Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek
|
|
- Grażyna Niewiadomska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner
2 Wykład 18 - przypomnienie model Lorentza w ośrodku anizotropowym dwójłomność - opis fenomenologiczny: dwie fale dwójłomność opis matematyczny: fala zwyczajna, fala nadzwyczajna zależny od kierunku współczynnik załamania i jego konsekwencje - dryf
3 wykład 18 - przypomnienie kryształ jednoosiowy, dwie stałe: n o, n e możliwe oba przypadki: n o < n e i n o > n e oś optyczna kryształu oraz wektor falowy wyznaczają płaszczyznę. Rozwiązania r-nia falowego to 2 płaskie fale: zwyczajna, polaryzacja prostopadła po płaszczyzny, współczynnik załamania nie zależy od kierunku propagacji: n o nadzwyczajna, polaryzacja w płaszczyźnie, współczynnik załamania zależy od kierunku propagacji: 1 n 2 (Θ) = sin2 Θ n 2 + cos2 Θ e n 2 o Przypadek szczególny: propagacja prostopadła do osi optycznej: fala zwyczajna: n o fala nadzwyczajna: n e
4 polaryzatory krystaliczne w krysztale dwójłomnym mogą się rozchodzić tylko dwie fale każda o polaryzacji liniowej : zwyczajna i nadzwyczajna a) Wollaston, b) Glan- Foucault, c) Glan-Thompson, d) Glan-Taylor.
5 płytki falowe oś optyczna równoległa do x bądź y fala o polaryzacji równoległej do x ma n = n f. fala wolna: n s fala szybka: n f n s > n f Indeksy: f (ang. fast) s (ang. slow) x z y E in z, t = e i kz ωt E x E y E out z, t = e i kz ωt e iδ s E x E y e iγ uwaga: z nie jest teraz kierunkiem osi optycznej d δ s = n s k 0 d, Γ = k 0 d n f n s Γ = 2m + 1 π, m = 0,1,2 - półfalówka rzędu m Γ = 2m + 1 π, m = 0,1,2 2 - ćwierćfalówka rzędu m
6 polaryzacja światła, wektor Jonesa płaska fala monochromatyczna propagacja w kierunku z: E z, t = E 0x cos kz ωt + φ x E 0y sin kz ωt + φ y V = V x Vy = Re E 0xe i kz ωt+φx E 0y e i kz ωt+φ y to znormalizowany (V x V x + V y V y = 1) wektor Jonesa = ReE 0 e i kz ωt+φ V x Vy cos Θ sin Θ 1 ±i cos Θ sin Θ e iφ liniowa kołowa L eliptyczna
7 światło całkowicie spolaryzowane, 1 y dysponujemy kompletnym przepisem na obie składowe pola E x z, t = E 0x cos kz ωt + φ x E y z, t = E 0y cos kz ωt + φ y E y E E x x
8 światło całkowicie spolaryzowane, 2 y E y dysponujemy kompletnym przepisem na obie składowe pola E x z, t = E 0x cos kz ωt + φ x E y z, t = E 0y cos kz ωt + φ y E E x x Δφ = φ y φ x E E 0 y 0x 3 E E 0 y 0x 1
9 światło całkowicie spolaryzowane, 3 y E y E E x x Polaryzacja zależna od czasu: E x z, t = E 0x cos kz ωt + φ x (t) E y z, t = E 0y cos kz ωt + φ y (t) φ x (t) oraz φ y (t) - funkcje deterministyczne
10 wektor Jonesa, 2 Przestrzeń wektorów Jonesa jest 2D. Możemy wybierać różne bazy, na przykład: baza polaryzacji linowych: V x = 1 0 baza polaryzacji kołowych: V P = 1 i V y = 0 1 V L = 0 i Dla dowolnego wektora V V = V x V x + V y V y i podobnie V = V P V P + V L V L zmiana bazy V P = 1 VL 2 V x V y = i 1 i 1 1 i i V x V y V P VL
11 wektor Jonesa, 3 obrót układu odniesienia x = r cos φ α = cos α r cos φ + sin α sin φ y = r sin φ α = sin α r cos φ + cos α sin φ y y ' czyli x = cos α x + sin α y x' y = sin α x + cos α y x cos α sin α R α = sin α cos α obrót układu odniesienia nie zmienia polaryzacji światła Weźmy, przykładowo, polaryzację liniową: cosα sin α sin α cos α cos Θ sin Θ = cos α cos Θ + sin α sin Θ sin α cos Θ + cos α sin Θ = cos Θ α sin Θ α lub kołową: cosα sin α sin α cos α i = 1 2 cos α + i sin α sin α + i cos α = eiα 2 1 i
12 macierze Jonesa, 1 Lemat: każdej operacji zmieniającej stan polaryzacji światła (całkowicie spolaryzowanego) możemy przypisać macierz Jonesa 2x2 Wyjściowy wektor Jonesa to iloczyn macierzy Jonesa i wektora wejściowego Przykład 1: jednorodny ośrodek ze współ. załamania n. Propagacja na drodze d E z + d, t = E z, t e ikd = e ikd E x(z, t) E y (z, t) = 1 0 eikd 0 1 E x (z, t) E y (z, t) V = W d V, W d = Przykład 2: polaryzator, oś równoległa do x E in = E x E, E out = E x = 1 0 E x y E y V = W Px V, W Px =
