Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek
|
|
- Henryka Dobrowolska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner
2 Wykład 16 - przypomnienie dyfrakcja Fresnela obrazek strefowy dyfrakcja Fresnela obrazek sub-strefowy całki Fresnela i spirala Cornu
3 Dyfrakcja Fraunhofera = trans. Fouriera ostatecznie y ( xy, ) R x r 01 E x 0, y 0, z C e ikr dx y 0 ( x, y ) 0 0 = C e ikr dx E(x, y, 0)e = C " F E x, y, 0 k x 0, k y 0 = R R z x 0 dla obrazu Fraunhofera E x 0, y 0, z = C dx Ponieważ E(x, y, 0)e ikr 10 dy r 01 = x x 0 + y y 0 + z to definiując R jako mamy E(x, y, 0)e ik xx 0+yy 0 /R dy i kx0 R x+ky 0 R y R = x 0 + y 0 + z r 01 = R 1 + x + y R xx 0 + yy 0 R dy R 1 xx 0 + yy 0 R R xx 0 + yy 0 R dwuwymiarowa transformata Fouriera W dalekim polu obserwujemy transformatę Fouriera pola
4 propagacja metoda spektralna z = 0 E(x, y, 0) Analogicznie E x, y, z = 1 π ze współczynnikami E k x, k y, z = 1 π z E x, y, z =? dk x dk y E(k x, k y, z)e i k xx+k y y dxdy E(x, y, z)e i k xx+k y y Rozważając fale monochromatyczne pole w z = 0 zawsze możemy zapisać pole elektryczne fali o skończonych rozmiarach poprzecznych jako superpozycję fal płaskich E x, y, 0 = 1 π dk x dk y E(k x, k y, 0)e i k xx+k y y przy czym, amplitudy fal płaskich liczymy z transformaty Fouriera pola w płaszczyźnie z = 0 E k x, k y, 0 = 1 π dxdy E(x, y, 0)e i k xx+k y y Pole E(x, y, z) musi spełniać r-nie Helmholtza + k E x, y, z dk x dk y = 0. Wstawiamy pole w postaci całki do tego r-nia d dz E k x, k y, z + k k x k y E k x, k y, z e i k xx+k y y = 0 = 0
5 propagacja, d dz E k x, k y, z + k k x k y E k x, k y, z = 0 z = 0 z E k x, k y, z = E k x, k y, 0 e iμz E(x, y, 0) E x, y, z =? μ = ± k k x k y = k z k k x k y > 0 E k x, k y, z = E k x, k y, 0 e ik zz fale propagujące się k k x k y < 0 E k x, k y, 0 e μz fale zanikające (ewanescencyjne) Jeśli tylko z λ to E x, y, z = 1 π k x + k y k dk x dk y E(k x, k y, 0)e i k xx+k y y e iz k k x ky Kompletny przepis - bardzo szybkie metody numeryczne
6 Propagacja - proste wnioski E x, y, z = 1 π Oznaczmy: f k x Mamy wtedy k x + k y k E x, y, z = 1 π eikz dk x dk y E(k x, k y, 0)e i k xx+k y y e iz k k x ky = k x x k x z, g k k y = k y y k y z k dk x dk y E k x, k y, 0 e if k x e ig k y E x, y, z = 1 π eikz Jeśli funkcja E k x, k y, 0 jest wolnozmienna to wkład do całki pochodzi tylko z obszarów gdzie funkcje f i g mają zerowe pochodne bo wszędzie indziej exponensy tych funkcji oscylują bardzo szybko wokół zera. Zerowe pochodne funkcji f i g dają: Niezbyt bliskie pole (obraz Fresnela) k x + k y k k z k k x +k y dk x dk y E(k x, k y, 0)e i k xx+k y y e iz k x +ky k k k x = k x z, k y = k y z ReE k x, k y, 0 Re e if k x punkt stacjonarny fazy zasada Fermata
7 propagacja, 3 z = 0 E(x, y, 0) E x, y, z =? z Rozważamy tylko fale propagujące się ze skończonym rozkładem składowych poprzecznych wektora falowego skupionym wokół zera wiązka rozchodzi się głownie w kierunku z możemy wtedy całkować k x i k y od do E x, y, z = = 1 π dk x dk y E(k x, k y, 0)e i k xx+k y y e iz k k x ky Do r-nia powyżej wstawiamy E k x, k y, 0 = 1 π E x, y, z = dx dy E(x, y, 0)e i k xx +k y y = 1 4π dk xdk y e i k xx+k y y e iz k k x ky = 1 4π = 1 4π dx dy E x, y, 0 dx dy E x, y, 0 h x x, y y, z dx dy E(x, y, 0)e i k xx +k y y dk x dk y e i k x x x +k y y y e iz k k x ky h x x, y y, z =
8 propagacja, 4 z = 0 z Propagacja jest przykładem zagadnienia liniowego w wymiarach: E x, y, z = 1 4π dx dy E x, y, 0 h x x, y y, z h x x, y y, z to odpowiedź impulsowa układu E(x, y, 0) E x, y, z =? Dla źródła punktowego E x, y, 0 = δ x x p δ y y p (impulsu) mamy E x, y, z = 1 4π h x x p, y y p, z Matematycznie całka E x, y, z = 1 4π dx dy E x, y, 0 h x x, y y, z to splot funkcji E x, y, 0 oraz h x x, y y, z E x, y, z = E x, y, 0 h x x, y y, z Wiadomo, że transformata Fouriera splotu to iloczyn transformat E k x, k y, z = E k x, k y, 0 h k x, k y, z gdzie funkcja h k x, k y, z nazywana (amplitudową) funkcją przenoszenia jest transformatą Fouriera funkcji odpowiedzi impulsowej h = F h = e i k k x ky z
9 f. impulsowa i f. przenoszenia w przybliż. Fresnela Jeśli rozważane pole jest mało rozbieżne: k x, k y k to z = 0 z k k x k y k k x + k y i funkcja przenoszenia ma postać h k x, k y, z = e ikz ik x +ky z k k E(x, y, 0) E x, y, z =? Korzystamy z faktu, że funkcje h oraz h to para sprzężona fourierowsko aby policzyć funkcję odpowiedzi impulsowej. Rachunki h x, y, z = i x z+ +y eik z λz Teraz możemy już wypisać pole E x, y, z w obrazie Fresnela E x, y, z = 1 4π = i λz eikz dx dy E x, y, 0 h x x, y y, z dx dy E x, y, 0 e ik z x x + y y Wynik identyczny jak ten podany w wykładzie 16. i wyprowadzony z całki Sommerfelda ogólny opis układów liniowych D np., układów obrazujących w języku odpowiedzi impulsowej oraz funkcji przenoszenia
10 funkcja przenoszenia cienkiej soczewki Funkcję impulsową i funkcję przenoszenia możemy zdefiniować także dla układów optycznych. Przykład, cienka soczewka n = 1 Δ 0 Δ n > 1 z Cienka oznacza tutaj, że promienie świetlne nie zmieniają odległości od osi przy przejściu przez soczewkę. Wtedy jedynym efektem działania soczewki jest zmiana fazy fali zależna od położenia czyli x oraz y: φ(x, y) Δ(x, y) φ x, y = kδ 0 + n 1 kδ(x, y) E 1 x, y 1 E x, y Rachunki zrobimy dla soczewki płaskowypukłej Δ x, y = Δ 0 R + R x y dla x, y R mamy Δ x, y Δ 0 x + y R i φ x, y = n 1 k x + y R = k x + y f R R x y Δ 0 x + y Wynik końcowy nie zależy od kształtu soczewki tak długo jak długo obowiązuje przybliżenie cienkiej soczewki E x, y = E 1 x, y e ik x +y f
11 pole za soczewką E 1 x, y E x, y E 3 x, y z Zakładamy cienką soczewkę, dla której E x, y = E 1 x, y e ik x +y f 1 Pole w odległości z za soczewką liczymy w obrazie Fresnela E 3 x, y, z = i λz eikz = i λz eikz = i x z+ +y eik λz Jeśli z = f to E 3 x, y, z dx dy E x, y, 0 e ik z x x + y y dx dy E 1 x, y e ik f x +y z dx dy E 1 x, y e = iπ x f+ +y eik f λf = iπ f+ eik λf 1 π x +y ik e ik z x x + y y 1 z 1 f x +y e ik z xx +yy dx dy E 1 x, y e ik f xx +yy f E 1 k x f, k y f Rozkład natężenia w płaszczyźnie ogniskowej jest takie jak w dalekim polu
12 Soczewka i fala płaska y E x, y, z = E 0 e i k yy+k z z y 0 = Θ y f Θ y sin Θ y = k y k Θ y x0, y0 xf, yf
13 fala płaska i soczewka o skończonej aperturze E 0 e ikz E 1 x, y = E 0 A(x, y) E x 0, y 0 = C " F E 1 k x 0 d, k y 0 d f d E 1 x 0, y 0 = C (x, y)f E 1 k x 0 f, k y 0 f W płaszczyźnie Fraunhofera pole jest (z dokładnością do czynnika skalującego) takie samo jak w strefie dalekiego pola
14 wpływ apertury na jakość obrazowania
15 Rozmiary ogniska Funkcja odpowiedzi impulsowej dla układu obrazującego z pojedynczą soczewką h x 0, y 0 d 1 h x, y Jeżeli (wiązka skolimowana) to i: x y 0 d f 0 0 /, J D d h x y h(0,0), x y ρ s ρ s = 1. λd D D / d J D / f h x, y h(0,0) D / f 1
16 Rozdzielczość obrazowania h x, y 0 0 d d ' D d 1 d Kryterium Rayleigha: maksimum jednego rozkładu przypada na pierwsze zero drugiego ' 1. d d s D d1 1 Ale ' 1. d d d d D 1. d s D obrazowanie spójne vs niespójne
17 Dyfrakcyjne ograniczenie na rozdzielczość I x, y 0 0 y 0 f Rozdzielczość rośnie z liczbą f D d x 0 J D / d I x y C D / d 1 1 0, 0 d s 1. D Układy o dużej jasności mają dobrą rozdzielczość Uwaga: aberracje
18 rozdzielczość układu obraz. wg. Abbego płaszczyzna Fraunhofera obrazowanie filtrowanie r-nie siatki dyfrakcyjnej: sin sin l nd ale 0 Minimum: na soczewce mieszczą się przynajmniej rzędy 1-,0,1. d nsin NA
19 soczewka jako transformata Fouriera E 1 x, y E 4 x, y z E x, y E 3 x, y Zakładamy cienką soczewkę; liczymy po kolei pola: przed soczewką, za soczewką, w płaszczyźnie ogniskowej. Rachunki są takie jak dla robiliśmy wcześniej tylko bardziej żmudne. Wynik: E 4 x 0, y 0 = C F E 1 k x 0 f, k y 0 f Rozkład pola w płaszczyźnie ogniskowej jest proporcjonalny do transformaty Fouriera pola w dugiej płaszczyźnie ogniskowej
20 układ 4f - filtrowanie przestrzenne Prostokątna siatka dyfrakcyjna regulowana przesłona Obraz ilustruje sytuację, dla której obraz powstaje z ugięcia fal na składowych fourierowskich siatki: l 1,3 f f f f Obraz (pomarańczowa krzywa) nie jest ostry. y y 0 E x 0, y 0 = C F E 1 k x 0 f, k y 0 f t y t y = l=1,3,5,... 1 l sin l πy d d - stała siatki
21 układ 4f obróbka i rozpoznawanie obrazów Duże częstości przestrzenne wysokie składowe fourierowskie maski - modulatory ciekłokrystaliczne
22 Fale monochromatyczne układ 4f pulse shaper, 1 f f f f siatka dyfrakcyjna w λ w 0 f w siatka dyfrakcyjna x sinα sinβ dx dλ f dβ dλ s λ d s f d cosβ Rozdzielczość spektralna D=w 0 dx/d
23 Impulsy femtosekundowe układ 4f pulse shaper, f f f f siatka dyfrakcyjna maska albo modulator siatka dyfrakcyjna E out iφω ω Sω e E ω in Spatial Light Modulator (liquid crystal) pixel
24 Holografia, 1 REJESTRACJA Naświetlamy film drobnoziarnisty tak, że jego transmisja jest proporcjonalna do natężenia światła ODTWARZANIE * E ter Eo Er Er Er Er Eo ErEo * * o r o r o r o r t E E E E E E E E
25 Holografia, REJESTRACJA ODTWARZANIE E r E o * r o r r r o o r E te E E E E E E E
26 Holografia, 3 REJESTRACJA ODTWARZANIE E o E r * r o r r r o o r E te E E E E E E E
27 Hologramy objętościowe REJESTRACJA r I x, y, z I e I e k k k g o r r ik r ik or o I I I I cos k o r k r r r o r o I I I I cos k g r r o r o ODTWARZANIE
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie
Bardziej szczegółowoWykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
Bardziej szczegółowoWykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
Bardziej szczegółowoWSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 12, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 1, 3.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek rnest Grodner Wykład 11 - przypomnienie superpozycja
Bardziej szczegółowoOptyka instrumentalna
Optyka instrumentalna wykład 9 4 maja 2017 Wykład 8 Przyrządy optyczne Oko ludzkie Lupa Okular Luneta, lornetka Teleskopy zwierciadlane Mikroskop Parametry obiektywów, rozdzielczość Oświetlenie (dia, epi,
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie
Bardziej szczegółowoMikroskop teoria Abbego
Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone
Bardziej szczegółowoLaboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 2. Dyfrakcja światła w polu bliskim i dalekim
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie. Dyfrakcja światła w polu bliskim i dalekim Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk
Bardziej szczegółowoWSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW12, rok akademicki 2018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Hologramy generowane komputerowo - CGH Widmo obrazu: G x, y FT g x, y mające być zapisane na hologramie, dyskretyzujemy
Bardziej szczegółowoRejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.
HOLOGRAFIA prof dr hab inŝ Krzysztof Patorski Krzysztof Rejestracja i rekonstrukcja fal optycznych Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie a) Laser b) odniesienia
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość
Bardziej szczegółowoPROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład, 0..07 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład - przypomnienie superpozycja
Bardziej szczegółowoWykład VI Dalekie pole
Wykład VI Dalekie pole Schemat przypomnienie Musimy znać rozkład fali padającej u pad (x,y) w płaszczyźnie układu optycznego Musimy znać funkcję transmitancji układu optycznego t(x,y) Określamy falę właśnie
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 8, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 8, 09.03.0 wykład: pokazy: ćwiczenia: zesław Radzewicz Radosław hrapkiewicz, Filip Ozimek Ernest Grodner Wykład 7 - przypomnienie eikonał
Bardziej szczegółowoODWZOROWANIE W OŚWIETLENIU KOHERENTNYM
ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu jest model matematyczny procesu formowania obrazu przez pojedynczy układ optyczny w oświetleniu
Bardziej szczegółowoWykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Bardziej szczegółowoRóżne reżimy dyfrakcji
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 11, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 11, 19.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 10 - przypomnienie
Bardziej szczegółowoRys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny.
Ćwiczenie 7 Samoobrazowanie obiektów periodycznych Wprowadzenie teoretyczne Jeśli płaski obiekt optyczny np. przezrocze z czarno-białym wzorem (dokładniej mówiąc z przeźroczysto-nieprzeźroczystym wzorem)
Bardziej szczegółowoPropagacja w przestrzeni swobodnej (dyfrakcja)
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Propagacja
Bardziej szczegółowoMetody Obliczeniowe Mikrooptyki i Fotoniki. - Dyfrakcja różne reżimy - Obliczanie elementów dyfrakcyjnych
Metody Obliczeniowe Mikrooptyki i Fotoniki - Dyfrakcja różne reżimy - Obliczanie elementów dyfrakcyjnych Elementy dyfrakcyjne - idea d1 Wiązka padająca Ψ i ( x,y ) DOE (diffractive optical element) d Oczekiwany
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 9, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 9, 12.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 8 - przypomnienie
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 15, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 5, 3.04.0 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 4 - przypomnienie interferencja
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie
Bardziej szczegółowoZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Bardziej szczegółowoPODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA Krzysztof
PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA prof. dr hab. inż. Krzysztof Patorski Krzysztof Niniejsza część wykładu obejmuje wprowadzenie do dyfrakcji, opis matematyczny z wykorzystaniem
Bardziej szczegółowoOscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Bardziej szczegółowoInterferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.
Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany
Bardziej szczegółowoOscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Bardziej szczegółowoRys. 1 Schemat układu obrazującego 2f-2f
Ćwiczenie 15 Obrazowanie. Celem ćwiczenia jest zbudowanie układów obrazujących w świetle monochromatycznym oraz zaobserwowanie różnic w przypadku obrazowania za pomocą różnych elementów optycznych, zwracając
Bardziej szczegółowoLaboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera
ĆWICZENIE 2 Koherentne korelatory optyczne i hologram Fouriera 1. Wprowadzenie Historycznie jednym z ważniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę
Bardziej szczegółowoLaboratorium Informatyki Optycznej ĆWICZENIE 1. Optyczna filtracja sygnałów informatycznych
ĆWICZENIE 1 Optyczna filtracja sygnałów informatycznych 1. Wprowadzenie Przyjmijmy że znamy pole świetlne w płaszczyźnie ( ) czyli że znamy rozkład jego amplitudy i fazy we wszystkich punktach gdzie określony
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 11, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 11, 09.11.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 10 - przypomnienie
Bardziej szczegółowoOptyka instrumentalna
Optyka instrumentalna wykład 7 20 kwietnia 2017 Wykład 6 Optyka geometryczna cd. Przybliżenie przyosiowe Soczewka, zwierciadło Ogniskowanie, obrazowanie Macierze ABCD Punkty kardynalne układu optycznego
Bardziej szczegółowoRównania Maxwella. Wstęp E B H J D
Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),
Bardziej szczegółowoRys. 1 Geometria układu.
Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
Bardziej szczegółowoOptyka instrumentalna
Optyka instrumentalna wykład 7 11 kwietnia 2019 Wykład 6 Optyka geometryczna Równania Maxwella równanie ejkonału promień zasada Fermata, zasada stacjonarnej fazy (promienie podążają wzdłuż ekstremalnej
Bardziej szczegółowoPrawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Bardziej szczegółowoOPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 6 Optyka promieni 2 www.zemax.com Diafragmy Pęk promieni świetlnych, przechodzący przez układ optyczny
Bardziej szczegółowoPOMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło
Bardziej szczegółowoFizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
Bardziej szczegółowoWykład VII Splot i bliskie pole
Wykład VII Splot i bliskie pole Splot funkcji f i h x? Splot x f x g x f h x d 0 0 1 1 1 2 3 3 3 1 1 0 Twierdzenie o splocie Twierdzenie o splocie Twierdzenie o uszeregowaniu Amplitudę zespoloną obrazu
Bardziej szczegółowoOPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 7 Dystorsja Zależy od wielkości pola widzenia. Dystorsja nie wpływa na ostrość obrazu lecz dokonuje
Bardziej szczegółowoZjawiska dyfrakcji. Propagacja dowolnych fal w przestrzeni
Zjawiska dyfrakcji Propagacja dowolnych fal w przestrzeni W przestrzeni mogą się znajdować różne elementy siatki dyfrakcyjne układy optyczne przysłony filtry i inne Analizy dyfrakcyjne należą do najważniejszych
Bardziej szczegółowoDYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE
Ćwiczenie O-9 YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem dyfrakcji światła na pojedynczej i podwójnej szczelinie. Pomiar długości fali światła laserowego i szerokości
Bardziej szczegółowoOptyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek
Podstaw Fizki IV Optka z elementami fizki współczesnej wkład 5, 27.02.2012 wkład: pokaz: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wkład 4 - przpomnienie dielektrki
Bardziej szczegółowoĘŚCIOWO KOHERENTNYM. τ), gdzie Γ(r 1. oznacza centralną częstotliwość promieniowania quasi-monochromatycznego.
OBRAZOWANIE W OŚWIETLENIU CZĘŚ ĘŚCIOWO KOHERENTNYM 1. Propagacja światła a częś ęściowo koherentnego prof. dr hab. inŝ. Krzysztof Patorski Krzysztof PoniŜej zajmiemy się propagacją promieniowania quasi-monochromatycznego,
Bardziej szczegółowo18 K A T E D R A F I ZYKI STOSOWAN E J
18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem
Bardziej szczegółowoOPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 13, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 13, 6.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 1 - przypomnienie stosy
Bardziej szczegółowoMetody Optyczne w Technice. Wykład 5 Interferometria laserowa
Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa
Bardziej szczegółowoWykład 27 Dyfrakcja Fresnela i Fraunhofera
Wykład 7 Dyfrakcja Fresnela i Fraunhofera Zjawisko dyfrakcji (ugięcia) światła odkrył Grimaldi (XVII w). Polega ono na uginaniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny).
Bardziej szczegółowoG:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ
Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera
Bardziej szczegółowoĆwiczenie 4. Część teoretyczna
Ćwiczenie 4 Badanie aberracji chromatycznej soczewki refrakcyjnej i dyfrakcyjnej. Badanie odpowiedzi impulsowej oraz obrazowania przy użyciu soczewki sferycznej. Zbadanie głębi ostrości przy oświetleniu
Bardziej szczegółowo= sin. = 2Rsin. R = E m. = sin
Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski 3 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 5 1/41 Plan wykładu Podstawy optyki geometrycznej Załamanie światła, soczewki Odbicie
Bardziej szczegółowoPOMIARY OPTYCZNE 1. Proste przyrządy optyczne. Damian Siedlecki
POMIARY OPTYCZNE 1 { Proste przyrządy optyczne Damian Siedlecki Lupa to najprostszy przyrząd optyczny, dający obraz pozorny, powiększony i prosty. LUPA Aperturę lupy ogranicza źrenica oka. Pole widzenia
Bardziej szczegółowoODWZOROWANIE I PRZETWARZANIE SYGNAŁU OPTYCZNEGO W OŚWIETLENIU KOHERENTNYM
Podstawy Inżynierii Fotonicznej - Laboratorium Ćwiczenie 2 ODWZOROWANIE I PRZETWARZANIE SYGNAŁU OPTYCZNEGO W OŚWIETLENIU KOHERENTNYM 2.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie z teorią dwustopniowego
Bardziej szczegółowoFala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Bardziej szczegółowoPrędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Bardziej szczegółowoRodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Bardziej szczegółowoWykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
Bardziej szczegółowoDef. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi
Mikro optyka MO Def. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi Systemy bazujące na mikrooptyce Zalety systemów MO duże macierze wysoka dokładność pozycjonowania
Bardziej szczegółowoFIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 8 Janusz Andrzejewski Fale przypomnienie Fala -zaburzenie przemieszczające się w przestrzeni i w czasie. y(t) = Asin(ωt- kx) A amplituda fali kx ωt faza fali k liczba falowa ω częstość
Bardziej szczegółowoWYBRANE ZAGADNIENIA DYFRAKCJI FRESNELA
WYBRANE ZAGADNIENIA DYFRAKCJI FRESNELA prof. dr hab. inż. Krzysztof Patorski Omawiane zagadnienia z zakresu dyfrakcji Fresnela obejmują: dyfrakcję na obiektach o symetrii obrotowej ze szczególnym uwzględnieniem
Bardziej szczegółowoĆwiczenie 9 Y HOLOGRAM. Punkt P(x,y) emituje falę sferyczną o długości, której amplituda zespolona w płaszczyźnie hologramu ma postać U R exp( ikr)
Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
Bardziej szczegółowoMoment pędu fali elektromagnetycznej
napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0
Bardziej szczegółowoBADANIE INTERFEROMETRU YOUNGA
Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości
Bardziej szczegółowoWykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Bardziej szczegółowoINTERFERENCJA WIELOPROMIENIOWA
INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym
Bardziej szczegółowoFizyka Laserów wykład 5. Czesław Radzewicz
Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois
Bardziej szczegółowoDr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
Bardziej szczegółowoLaboratorium Optyki Falowej
Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski
Bardziej szczegółowoPodstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
Bardziej szczegółowoFotonika. Plan: Wykład 2: Elementy refrakcyjne i dyfrakcyjne
Fotonika Wykład 2: Elementy refrakcyjne i dyfrakcyjne Plan: Siatka dyfrakcyjna: amplitudowa, fazowa Siatka Dammana Soczewka: refrakcyjna, dyfrakcyjna, macierz mikrosoczewek Łączenie refrakcji z dyfrakcją
Bardziej szczegółowo4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)
Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu
Bardziej szczegółowoOptyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła
Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe
Bardziej szczegółowoWyznaczanie parametro w wiązki gaussowskiej
Wyznaczanie parametro w wiązki gaussowskiej Spis treści 1. Wstęp... 1 2. Definicja wiązki gaussowskiej... 2 3. Parametry określające wiązkę gaussowską... 4 4. Transformacja wiązki gaussowskiej przez soczewki...
Bardziej szczegółowoOPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Bardziej szczegółowoMETODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Bardziej szczegółowoWykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie
Bardziej szczegółowoPromieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 7, 05.03.2012. Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 7, 05.03.2012 wykład: pokazy: ćwiczenia: Czesław Raewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 6 - przypomnienie światło
Bardziej szczegółowoDyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia
Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów
Bardziej szczegółowo1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Bardziej szczegółowoZjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoFunkcja falowa i związek między gęstością mocy i funkcją falową to postulaty skalarnego modelu falowego światła.
WPROWADZENIE OPTYKA FALOWA prof. dr hab. inż. Krzysztof Patorski Światło propaguje się w postaci fal. W próżni prędkość światła wynosi około 3.0 x 10 8 m/s (co odpowiada 30 cm/ns lub 0.3 mm/ps). Wyróżnia
Bardziej szczegółowoLaboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 3. Częstotliwości przestrzenne struktur okresowych
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 3. Częstotliwości przestrzenne struktur okresowych Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 13, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 13, 16.11.017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 1 - przypomnienie
Bardziej szczegółowo