fale elektromagnetyczne
Podstawy fizyki sezon 8. Fale elektromagnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Przenoszenie
Bardziej szczegółowoĄ ń ń ć Ę Ę ć ć ń ń Ż ń ń Ą Ą ń Ż Ń Ż ć Ą ń ŚĆ ć Ę Ę Ą ń Ś ń ć Ę Ą ń Ę ń ń ń ń ć ń ń Ś Ź ń ć ć ń ć ń Ś Ż Ę Ń ń ń ń ń ń ć Ń Ę Ę Ę Ę Ę ńń ź ĄĘ Ę ź ń Ąń Ę Ę Ę Ź Ę Ę Ą Ś Ę Ę ć Ś Ą Ń ć ń ń ć Ś ć Ń Ó ń ń ć
Bardziej szczegółowo4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)
Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek
Podstaw Fizki IV Optka z elementami fizki współczesnej wkład 5, 27.02.2012 wkład: pokaz: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wkład 4 - przpomnienie dielektrki
Bardziej szczegółowoFizyka dla Informatyki Stosowanej
Fizyka dla Informayki Sosowanej Jacek Golak Semesr zimowy 018/019 Wykład nr 14 Równania Mawella w próżni E 0 B 0 B E B j 0 0 E Uwaga: To są równania w układzie SI! 8.85419 0 4 π 0 10 7 10 T m A 1 C N m
Bardziej szczegółowopodsumowanie (E) E l Eds 0 V jds
e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε
Bardziej szczegółowoWidmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Bardziej szczegółowoWŁASNOŚCI FAL (c.d.)
RUCH FALOWY Własności i rodzaje fal. Prędkość rozchodzenia się fal. Fala harmoniczna płaska. Fala stojąca. Zasada Huygensa. Dyfrakcja fal. Obraz dyfrakcyjny. Kryterium Rayleigha. Interferencja fal. Doświadczenie
Bardziej szczegółowoZjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoMECHANIKA RELATYWISTYCZNA TRANFORMACJA LORENTZA
Wdiał EAIiE Kierunek: ELEKTRONIKA I TELEKOMUNIKACJA Predmio: Fika II MECHANIKA RELATYWISTYCZNA TRANFORMACJA LORENTZA 0/0, lao SZCZEGÓLNA TEORIA WZGLĘDNOŚCI Fika relawisna jes wiąana pomiarem miejsa i asu
Bardziej szczegółowoPRZYKŁADY RUCHU HARMONICZNEGO. = kx
RUCH HARMONICZNY; FALE PRZYKŁADY RUCHU HARMONICZNEGO F d k F s k Gdowski F k Każdy ruch w którym siła starająca się przywrócić położenie równowagi jest proporcjonalna do wychylenia od stanu równowagi jest
Bardziej szczegółowoMechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Bardziej szczegółowo18 K A T E D R A F I ZYKI STOSOWAN E J
18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem
Bardziej szczegółowoWykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające
Bardziej szczegółowox od położenia równowagi
RUCH HARMONICZNY Ruch powtarając się w regularnch odstępach casu nawa ruche okresow. Jeżeli w taki ruchu seroko rouiane odchlenie od stanu równowagi ( np. odchlenie as podcepionej do sprężn, wartość wektora
Bardziej szczegółowoFizyka dla Informatyki Stosowanej
Fia dla Inforai Sosowanej Jae Gola Seesr iow 16/17 Wład nr Na pierws władie podane osał wielośi służąe do opisu ruhu ora prład ruhów. Tera asanowi się nad prawai rądąi ruhe na raie dla prpadu punu aerialnego.
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie
Bardziej szczegółowoŚwiatło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym
Światło jako fala Fala elektromagnetyczna widmo promieniowania ν = c λ Czułość oka ludzkiego w zakresie widzialnym Wytwarzanie fali elektromagnetycznej o częstościach radiowych E(x, t) = Em sin (kx ωt)
Bardziej szczegółowoFale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Bardziej szczegółowoKATEDRA TELEKOMUNIKACJI I FOTONIKI
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować
Bardziej szczegółowoEnergia w ruchu harmonicznym
Energia w ruchu haroniczn cos 1 kx x k E p 1 1 kx x v E k k p kx E E E Fale przkład Fala echaniczna poprzeczna Fala echaniczna podłużna Fala echaniczna akusczna Fala elekroagneczna np. radiowa świało Fale:
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład, 0..07 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład - przypomnienie superpozycja
Bardziej szczegółowoŚwiatło Światł jako fala
Światło jako fala 1 Fala elektromagnetczna widmo promieniowania ν c Czułość oka ludzkiego w zakresie widzialnm Wtwarzanie fali elektromagnetcznej o częstościach radiowch E(x, B(x, t) t) E B m m sin (kx
Bardziej szczegółowoRównania Maxwella i równanie falowe
Równania Maxwella i równanie falowe Prezentacja zawiera kopie folii omawianch na wkładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wkorzstanie niekomercjne dozwolone pod warunkiem podania
Bardziej szczegółowo13. Optyka Polaryzacja przez odbicie.
13. Optyka 13.8. Polaryzaja przz odbii. x y z Fala lktromagntyzna, to fala poprzzna. Wktory E i są prostopadł do kirunku rozhodznia się fali. W wszystkih punktah wktory E (podobni jak ) są do sibi równolgł.
Bardziej szczegółowoh 2 h p Mechanika falowa podstawy pˆ 2
Mechanika falowa podstawy Hipoteza de Broglie a Zarówno promieniowanie jak i cząstki materialne posiadają naturę dwoistą korpuskularno-falową. Z każdą mikrocząstką można związać pewien proces falowy pierwotnie
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 11, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 11, 19.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 10 - przypomnienie
Bardziej szczegółowo1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone
Wyład 6 - wersja srócona. ezonans w obwodach elerycznych. Filry częsoliwościowe. Sprzężenia magneyczne 4. Sygnały odszałcone AMD ezonans w obwodach elerycznych Zależności impedancji dwójnia C od pulsacji
Bardziej szczegółowoOśrodki dielektryczne optycznie nieliniowe
Ośrodki dielektryczne optycznie nieliniowe Równania Maxwella roth rot D t B t = = przy czym tym razem wektor indukcji elektrycznej D ε + = ( ) Wektor polaryzacji jest nieliniową funkcją natężenia pola
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 13, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 13, 16.11.017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 1 - przypomnienie
Bardziej szczegółowoSIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Bardziej szczegółowo