13 macierze Jonesa, 2 Przykład 3: płytka falowa, opóźnienie Γ, oś szybka równoległa do osi x y z E z + d, t = eik fd E x (z, t) e ik sd E y (z, t) = eik fd e iγ E x (z, t) E y (z, t) k f = n fω c, k s = n sω c, Γ = k s k f d d x V out = W Γ V in, W Γ = e iγ oś szybka płytki falowej półfalówka W π = ćwierćfalówka W π/2 = i Uwaga: macierz Jonesa elementu polaryzacyjnego podajemy w wybranym układzie odniesienia; w innym układzie odniesienia ta macierz jest, na ogół, inna.
14 macierze Jonesa, 3 Muliplikatywność macierzy Jonesa x... z V in W W 1 2 WN 1 WN V out W = W N W N 1 W 2 W 1 V out = WV in
15 macierze Jonesa, 4 Przykład 4: płytka falowa, opóźnienie Γ, oś szybka pod kątem α do osi x y GENERALNA RECEPTA: Przejście do układu odniesienia płytki falowej Macierz płytki falowej d x z Powrót do układu laboratoryjnego W Γα = W α W Γ W α = cos α sin α sin α cos α 1 0 cos α sin α 0 e iγ sin α cos α = cos2 α + e iγ sin 2 α sin α cos α 1 e iγ sin α cos α 1 e iγ sin 2 α + e iγ cos 2 α oś szybka płytki falowej
16 macierze Jonesa, 5 Przykład 4 c.d. y W Γα = cos2 α + e iγ sin 2 α sin α cos α 1 e iγ sin α cos α 1 e iγ sin 2 α + e iγ cos 2 α płytka półfalowa: e iγ = 1 oś szybka płytki falowej d x z V out = W Γπ V in = 1. Liniowa polaryzacja wejściowa ( x) V out = W Γπ 1 0 cos 2α sin 2α sin 2α cos 2α V in cos 2α sin 2α = sin 2α cos 2α cos 2α = sin 2α obrót płaszczyzny polaryzacji o kąt 2α Kołowa polaryzacja wejściowa; układ odniesienia nieistotny 1 1 V out = W π 2 ±i zmiana skrętności = ±i = i
17 macierze Jonesa, 6 Przykład: płytka falowa pomiędzy polaryzatorami e i 1 Przykład: półfalówka obracająca się pomiędzy polaryzatorami V out = W Py W Γπ V in = 0 0 cos2α sin 2α sin 2α cos 2α 0 = 1 sin 2α T = I out I in kontrola (modulacja) natężenia wiązki = sin 2 2α
18 macierze Jonesa, 7 Przykład 4 c.d. płytka ćwierćfalowa: e iγ = i y kołowa polaryzacja wejściowa V out = = 1 0 i 2 ±i romb Fresnela wykład 5 z d x kołowa liniowa po kątem +/- 45º do osi szybkiej płytki liniowa po katem +/- 45º do osi szybkiej płytki kołowa oś szybka płytki falowej
19 macierz koherencji Światło spolaryzowane: dokładnie wiemy jak wygląda E(t). Światło niespolaryzowane: wektor pola elektrycznego fali jest wielkością losową nie ma przepisu na E x (t) oraz E y (t). Posługujemy się funkcjami korelacji. Światło częściowo spolaryzowane macierz koherencji: J = E xe x E x E y E x E y E y E y symbol oznacza uśrednianie (?) Stopień polaryzacji: 4detJ P = 1 2 J xx + J yy detj wyznacznik macierzy J światło niespolaryzowane: J = J xx 0 0 J xx detj = J xx 2 P = 1 4J xx 2 2J xx 2 = 0 światło całkowicie spolaryzowane: E z, t = E 0 e i kz ωt cos Θ sin Θ e iφ 2 J = E cos 2 Θ sin Θ cos Θ e iφ 0 sin Θ cos Θ e iφ sin 2 Θ detj = 0 P = 1
20 wektor Stokesa definicja wektora Stokesa S 0 = J xx + J yy S 1 = J xx J yy S 2 = J xy + J yx S 3 = i J xy J yx światło całkowicie spolaryzowane 2 J = E cos 2 Θ sin Θ cos Θ e iφ 0 sin Θ cos Θ e iφ sin 2 Θ S 0 = E 0 2 S 1 = E 0 2 cos 2Θ S 2 = E 0 2 sin 2Θ cos φ S 3 = E 0 2 sin 2Θ sin φ światło niespolaryzowane S 0 = 2J xx S 1 = S 2 = S 3 = 0 znormalizowany wektor Stokesa s i = S i S 0, i = 1,2,3
21 sfera Poincare, 1 światło spolaryzowane: s 1 = cos 2Θ s 2 = sin 2Θ cos φ s 3 = sin 2Θ sin φ rachunki dają: s 1 2 +s s 3 2 = 1 czyli równanie sfery (sfera Poincare) biegun północny s 1 = s 2 = 0 Θ = π 4 V = i oraz φ = π/4 = V P punkt (1,0,0) s 2 = s 3 = 0 Θ = 0 V = 1 0 = V x topografia sfery Poincare: bieguny kołowa równik liniowa pomiędzy - eliptyczna
22 obroty sfery Poincare płytka falowa o opóźnieniu Γ: V = 1 0 cos Θ 0 e iγ sin Θ e iφ = cos Θ sin Θ e i(φ+γ) obrót wokół osi s 1 o kąt Γ obrót układu odniesienia o kąt α. Rachunek zrobimy dla liniowej polaryzacji wejściowej: V cos α sin α cos Θ cos Θ α = = sin α cos α sin Θ sin Θ α czyli obrót wokół osi s 3 o kąt 2α. Jest to ogólne prawo działające dla dowolnej polaryzacji V = cos Θ sin Θ e iφ
23 obroty sfery Poincare - test Test: pozioma liniowa polaryzacja na wejściu półfalówka pod kątem 45º 1. zmiana układu odniesienia obrót układu o kąt 45º= obrót sfery wokół s 3 o kąt -90º 2. płytka półfalowa = obrót sfery wokół osi s 1 o 180º 3. powrót do oryginalnego układu odniesienia = obrót sfery wokół s 3 o kąt 90º
24 sfera Poincare, 2 Twierdzenie: dowolną polaryzację eliptyczną można przeprowadzić w polaryzację liniową przy pomocy jednej ćwierćfalówki. dowód zastosowanie światłowodowy kontroler polaryzacji 4 2 4
25 Sfera Poincare, 3 Twierdzenie: dowolną polaryzację eliptyczną można przeprowadzić w inną dowolnie zadana polaryzację eliptyczną przy pomocy jednej płytki falowej. zastosowanie kompensator polaryzacji Babinet Babinet - Soleil
26 analizator stanu polaryzacji I 6 I 5 = E x E y E y E x = S 3 /i I 4 I 3 = E x E y + E y E x = S 2 I 2 I 1 = E x E x E y E y = S 1 KS niepolaryzująca kostka światłodzieląca P - polaryzator /2 - półfalówka /4 - ćwierćfalówka 1-6 -fotodiody
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie
Polaryzatory/analizatory
Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj
Metody Optyczne w Technice. Wykład 8 Polarymetria
Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna
Fotonika. Plan: Wykład 3: Polaryzacja światła
Fotonika Wykład 3: Polaryzacja światła Plan: Równania Maxwella w ośrodku optycznie liniowym Równania Maxwella dla fal monochromatycznych Polaryzacja światła Fala płaska spolaryzowana Polaryzacje liniowe,
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 20, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 20, 07.05.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 19 - przypomnienie
Optyka Ośrodków Anizotropowych. Wykład wstępny
Optyka Ośrodków Anizotropowych Wykład wstępny Cel kursu Zapoznanie z podstawami fizycznymi w optyce polaryzacyjnej. Jak zachowuje się fala elektromagnetyczna w ośrodku materialnym? Omówienie zastosowania
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 8, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 8, 09.03.0 wykład: pokazy: ćwiczenia: zesław Radzewicz Radosław hrapkiewicz, Filip Ozimek Ernest Grodner Wykład 7 - przypomnienie eikonał
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 12, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 1, 3.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek rnest Grodner Wykład 11 - przypomnienie superpozycja
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład, 0..07 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład - przypomnienie superpozycja
WYDZIAŁ.. LABORATORIUM FIZYCZNE
WSEiZ W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćw. nr 8 BADANIE ŚWIATŁA SPOLARYZOWANEGO: SPRAWDZANIE PRAWA MALUSA Warszawa 29 1. Wstęp Wiemy, że fale świetlne stanowią niewielki wycinek widma fal elektromagnetycznych
Metody Obliczeniowe Mikrooptyki i Fotoniki
Metody Obliczeniowe Mikrooptyki i Fotoniki Kod USOS: 1103-4Fot4 Wykład (30h): R. Kotyński Wtorki 9:15-11:00, s.1.38 lub B4.17(ul. Pasteura 5) Ćwiczenia (45h): Wtorki, w godz. 14.15-16.30, s.1.7 lub B4.17
+ (z 2 / n e2. (x 2 + y 2 ) / n 02
Rys. 4 pokazuje indykatrysy dla kryształu jednoosiowego: dodatniego i ujemnego. Długości półosi są proporcjonalne do wartości współczynników załamania kryształu. Każdy przekrój przechodzący przez oś optyczną
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 11, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 11, 19.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 10 - przypomnienie
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 9, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 9, 12.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 8 - przypomnienie
Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej
Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej Cel ćwiczenia: Celem ćwiczenia jest demonstracja i ilościowa analiza wybranych metod dyskretnej i ciągłej zmiany fazy w interferometrach
Polaryzacja chromatyczna
FOTON 11, Lato 013 5 Polaryzacja chromatyczna Jerzy Ginter Uniwersytet Warszawski Zjawisko Zwykle nie zdajemy sobie sprawy, że bardzo wiele przezroczystych ciał w naszym otoczeniu jest zbudowanych z substancji
Wykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
Fizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
Fala EM w izotropowym ośrodku absorbującym
Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji
BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ
ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu
POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane
FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Równanie Fresnela. napisał Michał Wierzbicki
napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)
OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
POMIAR NATURALNEJ AKTYWNOŚCI OPTYCZNEJ
ĆWICZENIE 88 POMIAR NATURALNEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Badanie zjawiska skręcenia płaszczyzny polaryzacji światła w cieczach i kryształach optycznie czynnych. Zagadnienia: polaryzacja światła,
2. Propagacja światła w ośrodkach dwójłomnych
2. Propagacja światła w ośrodkach dwójłomnych Dotychczas rozwaŝano jednorodne, transmisyjne ośrodki optyczne, które moŝna scharakteryzować stałą dielektryczną ε (zaleŝną od długości fali), n = ε. Monochromatyczna
Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych
Fotonika Wykład 9: Interferencja w układach warstwowych Plan: metody macierzowe - macierze przejścia i rozpraszania Proste układy warstwowe powłoki antyrefleksyjne interferometr Fabry-Pérot tunelowanie
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 0.04.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 16 - przypomnienie dyfrakcja
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI
ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek
Podstaw Fizki IV Optka z elementami fizki współczesnej wkład 5, 27.02.2012 wkład: pokaz: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wkład 4 - przpomnienie dielektrki
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 24, Radosław Chrapkiewicz, Filip Ozimek
odstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 4, 5.05.0 wykład: pokazy: ćwiczenia: Michał Karpiński Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 3 - przypomnienie argumenty
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 22, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład, 18.05.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 1 - przypomnienie oddziaływanie
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 11, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 11, 09.11.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 10 - przypomnienie
SPRAWDZANIE PRAWA MALUSA
Ćwiczenie O-0 SPRWDZNI PRW MLUS I. Cel ćwiczenia: wyznaczenie natężenia światła I przechodzącego przez układ dwóch polaryzatorów w funkcji kąta θ między płaszczyznami polaryzacji tych polaryzatorów: I
PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211200 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380223 (22) Data zgłoszenia: 17.07.2006 (51) Int.Cl. G01N 21/23 (2006.01)
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra
Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa badanie komórki Pockelsa i Kerra Opracowanie: Ryszard Poprawski Katedra Fizyki Doświadczalnej Politechnika Wrocławska Wstęp Załamanie światła
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA
ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów
Wykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa
Moment pędu fali elektromagnetycznej
napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0
Wykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Synteza i analiza dowolnego stanu polaryzacji światła
1 Ćwiczenie 3 Synteza i analiza dowolnego stanu polaryzacji światła Pojęcia podstawowe: Światło spolaryzowane; metody opisu stanu polaryzacji światła; parametry, opisujące stan polaryzacji: kąt azymutu,
falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA
WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5.
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Piotr Targowski i Bernard Ziętek
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Laserów ZEWNĘTRZNA MODULACJA ŚWIATŁA Zadanie IV Zakład Optoelektroniki Toruń
Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.
Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w
Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
III. Opis falowy. /~bezet
Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Pomiar różnicy dróg optycznych metodą Senarmonta
Ćwiczenie 7 Pomiar różnicy dróg optycznych metodą Senarmonta Pojęcia podstawowe: Fale własne (wektory własne) ośrodka dwójłomnego; różnica dróg optycznych (różnica faz); kompensatory pośrednie i bezpośrednie;
ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność
ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność Holografia FALE ELEKTROMAGNETYCZNE Fale elektromagnetyczne
Elektro-optyczny efekt Kerra
Elektro-optyczny efekt Kerra dr Kamil Polok Wersja rozszerzona) 1 Wstęp Efekt Kerra jest to proces nieliniowy 3 rzędu, polegający na zmianie współczynnika załamania światła przez przyłożone do ośrodka
Fizyka Laserów wykład 5. Czesław Radzewicz
Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois
Piotr Targowski i Bernard Ziętek ZEWNĘTRZNA MODULACJA ŚWIATŁA
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna ZEWNĘTRZNA MODULACJA ŚWIATŁA Zadanie IV Zakład Optoelektroniki Toruń
Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)
Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 1. Optyczne badania kryształów
OLITECHNIK ŁÓDZK INSTYTUT FIZYKI LBORTORIUM FIZYKI KRYSZTŁÓW STŁYCH ĆWICZENIE Nr 1 Optyczne badania kryształów Cel ćwiczenia Celem ćwiczenia jest poznanie przyrządów i metod do badań optycznych oraz cech
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Agata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence)
Agata Saternus piątek 9.07.011 Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence) Dwójłomność odkrył Rasmus Bartholin w 1669 roku, dwójłomność kryształu
n 02 + n 02 ) / (n e2 polaryzator oś optyczna polaryskop polaryzator Rys. 28 Bieg promieni w polaryskopie Savarta.
Interferometria polaryzacyjna Po zapoznaniu się ze zjawiskiem podwójnego załamania w płytce z materiału anizotropowego moŝemy powrócić do części wykładu dotyczącej interferometrii, w szczególności interferometrii
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Optyka falowa. dr inż. Ireneusz Owczarek CMF PŁ 2012/13
Optyka falowa dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Fale elektromagnetyczne 2 1.1. Model falowy światła...........................................
Podstawy fizyki sezon 2 8. Fale elektromagnetyczne
Podstawy fizyki sezon 8. Fale elektromagnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Przenoszenie
Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła
Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe
- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)
37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd
Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska
Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ
Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera
Elementy optyki relatywistycznej
Elementy optyki relatywistycznej O czym będzie wykład? Pojęcie relatywistyczny kojarzy się z bardzo dużymi prędkościami, bliskimi prędkości światła. Tylko, ze światło porusza się zawsze z prędkością światła.
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
TENSOMETRIA ZARYS TEORETYCZNY
TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba
Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
Instytut Fizyki Politechniki Wrocławskiej. Laboratorium Fizyki Cienkich Warstw. Ćwiczenie 5. Wyznaczanie stałych optycznych cienkich warstw metodą
Instytut Fizyki Politechniki Wrocławskiej Laboratorium Fizyki Cienkich Warstw Ćwiczenie 5 Wyznaczanie stałych optycznych cienkich warstw metodą elipsometryczną Opracowanie: Krystyna Żukowska Wrocław, 2006
Wykład XIV. Polaryzacja
Wykład XIV Polaryzacja Światło fale poprzeczne Złożenie fal harmonicznych E x = E 0x cos ωt kz + δ x E y = E 0y cos ωt kz + δ y E x = E 0x cos ωt E y = E 0y cos ωt + = δ y δ x Postać zespolona E x = E
Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela
Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej
ĆWICZENIE 47 POLARYZACJA. Wstęp.
ĆWICZENIE 47 POLARYZACJA Wstęp. Światło naturalne występujące w przyrodzie na ogół jest niespolaryzowane. Wynika to między innymi z mechanizmu powstawania promieniowania. Cząsteczki, atomy emitujące światło
Wykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
Równania Maxwella. roth t
, H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej