Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek"

Transkrypt

1 Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner

2 Wykład 16 - przypomnienie dyfrakcja Fresnela obrazek strefowy dyfrakcja Fresnela obrazek sub-strefowy całki Fresnela i spirala Cornu

3 Dyfrakcja Fraunhofera = trans. Fouriera ostatecznie y ( xy, ) R x r 01 E x 0, y 0, z C e ikr dx y 0 ( x, y ) 0 0 = C e ikr dx E(x, y, 0)e = C " F E x, y, 0 k x 0, k y 0 = R R z x 0 dla obrazu Fraunhofera E x 0, y 0, z = C dx Ponieważ E(x, y, 0)e ikr 10 dy r 01 = x x 0 + y y 0 + z to definiując R jako mamy E(x, y, 0)e ik xx 0+yy 0 /R dy i kx0 R x+ky 0 R y R = x 0 + y 0 + z r 01 = R 1 + x + y R xx 0 + yy 0 R dy R 1 xx 0 + yy 0 R R xx 0 + yy 0 R dwuwymiarowa transformata Fouriera W dalekim polu obserwujemy transformatę Fouriera pola

4 propagacja metoda spektralna z = 0 E(x, y, 0) Analogicznie E x, y, z = 1 π ze współczynnikami E k x, k y, z = 1 π z E x, y, z =? dk x dk y E(k x, k y, z)e i k xx+k y y dxdy E(x, y, z)e i k xx+k y y Rozważając fale monochromatyczne pole w z = 0 zawsze możemy zapisać pole elektryczne fali o skończonych rozmiarach poprzecznych jako superpozycję fal płaskich E x, y, 0 = 1 π dk x dk y E(k x, k y, 0)e i k xx+k y y przy czym, amplitudy fal płaskich liczymy z transformaty Fouriera pola w płaszczyźnie z = 0 E k x, k y, 0 = 1 π dxdy E(x, y, 0)e i k xx+k y y Pole E(x, y, z) musi spełniać r-nie Helmholtza + k E x, y, z dk x dk y = 0. Wstawiamy pole w postaci całki do tego r-nia d dz E k x, k y, z + k k x k y E k x, k y, z e i k xx+k y y = 0 = 0

5 propagacja, d dz E k x, k y, z + k k x k y E k x, k y, z = 0 z = 0 z E k x, k y, z = E k x, k y, 0 e iμz E(x, y, 0) E x, y, z =? μ = ± k k x k y = k z k k x k y > 0 E k x, k y, z = E k x, k y, 0 e ik zz fale propagujące się k k x k y < 0 E k x, k y, 0 e μz fale zanikające (ewanescencyjne) Jeśli tylko z λ to E x, y, z = 1 π k x + k y k dk x dk y E(k x, k y, 0)e i k xx+k y y e iz k k x ky Kompletny przepis - bardzo szybkie metody numeryczne

6 Propagacja - proste wnioski E x, y, z = 1 π Oznaczmy: f k x Mamy wtedy k x + k y k E x, y, z = 1 π eikz dk x dk y E(k x, k y, 0)e i k xx+k y y e iz k k x ky = k x x k x z, g k k y = k y y k y z k dk x dk y E k x, k y, 0 e if k x e ig k y E x, y, z = 1 π eikz Jeśli funkcja E k x, k y, 0 jest wolnozmienna to wkład do całki pochodzi tylko z obszarów gdzie funkcje f i g mają zerowe pochodne bo wszędzie indziej exponensy tych funkcji oscylują bardzo szybko wokół zera. Zerowe pochodne funkcji f i g dają: Niezbyt bliskie pole (obraz Fresnela) k x + k y k k z k k x +k y dk x dk y E(k x, k y, 0)e i k xx+k y y e iz k x +ky k k k x = k x z, k y = k y z ReE k x, k y, 0 Re e if k x punkt stacjonarny fazy zasada Fermata

7 propagacja, 3 z = 0 E(x, y, 0) E x, y, z =? z Rozważamy tylko fale propagujące się ze skończonym rozkładem składowych poprzecznych wektora falowego skupionym wokół zera wiązka rozchodzi się głownie w kierunku z możemy wtedy całkować k x i k y od do E x, y, z = = 1 π dk x dk y E(k x, k y, 0)e i k xx+k y y e iz k k x ky Do r-nia powyżej wstawiamy E k x, k y, 0 = 1 π E x, y, z = dx dy E(x, y, 0)e i k xx +k y y = 1 4π dk xdk y e i k xx+k y y e iz k k x ky = 1 4π = 1 4π dx dy E x, y, 0 dx dy E x, y, 0 h x x, y y, z dx dy E(x, y, 0)e i k xx +k y y dk x dk y e i k x x x +k y y y e iz k k x ky h x x, y y, z =

8 propagacja, 4 z = 0 z Propagacja jest przykładem zagadnienia liniowego w wymiarach: E x, y, z = 1 4π dx dy E x, y, 0 h x x, y y, z h x x, y y, z to odpowiedź impulsowa układu E(x, y, 0) E x, y, z =? Dla źródła punktowego E x, y, 0 = δ x x p δ y y p (impulsu) mamy E x, y, z = 1 4π h x x p, y y p, z Matematycznie całka E x, y, z = 1 4π dx dy E x, y, 0 h x x, y y, z to splot funkcji E x, y, 0 oraz h x x, y y, z E x, y, z = E x, y, 0 h x x, y y, z Wiadomo, że transformata Fouriera splotu to iloczyn transformat E k x, k y, z = E k x, k y, 0 h k x, k y, z gdzie funkcja h k x, k y, z nazywana (amplitudową) funkcją przenoszenia jest transformatą Fouriera funkcji odpowiedzi impulsowej h = F h = e i k k x ky z

9 f. impulsowa i f. przenoszenia w przybliż. Fresnela Jeśli rozważane pole jest mało rozbieżne: k x, k y k to z = 0 z k k x k y k k x + k y i funkcja przenoszenia ma postać h k x, k y, z = e ikz ik x +ky z k k E(x, y, 0) E x, y, z =? Korzystamy z faktu, że funkcje h oraz h to para sprzężona fourierowsko aby policzyć funkcję odpowiedzi impulsowej. Rachunki h x, y, z = i x z+ +y eik z λz Teraz możemy już wypisać pole E x, y, z w obrazie Fresnela E x, y, z = 1 4π = i λz eikz dx dy E x, y, 0 h x x, y y, z dx dy E x, y, 0 e ik z x x + y y Wynik identyczny jak ten podany w wykładzie 16. i wyprowadzony z całki Sommerfelda ogólny opis układów liniowych D np., układów obrazujących w języku odpowiedzi impulsowej oraz funkcji przenoszenia

10 funkcja przenoszenia cienkiej soczewki Funkcję impulsową i funkcję przenoszenia możemy zdefiniować także dla układów optycznych. Przykład, cienka soczewka n = 1 Δ 0 Δ n > 1 z Cienka oznacza tutaj, że promienie świetlne nie zmieniają odległości od osi przy przejściu przez soczewkę. Wtedy jedynym efektem działania soczewki jest zmiana fazy fali zależna od położenia czyli x oraz y: φ(x, y) Δ(x, y) φ x, y = kδ 0 + n 1 kδ(x, y) E 1 x, y 1 E x, y Rachunki zrobimy dla soczewki płaskowypukłej Δ x, y = Δ 0 R + R x y dla x, y R mamy Δ x, y Δ 0 x + y R i φ x, y = n 1 k x + y R = k x + y f R R x y Δ 0 x + y Wynik końcowy nie zależy od kształtu soczewki tak długo jak długo obowiązuje przybliżenie cienkiej soczewki E x, y = E 1 x, y e ik x +y f

11 pole za soczewką E 1 x, y E x, y E 3 x, y z Zakładamy cienką soczewkę, dla której E x, y = E 1 x, y e ik x +y f 1 Pole w odległości z za soczewką liczymy w obrazie Fresnela E 3 x, y, z = i λz eikz = i λz eikz = i x z+ +y eik λz Jeśli z = f to E 3 x, y, z dx dy E x, y, 0 e ik z x x + y y dx dy E 1 x, y e ik f x +y z dx dy E 1 x, y e = iπ x f+ +y eik f λf = iπ f+ eik λf 1 π x +y ik e ik z x x + y y 1 z 1 f x +y e ik z xx +yy dx dy E 1 x, y e ik f xx +yy f E 1 k x f, k y f Rozkład natężenia w płaszczyźnie ogniskowej jest takie jak w dalekim polu

12 Soczewka i fala płaska y E x, y, z = E 0 e i k yy+k z z y 0 = Θ y f Θ y sin Θ y = k y k Θ y x0, y0 xf, yf

13 fala płaska i soczewka o skończonej aperturze E 0 e ikz E 1 x, y = E 0 A(x, y) E x 0, y 0 = C " F E 1 k x 0 d, k y 0 d f d E 1 x 0, y 0 = C (x, y)f E 1 k x 0 f, k y 0 f W płaszczyźnie Fraunhofera pole jest (z dokładnością do czynnika skalującego) takie samo jak w strefie dalekiego pola

14 wpływ apertury na jakość obrazowania

15 Rozmiary ogniska Funkcja odpowiedzi impulsowej dla układu obrazującego z pojedynczą soczewką h x 0, y 0 d 1 h x, y Jeżeli (wiązka skolimowana) to i: x y 0 d f 0 0 /, J D d h x y h(0,0), x y ρ s ρ s = 1. λd D D / d J D / f h x, y h(0,0) D / f 1

16 Rozdzielczość obrazowania h x, y 0 0 d d ' D d 1 d Kryterium Rayleigha: maksimum jednego rozkładu przypada na pierwsze zero drugiego ' 1. d d s D d1 1 Ale ' 1. d d d d D 1. d s D obrazowanie spójne vs niespójne

17 Dyfrakcyjne ograniczenie na rozdzielczość I x, y 0 0 y 0 f Rozdzielczość rośnie z liczbą f D d x 0 J D / d I x y C D / d 1 1 0, 0 d s 1. D Układy o dużej jasności mają dobrą rozdzielczość Uwaga: aberracje

18 rozdzielczość układu obraz. wg. Abbego płaszczyzna Fraunhofera obrazowanie filtrowanie r-nie siatki dyfrakcyjnej: sin sin l nd ale 0 Minimum: na soczewce mieszczą się przynajmniej rzędy 1-,0,1. d nsin NA

19 soczewka jako transformata Fouriera E 1 x, y E 4 x, y z E x, y E 3 x, y Zakładamy cienką soczewkę; liczymy po kolei pola: przed soczewką, za soczewką, w płaszczyźnie ogniskowej. Rachunki są takie jak dla robiliśmy wcześniej tylko bardziej żmudne. Wynik: E 4 x 0, y 0 = C F E 1 k x 0 f, k y 0 f Rozkład pola w płaszczyźnie ogniskowej jest proporcjonalny do transformaty Fouriera pola w dugiej płaszczyźnie ogniskowej

20 układ 4f - filtrowanie przestrzenne Prostokątna siatka dyfrakcyjna regulowana przesłona Obraz ilustruje sytuację, dla której obraz powstaje z ugięcia fal na składowych fourierowskich siatki: l 1,3 f f f f Obraz (pomarańczowa krzywa) nie jest ostry. y y 0 E x 0, y 0 = C F E 1 k x 0 f, k y 0 f t y t y = l=1,3,5,... 1 l sin l πy d d - stała siatki

21 układ 4f obróbka i rozpoznawanie obrazów Duże częstości przestrzenne wysokie składowe fourierowskie maski - modulatory ciekłokrystaliczne

22 Fale monochromatyczne układ 4f pulse shaper, 1 f f f f siatka dyfrakcyjna w λ w 0 f w siatka dyfrakcyjna x sinα sinβ dx dλ f dβ dλ s λ d s f d cosβ Rozdzielczość spektralna D=w 0 dx/d

23 Impulsy femtosekundowe układ 4f pulse shaper, f f f f siatka dyfrakcyjna maska albo modulator siatka dyfrakcyjna E out iφω ω Sω e E ω in Spatial Light Modulator (liquid crystal) pixel

24 Holografia, 1 REJESTRACJA Naświetlamy film drobnoziarnisty tak, że jego transmisja jest proporcjonalna do natężenia światła ODTWARZANIE * E ter Eo Er Er Er Er Eo ErEo * * o r o r o r o r t E E E E E E E E

25 Holografia, REJESTRACJA ODTWARZANIE E r E o * r o r r r o o r E te E E E E E E E

26 Holografia, 3 REJESTRACJA ODTWARZANIE E o E r * r o r r r o o r E te E E E E E E E

27 Hologramy objętościowe REJESTRACJA r I x, y, z I e I e k k k g o r r ik r ik or o I I I I cos k o r k r r r o r o I I I I cos k g r r o r o ODTWARZANIE

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

WSTĘP DO OPTYKI FOURIEROWSKIEJ

WSTĘP DO OPTYKI FOURIEROWSKIEJ 1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 12, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 12, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 1, 3.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek rnest Grodner Wykład 11 - przypomnienie superpozycja

Bardziej szczegółowo

Optyka instrumentalna

Optyka instrumentalna Optyka instrumentalna wykład 9 4 maja 2017 Wykład 8 Przyrządy optyczne Oko ludzkie Lupa Okular Luneta, lornetka Teleskopy zwierciadlane Mikroskop Parametry obiektywów, rozdzielczość Oświetlenie (dia, epi,

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie

Bardziej szczegółowo

Mikroskop teoria Abbego

Mikroskop teoria Abbego Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone

Bardziej szczegółowo

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 2. Dyfrakcja światła w polu bliskim i dalekim

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 2. Dyfrakcja światła w polu bliskim i dalekim Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie. Dyfrakcja światła w polu bliskim i dalekim Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk

Bardziej szczegółowo

WSTĘP DO OPTYKI FOURIEROWSKIEJ

WSTĘP DO OPTYKI FOURIEROWSKIEJ 1100-4BW12, rok akademicki 2018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Hologramy generowane komputerowo - CGH Widmo obrazu: G x, y FT g x, y mające być zapisane na hologramie, dyskretyzujemy

Bardziej szczegółowo

Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.

Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie. HOLOGRAFIA prof dr hab inŝ Krzysztof Patorski Krzysztof Rejestracja i rekonstrukcja fal optycznych Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie a) Laser b) odniesienia

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość

Bardziej szczegółowo

PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE

PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład, 0..07 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład - przypomnienie superpozycja

Bardziej szczegółowo

Wykład VI Dalekie pole

Wykład VI Dalekie pole Wykład VI Dalekie pole Schemat przypomnienie Musimy znać rozkład fali padającej u pad (x,y) w płaszczyźnie układu optycznego Musimy znać funkcję transmitancji układu optycznego t(x,y) Określamy falę właśnie

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 8, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 8, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 8, 09.03.0 wykład: pokazy: ćwiczenia: zesław Radzewicz Radosław hrapkiewicz, Filip Ozimek Ernest Grodner Wykład 7 - przypomnienie eikonał

Bardziej szczegółowo

ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM

ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu jest model matematyczny procesu formowania obrazu przez pojedynczy układ optyczny w oświetleniu

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Różne reżimy dyfrakcji

Różne reżimy dyfrakcji Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 11, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 11, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 11, 19.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 10 - przypomnienie

Bardziej szczegółowo

Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny.

Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny. Ćwiczenie 7 Samoobrazowanie obiektów periodycznych Wprowadzenie teoretyczne Jeśli płaski obiekt optyczny np. przezrocze z czarno-białym wzorem (dokładniej mówiąc z przeźroczysto-nieprzeźroczystym wzorem)

Bardziej szczegółowo

Propagacja w przestrzeni swobodnej (dyfrakcja)

Propagacja w przestrzeni swobodnej (dyfrakcja) Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Propagacja

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki. - Dyfrakcja różne reżimy - Obliczanie elementów dyfrakcyjnych

Metody Obliczeniowe Mikrooptyki i Fotoniki. - Dyfrakcja różne reżimy - Obliczanie elementów dyfrakcyjnych Metody Obliczeniowe Mikrooptyki i Fotoniki - Dyfrakcja różne reżimy - Obliczanie elementów dyfrakcyjnych Elementy dyfrakcyjne - idea d1 Wiązka padająca Ψ i ( x,y ) DOE (diffractive optical element) d Oczekiwany

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 9, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 9, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 9, 12.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 8 - przypomnienie

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 15, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 15, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 5, 3.04.0 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 4 - przypomnienie interferencja

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA Krzysztof

PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA Krzysztof PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA prof. dr hab. inż. Krzysztof Patorski Krzysztof Niniejsza część wykładu obejmuje wprowadzenie do dyfrakcji, opis matematyczny z wykorzystaniem

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

Rys. 1 Schemat układu obrazującego 2f-2f

Rys. 1 Schemat układu obrazującego 2f-2f Ćwiczenie 15 Obrazowanie. Celem ćwiczenia jest zbudowanie układów obrazujących w świetle monochromatycznym oraz zaobserwowanie różnic w przypadku obrazowania za pomocą różnych elementów optycznych, zwracając

Bardziej szczegółowo

Laboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera

Laboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera ĆWICZENIE 2 Koherentne korelatory optyczne i hologram Fouriera 1. Wprowadzenie Historycznie jednym z ważniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę

Bardziej szczegółowo

Laboratorium Informatyki Optycznej ĆWICZENIE 1. Optyczna filtracja sygnałów informatycznych

Laboratorium Informatyki Optycznej ĆWICZENIE 1. Optyczna filtracja sygnałów informatycznych ĆWICZENIE 1 Optyczna filtracja sygnałów informatycznych 1. Wprowadzenie Przyjmijmy że znamy pole świetlne w płaszczyźnie ( ) czyli że znamy rozkład jego amplitudy i fazy we wszystkich punktach gdzie określony

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 11, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 11, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 11, 09.11.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 10 - przypomnienie

Bardziej szczegółowo

Optyka instrumentalna

Optyka instrumentalna Optyka instrumentalna wykład 7 20 kwietnia 2017 Wykład 6 Optyka geometryczna cd. Przybliżenie przyosiowe Soczewka, zwierciadło Ogniskowanie, obrazowanie Macierze ABCD Punkty kardynalne układu optycznego

Bardziej szczegółowo

Równania Maxwella. Wstęp E B H J D

Równania Maxwella. Wstęp E B H J D Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),

Bardziej szczegółowo

Rys. 1 Geometria układu.

Rys. 1 Geometria układu. Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe

Bardziej szczegółowo

Optyka instrumentalna

Optyka instrumentalna Optyka instrumentalna wykład 7 11 kwietnia 2019 Wykład 6 Optyka geometryczna Równania Maxwella równanie ejkonału promień zasada Fermata, zasada stacjonarnej fazy (promienie podążają wzdłuż ekstremalnej

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 6 Optyka promieni 2 www.zemax.com Diafragmy Pęk promieni świetlnych, przechodzący przez układ optyczny

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Wykład VII Splot i bliskie pole

Wykład VII Splot i bliskie pole Wykład VII Splot i bliskie pole Splot funkcji f i h x? Splot x f x g x f h x d 0 0 1 1 1 2 3 3 3 1 1 0 Twierdzenie o splocie Twierdzenie o splocie Twierdzenie o uszeregowaniu Amplitudę zespoloną obrazu

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 7 Dystorsja Zależy od wielkości pola widzenia. Dystorsja nie wpływa na ostrość obrazu lecz dokonuje

Bardziej szczegółowo

Zjawiska dyfrakcji. Propagacja dowolnych fal w przestrzeni

Zjawiska dyfrakcji. Propagacja dowolnych fal w przestrzeni Zjawiska dyfrakcji Propagacja dowolnych fal w przestrzeni W przestrzeni mogą się znajdować różne elementy siatki dyfrakcyjne układy optyczne przysłony filtry i inne Analizy dyfrakcyjne należą do najważniejszych

Bardziej szczegółowo

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE Ćwiczenie O-9 YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem dyfrakcji światła na pojedynczej i podwójnej szczelinie. Pomiar długości fali światła laserowego i szerokości

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek Podstaw Fizki IV Optka z elementami fizki współczesnej wkład 5, 27.02.2012 wkład: pokaz: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wkład 4 - przpomnienie dielektrki

Bardziej szczegółowo

ĘŚCIOWO KOHERENTNYM. τ), gdzie Γ(r 1. oznacza centralną częstotliwość promieniowania quasi-monochromatycznego.

ĘŚCIOWO KOHERENTNYM. τ), gdzie Γ(r 1. oznacza centralną częstotliwość promieniowania quasi-monochromatycznego. OBRAZOWANIE W OŚWIETLENIU CZĘŚ ĘŚCIOWO KOHERENTNYM 1. Propagacja światła a częś ęściowo koherentnego prof. dr hab. inŝ. Krzysztof Patorski Krzysztof PoniŜej zajmiemy się propagacją promieniowania quasi-monochromatycznego,

Bardziej szczegółowo

18 K A T E D R A F I ZYKI STOSOWAN E J

18 K A T E D R A F I ZYKI STOSOWAN E J 18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem

Bardziej szczegółowo

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 13, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 13, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 13, 6.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 1 - przypomnienie stosy

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa

Bardziej szczegółowo

Wykład 27 Dyfrakcja Fresnela i Fraunhofera

Wykład 27 Dyfrakcja Fresnela i Fraunhofera Wykład 7 Dyfrakcja Fresnela i Fraunhofera Zjawisko dyfrakcji (ugięcia) światła odkrył Grimaldi (XVII w). Polega ono na uginaniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny).

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ

G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. Drgania i fale ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera

Bardziej szczegółowo

Ćwiczenie 4. Część teoretyczna

Ćwiczenie 4. Część teoretyczna Ćwiczenie 4 Badanie aberracji chromatycznej soczewki refrakcyjnej i dyfrakcyjnej. Badanie odpowiedzi impulsowej oraz obrazowania przy użyciu soczewki sferycznej. Zbadanie głębi ostrości przy oświetleniu

Bardziej szczegółowo

= sin. = 2Rsin. R = E m. = sin

= sin. = 2Rsin. R = E m. = sin Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski 3 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 5 1/41 Plan wykładu Podstawy optyki geometrycznej Załamanie światła, soczewki Odbicie

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Proste przyrządy optyczne. Damian Siedlecki

POMIARY OPTYCZNE 1. Proste przyrządy optyczne. Damian Siedlecki POMIARY OPTYCZNE 1 { Proste przyrządy optyczne Damian Siedlecki Lupa to najprostszy przyrząd optyczny, dający obraz pozorny, powiększony i prosty. LUPA Aperturę lupy ogranicza źrenica oka. Pole widzenia

Bardziej szczegółowo

ODWZOROWANIE I PRZETWARZANIE SYGNAŁU OPTYCZNEGO W OŚWIETLENIU KOHERENTNYM

ODWZOROWANIE I PRZETWARZANIE SYGNAŁU OPTYCZNEGO W OŚWIETLENIU KOHERENTNYM Podstawy Inżynierii Fotonicznej - Laboratorium Ćwiczenie 2 ODWZOROWANIE I PRZETWARZANIE SYGNAŁU OPTYCZNEGO W OŚWIETLENIU KOHERENTNYM 2.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie z teorią dwustopniowego

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub

Bardziej szczegółowo

Def. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi

Def. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi Mikro optyka MO Def. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi Systemy bazujące na mikrooptyce Zalety systemów MO duże macierze wysoka dokładność pozycjonowania

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 8 Janusz Andrzejewski Fale przypomnienie Fala -zaburzenie przemieszczające się w przestrzeni i w czasie. y(t) = Asin(ωt- kx) A amplituda fali kx ωt faza fali k liczba falowa ω częstość

Bardziej szczegółowo

WYBRANE ZAGADNIENIA DYFRAKCJI FRESNELA

WYBRANE ZAGADNIENIA DYFRAKCJI FRESNELA WYBRANE ZAGADNIENIA DYFRAKCJI FRESNELA prof. dr hab. inż. Krzysztof Patorski Omawiane zagadnienia z zakresu dyfrakcji Fresnela obejmują: dyfrakcję na obiektach o symetrii obrotowej ze szczególnym uwzględnieniem

Bardziej szczegółowo

Ćwiczenie 9 Y HOLOGRAM. Punkt P(x,y) emituje falę sferyczną o długości, której amplituda zespolona w płaszczyźnie hologramu ma postać U R exp( ikr)

Ćwiczenie 9 Y HOLOGRAM. Punkt P(x,y) emituje falę sferyczną o długości, której amplituda zespolona w płaszczyźnie hologramu ma postać U R exp( ikr) Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe

Bardziej szczegółowo

Moment pędu fali elektromagnetycznej

Moment pędu fali elektromagnetycznej napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0

Bardziej szczegółowo

BADANIE INTERFEROMETRU YOUNGA

BADANIE INTERFEROMETRU YOUNGA Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości

Bardziej szczegółowo

Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 7. Optyka geometryczna.   Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

INTERFERENCJA WIELOPROMIENIOWA

INTERFERENCJA WIELOPROMIENIOWA INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym

Bardziej szczegółowo

Fizyka Laserów wykład 5. Czesław Radzewicz

Fizyka Laserów wykład 5. Czesław Radzewicz Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Laboratorium Optyki Falowej

Laboratorium Optyki Falowej Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera. W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu

Bardziej szczegółowo

Fotonika. Plan: Wykład 2: Elementy refrakcyjne i dyfrakcyjne

Fotonika. Plan: Wykład 2: Elementy refrakcyjne i dyfrakcyjne Fotonika Wykład 2: Elementy refrakcyjne i dyfrakcyjne Plan: Siatka dyfrakcyjna: amplitudowa, fazowa Siatka Dammana Soczewka: refrakcyjna, dyfrakcyjna, macierz mikrosoczewek Łączenie refrakcji z dyfrakcją

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła

Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe

Bardziej szczegółowo

Wyznaczanie parametro w wiązki gaussowskiej

Wyznaczanie parametro w wiązki gaussowskiej Wyznaczanie parametro w wiązki gaussowskiej Spis treści 1. Wstęp... 1 2. Definicja wiązki gaussowskiej... 2 3. Parametry określające wiązkę gaussowską... 4 4. Transformacja wiązki gaussowskiej przez soczewki...

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 7, 05.03.2012. Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 7, 05.03.2012. Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 7, 05.03.2012 wykład: pokazy: ćwiczenia: Czesław Raewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 6 - przypomnienie światło

Bardziej szczegółowo

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Funkcja falowa i związek między gęstością mocy i funkcją falową to postulaty skalarnego modelu falowego światła.

Funkcja falowa i związek między gęstością mocy i funkcją falową to postulaty skalarnego modelu falowego światła. WPROWADZENIE OPTYKA FALOWA prof. dr hab. inż. Krzysztof Patorski Światło propaguje się w postaci fal. W próżni prędkość światła wynosi około 3.0 x 10 8 m/s (co odpowiada 30 cm/ns lub 0.3 mm/ps). Wyróżnia

Bardziej szczegółowo

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 3. Częstotliwości przestrzenne struktur okresowych

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 3. Częstotliwości przestrzenne struktur okresowych Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 3. Częstotliwości przestrzenne struktur okresowych Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 13, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 13, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 13, 16.11.017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 1 - przypomnienie

Bardziej szczegółowo