Statystyka matematyczna dla leśników
|
|
- Kacper Marszałek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3
2 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa Prawo wielkich liczb Zmienne losowe Rozkłady teoretyczne zmiennych losowych
3 Zanim zajmiemy się wnioskowaniem statystycznym musimy uświadomić sobie, że nigdy w 100% nie będziemy pewni czy jest ono prawdziwe czy fałszywe. Możemy tylko takiego czy innego wyniku wnioskowania oczekiwać z określonym prawdopodobieństwem. To znaczy, że rezultat wnioskowania jest zdarzeniem losowym. Musimy zatem zapoznać się z pojęciem zdarzenia losowego i jego prawdopodobieństwa.
4 Zdarzenia losowe (przypadkowe) to takie zdarzenia, które w danym kompleksie warunków mogą zajść lub nie zajść i mają określone prawdopodobieństwo zajścia lub niezajścia. W każdym eksperymencie (doświadczeniu, badaniu) statystycznym można wyróżnić zbiór wszystkich możliwych, oddzielnych i nie dających rozłożyć się na prostsze wyników obserwacji. Zbiór taki nazywamy zbiorem zdarzeń elementarnych (ZZE). Np. rzut kostką: ZZE to 1,2,3,4,5,6, ale uzyskanie jednego z tych możliwych zdarzeń jest zdarzeniem losowym.
5 Prawdopodobieństwo zdarzenia losowego jest teoretycznym odpowiednikiem (względnej) częstości empirycznej (empirycznego prawdopodobieństwa). Definicja klasyczna (na podstawie Laplace`a 1812) Prawdopodobieństwem P zdarzenia losowego A nazywamy iloraz liczby zdarzeń elementarnych sprzyjających zdarzeniu A oraz liczby wszystkich zdarzeń elementarnych, jednakowo możliwych i wzajemnie się wykluczających. P ( A) = a a + b P ( A) 1 P( B) = 1 P( A) 0
6 Szereg rozdzielczy x i n i Σn i p i Σp i ,092 0,328 0,292 0,180 0,096 0,008 0,004 0,092 0,420 0,712 0,892 0,988 0,996 1,000 Σ 250 1,000
7 Definicja matematyczna (na podstawie von Misesa) Prawdopodobieństwo zdarzenia losowego A jest granicą, do jakiej dąży częstość empiryczna, przy założeniu, że liczebność jednostek obserwacji dąży do nieskończoności. lim n p i = P ( A) Definicja współczesna (na podstawie Kołmogorowa) (Prawdopodobieństwo jest tu rozumiane jako miara na podzbiorach zbioru zdarzeń elementarnych. Definicja zapisywana jest w formie aksjomatów wynikających z teorii klasycznej Laplace`a) * Każdemu zdarzeniu losowemu A odpowiada określona liczba P(A) zwana prawdopodobieństwem zdarzenia losowego A zawierająca się w granicach przedziału liczbowego od 0 do 1 ( A) 1 0 P
8 ** Prawdopodobieństwo zdarzenia pewnego (obejmującego wszystkie elementy zbioru Ω) równa się jedności P( Ω) = 1 *** Jeżeli A 1, A 2,..., A n,... jest ciągiem zdarzeń losowych parami wykluczających się, to prawdopodobieństwo sumy tych zdarzeń jest równe sumie prawdopodobieństw tych zdarzeń P ( A A + + A +...) = P( A ) + P( A ) P( A ) n 1 2 n +
9 Prawo wielkich liczb leży u podstaw badania prawidłowości statystycznych. Po raz pierwszy opublikowane jako tzw. Złote twierdzenie Bernoulliego w 1713 roku. W okresach późniejszych bardziej uogólniane przez Poissona, Czebyszewa i innych. Wzrostowi liczby jednostek obserwacji (ściślej - liczby niezależnych doświadczeń) odpowiada wzrastające prawdopodobieństwo zmniejszania się bezwzględnej różnicy między częstością empiryczną z próby a nieznanym co do poziomu prawdopodobieństwem danego zdarzenia losowego. lim n P { p P( A) ε} = 1 i n i = N p i
10 Na podstawie tego prawa formułowane są ogólniejsze twierdzenia dotyczące procesów masowych. Np.: Duża liczebność (masowość) próby powoduje, że odchylenia na (+) i na (-) między częstością empiryczną i prawdopodobieństwem mają tendencje do zmniejszania się. Tendencja ta nie występuje w przypadku małych prób. Prawo wielkich liczb może być rozszerzane i na inne, poza prawdopodobieństwem, parametry zbiorowości generalnej. Np.: Wartość liczbowa średniej arytmetycznej z próby (x) jest tym lepszym oszacowaniem średniej populacji generalnej (µ) im liczebność losowej próby jest większa. { x } µ ε 1 lim P = = n (uogólnienie Czebyszewa)
11 Zmienne losowe: Zmienna losowa (X) jest teoretycznym odpowiednikiem (modelem) cechy statystycznej. Warianty cechy statystycznej pojawiają się z określoną częstością empiryczną (szereg rozdzielczy) a realizacjom zmiennej losowej odpowiadają prawdopodobieństwa wyznaczone przez odpowiednią funkcję. Definicja wg. podręcznika prof. Bruchwalda: Zmienną losową (X) nazywamy funkcję o wartościach rzeczywistych określoną na zbiorze zdarzeń elementarnych taką, że dla dowolnych stałych a < b jest określone prawdopodobieństwo, iż a < X <= b. Podobnie, jak w przypadku cech statystycznych, zmienne losowe dzielimy na skokowe (dyskretne) (X s ) oraz ciągłe (X c ).
12 Skokowe to takie, których zbiór możliwych realizacji jest skończony (x 1, x 2, x 3,..., x k ) lub przeliczalny (x 1, x 2, x 3,...). ( X x ) p s i i P = = Czyli zmienna losowa skokowa przyjmuje wartości liczbowe (x i ) z prawdopodobieństwem (p i ) (gdzie i = 1, 2, 3,..., k lub i= 1, 2, 3,... ) Ciągłe to takie, dla których istnieje taka nieujemna funkcja f(x) zwana funkcją gęstości prawdopodobieństwa, że dla dowolnych przedziałów (x 1i < x 2i ) zachodzi: x P ( x X < x ) = f ( x) dx = p 1i c 2i i < 2 x i 1i natomiast: P( X = x ) = 0 c i
13 Do metod prezentacji wnioskowania statystycznego niezbędne jest pojęcie rozkładu zmiennej losowej: W przypadku zmiennych losowych skokowych, odpowiednia dla danej zmiennej funkcja określa rozkład prawdopodobieństwa wszystkich możliwych realizacji tej zmiennej P(X s = x i ) = p i. Dla zmiennych losowych ciągłych funkcja określa gęstość prawdopodobieństwa, gdyż P(X c = x i ) = 0. Liczba wszystkich możliwych zdarzeń dla X c jest nieskończona. f ( x) = lim x 0 P ( x < X < x + x) c x
14 Ważnym pojęciem w statystyce jest dystrybuanta zmiennej losowej odpowiednik dystrybuanty empirycznej: - dla Xs (skokowej): F ( x) P( X x) = P( X = x ) - dla Xc (ciągłej): F = s x x ( x) = P( X < x) = f ( x) dx c Dystrybuanta zmiennej losowej F(x) jest to prawdopodobieństwo tego, że ta zmienna losowa przyjmie wartości <= x. i x s i
15 Wskaźniki charakteryzujące zmienne losowe: Wartość oczekiwana (nadzieja matematyczna) - odpowiednik średniej arytmetycznej dla populacji: - dla (X s ): EX = x s i p i ni 1 pi = i = µ N x n i N - dla (X c ): EX c + = x f ( x) dx
16 Wariancja zmiennej losowej: = - skokowej 2 D X ( ) s xi EX s pi 2 - ciągłej D 2 X + 2 c ) = f ( x dx ( x EX ) c Teoretyczne rozkłady zmiennej losowej skokowej - rozkład dwumianowy: gdzie: q = 1 - p k = 0, 1, 2,..., n P ( ) k ( n k ) X = k = p q s n k
17 Rozkład dwumianowy Przykład funkcji rozkładu prawdopodobieństwa Opisuje prawdopodobieństwo uzyskania k sukcesów w n niezależnych próbach, gdzie prawdopodobieństwo sukcesu w jednej próbie wynosi p
18 Rozkład dwumianowy
19 Rozkład dwumianowy
20 Własności (r-d dwum.) Wykres funkcji rozkładu jest symetryczny dla p = 0.5 dla p < 0.5 rozkład jest skośny dodatnio dla p > 0.5 rozkład jest skośny ujemnie
21 Własności (r-d dwum.) Wartość oczekiwana E(X) = n * p Wariancja D 2 X = n p q Odchylenie standardowe
22 EX = np D 2 X = npq DX = npq Dwumian Newtona: przykłady: ( q + p) n n k = n! k!( n k)! p = 0,5 n = 10 Binomial Distribution 0,25 0,2 Event prob.,trials 0,5,10 probability 0,15 0,1 0, x
23 p = 0,2 n = 10 Binomial Distribution probability 0,4 0,3 0,2 0,1 Event prob.,trials 0,2, x p = 0,7 n = 10 Binomial Distribution probability 0,3 0,25 0,2 0,15 0,1 0, x Event prob.,trials 0,7,10
24 p = 0,2 n = 50 0,15 probability 0,12 0,09 0,06 0,03 Binomial Distribution Event prob.,trials 0,2, x inne rozkłady zmiennej losowej skokowej: - Poissona P k λ k! ( = ) = e λ X k dla: k = 0, 1, 2,... λ >= 0 EX 2 = D X = λ
25 Przykłady: rozkład dwumianowy x i n i k i n i k i P(X=k) n suma µ = σ = k p = nik N = k n = i = = = EX p = = np EX n
26 geometryczny: ( X = n) = pq n 1 P dla: n = 1, 2, 3,... EX 1 p p 2 1 = D X = 2 p q = 1-p Teoretyczne rozkłady zmiennej losowej ciągłej: - rozkład normalny: f ( x µ ) 1 2 2σ ( x) = e σ 2Π 2 dla: < x < + σ > 0 EX = µ DX = σ
27 Rozkład normalny Najczęściej stosowany rozkład w statystyce Podstawa wielu metod statystycznych: estymacji, testów, regresji, korelacji, analizy wariancji,...
28 Rozkład normalny Opisuje zmienne, które mogą przybierać postać nieskończonej liczby niezależnych zdarzeń losowych Przykład rozkładu zmiennej ciągłej Jego funkcję gęstości prawdopodobieństwa można opisać następująco:
29 Rozkład normalny gdzie: x - zmienna µ -średnia arytmetyczna σ - odchylenie standardowe
30 Rozkład normalny
31 Własności (r-d normalny) Wartość funkcji gęstości rośnie dla x<µ i maleje dla x>µ Funkcja gęstości ma maksimum w punkcie x = µ Wartość oczekiwana zmiennej X wynosi E(X)=µ Wariancja zmiennej X równa jest D2X = σ2
32 Własności (r-d normalny) dla x = µ funkcja gęstości ma wartość rozkład ma 2 punkty przegięcia dla x=µ - σ i x = µ + σ rozkład normalny jest symetryczny, a oś symetrii zdefiniowana jest jako x = µ
33 Własności (r-d normalny) Im wariancja / odchylenie standardowe jest mniejsze, tym funkcja gęstości jest węższa funkcja prawdopodobieństwa (dystrybuanta) jest całką z funkcji gęstości prawdopodobieństwa
34 Własności (r-d normalny)
35 Standaryzowany r.n. Każdy rozkład normalny może być znormalizowany, tj. doprowadzony do postaci rozkładu o średniej 0 i odchyleniu standardowym 1: N(0,1). Wartość oczekiwana standaryzowanego r- du normalnego równa jest zero (EZ = 0) a odchylenie standardowe równe jest 1 (D 2 Z = 1).
36 Standaryzowany r.n. Standaryzacja to zamiana zmiennej x na z, gdzie: Funkcja gęstości prawdopodobieństwa tej funkcji:
37 f(x) N(20;2) z x µ = σ σ σ f ( z) = 1 2Π e 1 2 z x µ f(z) N(0;1) F( z) = 1 2Π z e 1 2 z 2 dz z
38 F(z) 1 F( z) = 1 2Π z e 1 2 z 2 dz z Inne rozkłady zmiennej losowej ciągłej: - jednostajny - gamma - beta - wykładniczy
39 Standaryzowany r.n.
40 Własności (r-d normalny) Pomiędzy µ -σ i µ + σ znajduje się około 68% wszystkich wartości zmiennej W przedziale od µ - 2*σ do µ + 2*σ jest około 95% wszystkich wartości zmiennej W przedziale od µ - 3*σ do µ + 3*σ mamy około 99,7% wszystkich obserwacji
41
42 Rozkład skumulowany cumulative histogram 250 frequency dk
43 Rozkład skumulowany
44 Rozkład skumulowany
45 Rozkład skumulowany
46 Rozkład skumulowany
47 rozkład normalny x i n i x gi x ig - µ z i =(x gi -µ)/σ F(x gi ) F(x gi ) F(x gi-1 ) n i x< x> suma µ = 7.80 σ = 2.35
48 Porównanie częstości empirycznych z teoretycznymi n x ne ndw nnor
49 ne ndw ne nnor
50 Co to jest zdarzenie losowe? Przykłady. Klasyczna definicja prawdopodobieństwa. Współczesna definicja prawdopodobieństwa. Co to jest zmienna losowa? Typy zmiennych losowych. Co to jest gęstość prawdopodobieństwa zmiennej losowej? Co to jest dystrybuanta zmiennej losowej? Charakterystyka rozkładu dwumianowego. Wyznaczanie częstości teoretycznych zgodnych z rozkładem dwumianowym. Charakterystyka rozkładu normalnego. Wyznaczanie częstości teoretycznych zgodnych z rozkładem normalnym.
51 Dziękuję za uwagę!
STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Zmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem
Elementy Rachunek prawdopodobieństwa
Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
Statystyka. Magdalena Jakubek. kwiecień 2017
Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
STATYSTYKA I DOŚWIADCZALNICTWO
STATYSTYKA I DOŚWIADCZALNICTWO dla studiów magisterskich kierunku ogrodnictwo Wykład 1 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Jednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
Rachunek Prawdopodobieństwa i Statystyka
Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Rozkłady zmiennych losowych
Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli
PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW
PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW Rachunek prawdopodobieństwa (probabilitis - prawdopodobny) zajmuje się badaniami pewnych prawidłowości (regularności) zachodzących przy wykonywaniu doświadczeń
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
Przestrzeń probabilistyczna
Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15
II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa
Komputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 4.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie
Ważne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Statystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
Zmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może
Rozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Centralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008
STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa; zajmuje się badaniem zbiorów na podstawie analizy ich części. Nauka, której przedmiotem zainteresowania są metody
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)
W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Rachunek prawdopodobieństwa - przypomnienie 1. Zdarzenia 2. Prawdopodobieństwo
WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.
Tematy: WSTĘP 1. Wprowadzenie do przedmiotu. Próbkowe odpowiedniki wielkości populacyjnych. Modele statystyczne i przykładowe zadania wnioskowania statystycznego. Statystyki i ich rozkłady. 2. Estymacja
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X
Własności EX, D 2 X i DX przy przekształceniach liniowych Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X Przemnożenie wartości zmiennej losowej przez wartość stałą: Y=a*X
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Wykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
4,5. Dyskretne zmienne losowe (17.03; 31.03)
4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie
Dyskretne zmienne losowe
Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej
Statystyka i opracowanie danych Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne losowe Zmienna
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.
III. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
Rozkłady prawdopodobieństwa
Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
Zmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski
Powtórzenie Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 1 Podręcznik podstawowy Jacek Koronacki, Jan Mielniczuk: Statystyka dla studentów kierunków technicznych i przyrodnicznych,
1 Elementy kombinatoryki i teorii prawdopodobieństwa
1 Elementy kombinatoryki i teorii prawdopodobieństwa 1.1 Elementy kombinatoryki W rozwiązywaniu pewnych problemów związanych z obliczaniem prawdopodobieństwa o skończonej liczbie zdażeń elementarnych bardzo
Statystyka matematyczna
Statystyka matematyczna Wykład 5 Magdalena Alama-Bućko 1 kwietnia 2019 Magdalena Alama-Bućko Statystyka matematyczna 1 kwietnia 2019 1 / 19 Rozkład Poissona Po(λ), λ > 0 - parametr tzw. rozkład zdarzeń
Matematyka 2. dr inż. Rajmund Stasiewicz
Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia
Zmienne losowe. Statystyka w 3
Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie
Statystyka w analizie i planowaniu eksperymentu
21 marca 2011 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
6.4 Podstawowe metody statystyczne
156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione
1.1 Wstęp Literatura... 1
Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x),
Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: Fx sinx, Fx a e x mogą być dystrybuantami?. Podaj twierdzenie Lindeberga
6. Zmienne losowe typu ciagłego ( ) Pole trapezu krzywoliniowego
6. Zmienne losowe typu ciagłego (2.04.2007) Pole trapezu krzywoliniowego Przypomnienie: figurę ograniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją ciągłą; proste x = a, x = b, a < b, oś OX
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Metody Statystyczne. Metody Statystyczne.
gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja
Matematyka stosowana i metody numeryczne
Adam Wosatko Magdalena Jakubek Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 4 Podstawy statystyki 4. Wstęp Statystyka nauka o metodach badań właściwości populacji (zbiorowości),
AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA
AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja
Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
Komputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 3.03.07 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 06/07 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie
STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt
STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Plan wykładów Data WYKŁDY 1.X rachunek prawdopodobieństwa; 8.X zmienna losowa jednowymiarowa, funkcja rozkładu, dystrybuanta 15.X
Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl
Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.
Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe
Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości
TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
Z poprzedniego wykładu
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku
Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.
Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Statystyka w analizie i planowaniu eksperymentu
10 marca 2014 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
Matematyka dla biologów Zajęcia nr 13.
Matematyka dla biologów Zajęcia nr 13. Dariusz Wrzosek 16 stycznia 2019 Matematyka dla biologów Zajęcia 13. 16 stycznia 2019 1 / 34 Plan: 1 Rachunek prawdopodobienstwa-zmienne losowe o rozkładzie ciagłym
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego: