Przestrzeń probabilistyczna

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przestrzeń probabilistyczna"

Transkrypt

1 Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem.

2 Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Σ spełnia następujace warunki:, Ω Σ, A 1, A 2,... Σ A 1 A 2... Σ, A 1, A 2,... Σ A 1 A 2... Σ, A Σ Ω \ A Σ (Oznaczenie A := Ω \ A, A - zdarzenie przeciwne), A, B Σ A \ B Σ. Elementy Σ nazywamy zdarzeniami losowymi.

3 Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. P spełnia natępujace warunki: P( ) = 0, P(Ω) = 1, P(A) [0, 1] dla A Σ, P(A B) = P(A) + P(B), dla A, B Σ, A B =, Jeśli A 1, A 2,... Σ, A i A j = dla i j, to P(A 1 A 2...) = P(A 1 ) + P(A 2 ) +....

4 Przykłady Rzut kostka. Ω = {1, 2, 3, 4, 5, 6} Σ = P(Ω) P({i}) = 1/6, dla i = 1, 2, 3, 4, 5, 6. Na przykład A = {2, 4, 6} jest zdarzeniem losowym polegajacym na wylosowaniu parzystej liczby oczek. P(A) = P({2, 4, 6}) = P({2}) + P({4}) + P({6}) = 1/6 + 1/6 + 1/6 = 1/2

5 Przykłady Rzut dwiema kostkami do gry. Ω = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1),..., (6, 5), (6, 6)} Σ = P(Ω) P(ω) = 1/36, dla ω Ω. Na przykład A = {(5, 5), (6, 5), (6, 6), (5, 6)} jest zdarzeniem losowym polegajacym na wylosowaniu liczby oczek nie mniejszej niż 11. P(A) = P({(5, 5), (6, 5), (6, 6), (5, 6)}) = P({(5, 5)}) + P({(5, 6)}) + P({(6, 5)}) + P({(6, 6)})) = 1/36 + 1/36 + 1/36 + 1/36 = 4/36

6 Prawodopodobieństwo klasyczne Ω-zbiór skończony n-elementowy. Σ = P(Ω) P({ω}) = 1/n dla ω Ω. Wtedy P(A) = card A/ card Ω = card A/n.

7 Inne przykłady Ω = N P({n}) = 1/2 n A-zdarzenie losowe polegajace na wylosowaniu liczby parzystej. P(A) = P({2})+P({4})+... = 1/4+1/ = 1/4 1 1/4 = 1/3.

8 Prawdopodobieństwo geometryczne Ω- pewien mierzalny podzbiór R n P(A) = pole A/pole Ω. Przykład: Jakie jest prawdopodobieństwo, że rzucajac do tarczy trafimy w "środek". Dane: tarcza okragła o promieniu 20cm, środek- koło o promieniu 5cm. P(A) = π52 π20 2

9 Prawdopodobieństwo warunkowe Niech (Ω, Σ, P) będzie przestrzenia probabilistyczna, A, B Σ, P(B) > 0. Prawdopodobieństwem warunowym zdarzenia A pod warunkiem zdarzenia B nazywamy P(A B) := P(A B). (1) P(B) Oznaczenie: P B (A) := P(A B). Fakt: (Ω, Σ, P B ) jest przestrzenia probabilistyczna. Ze wzoru (1) mamy P(A B)P(A B) P(B) = B(B A) P(A).

10 Przykład W ciemnym pokoju sa dwa pudełka: duże, do którego trafiamy z prawdopodobieństwem 3/4, i małe, do którego trafiamy z prawdopodobieństwem 1/4. W dużym pudełku sa dwie kule białe i jedna czarna, a w małym 2 czarne i jedna biała. Niech A będzie zdarzeniem losowym polegajacym na trafieniu do dużej urny, a B zdarzeniem losowym polegajacym na wyciagięciu kuli białej. Jakie jest prawdopodobieństwo, że losowano z dużego pudła, jeśli wiadomo, że wylosowano kulę biała.

11 c.d. Rozwiazanie. Dane: P(A) = 3/4, P(A ) = 1/4, P(B A) = 2/3, P(B A ) = 1/3. Należy obliczyć P(A B). Korzystamy ze wzoru P(A B) = P(A B) P(B). Obliczamy P(A B) = P(B A)P(A) = P(B) = P(B A) + P(B A ) = = P(B A) P(A) + P(B A ) P(A ) = 2/3 3/4 + 1/3 1/4 = 7/12. A więc P(A B) = 1/2 7/12 = 6/7.

12 Wzór na prawdopodobieństwo całkowite Niech (Ω, Σ, P) będzie przestrzenia probabilistyczna. Niech A 1, A 2,... będa zdarzeniami losowymi parami rozłacznymi i takimi, że P(A 1 ) + P(A 2 ) +... = 1. Wtedy, dla dowolnego B Σ zachodzi wzór P(B) = P(B A 1 ) P(A 1 ) + P(B A 2 ) P(A 2 ) +...

13 Wzór Bayesa Niech (Ω, Σ, P) będzie przestrzenia probabilistyczna. Niech A 1, A 2,... będa zdarzeniami losowymi parami rozłacznymi i takimi, że P(A 1 ) + P(A 2 ) +... = 1. Wtedy, dla dowolnego B Σ zachodzi wzór P(A i B) = P(B A i ) P(A i ) P(B A 1 ) P(A 1 ) + P(B A 2 ) P(A 2 ) +...

14 Przykład Twierdzenia Bayesa można użyć do interpretacji rezultatów badania przy użyciu testów wykrywajacych narkotyki. Załóżmy, że przy badaniu narkomana test wypada pozytywnie w 99% przypadków, zaś przy badaniu osoby nie zażywajacej narkotyków wypada negatywnie w 99% przypadków. Pewna firma postanowiła przebadać swoich pracowników takim testem wiedzac, że 0,5% z nich to narkomani. Chcemy obliczyć prawdopodobieństwo, że osoba u której test wypadł pozytywnie rzeczywiście zażywa narkotyki.

15 c.d Oznaczmy następujace zdarzenia: T - dana osoba jest narkomanem N - dana osoba nie jest narkomanem + - u danej osoby test dał wynik pozytywny - - u danej osoby test dał wynik negatywny Wiemy, że: P(T ) = 0, 005, gdyż 0,5% pracowników to narkomani P(N) = 1 P(D) = 0, 995 P(+ T ) = 0, 99, gdyż taka skuteczność ma test przy badaniu narkomana P( N) = 0, 99, gdyż taka skuteczność ma test przy badaniu osoby nie będacej narkomanem P(+ N) = 1 P( N) = 0, 01 Majac te dane chcemy obliczyć prawdopodobieństwo, że osoba, u której test wypadł pozytywnie, rzeczywiście jest narkomanem. Tak więc:

16 c.d P(T +) = = P(+ T ) P(T ) P(+ T ) P(T ) + P(+ N) P(N) = 0, 99 0, 005 0, 33. 0, 99 0, , 01 0, 995

17 c.d Mimo potencjalnie wysokiej skuteczności testu, prawdopodobieństwo, że narkomanem jest badany pracownik, u którego test dał wynik pozytywny, jest równe około 33%, więc jest nawet bardziej prawdopodobnym, ze taka osoba nie zażywa narkotyków. Ten przykład pokazuje, dlaczego ważne jest, aby nie polegać na wynikach tylko pojedynczego testu. Innymi słowy, pozorny paradoks polegajacy na dużej dokładności testu (99% wykrywalności narkomanów wśród narkomanów i nieuzależnionych wśród nieuzależnionych) i niskiej dokładności badania bierze się stad, że w badanej próbie tylko niewielka część osób to narkomani. Przykładowo jeśli badamy 1000 osób, 0,5% z nich czyli 5 to narkomani, a 995 nie. Natomiast test wskaże jako narkomanów 1% nieuzależnionych (995 1% 10), oraz 99% uzależnionych (5 99% 5). Ostatecznie test wypadł pozytywnie dla 15 osób, jednak tylko 5 z nich to narkomani.

18 Niezależność zdarzeń Zdarzenia A i B nazywamy niezależnymi, gdy P(A B) = P(A) P(B). A więc, zdarzenia A i B sa niezależne, gdy przynajmniej jedno z nich ma prawdopodobieństwo równe 0, lub oba maja dodatnie prawdopodobieństwa i P(A B) = P(A), P(B A) = P(B).

19 Niezależność większej ilości zdarzeń Zdarzenia A, B i C sa niezależne, gdy P(A B C) = P(A) P(B) P(C), P(A B) = P(A) P(B), P(A C) = P(A) P(C), P(B C) = P(B) P(C)....

20 Zmienne losowe Niech (Ω, Σ, P) będzie przestrzenia probabilistyczna. Zmienna losowa nazywamy każda funkcję ξ określona na Ω i przyjmujac a wartości rzeczywiste, taka, że zdarzeniami sa następujace zbiory: {ω : ξ(ω) < x}, {ω : ξ(ω) x}, {ω : ξ(ω) > x}, {ω : ξ(ω) x}, {ω : ξ(ω) (a, b)}, {ω : ξ(ω) [a, b]}, {ω : ξ(ω) [a, b)}, {ω : ξ(ω) (a, b]}, dla dowolnych x, a, b R.

21 Niezależność zmiennych losowych Zmienne losowe X 1, X 2,..., X n sa niezależne, gdy dla każdych x 1, x 2,..., x n R zachodzi P(X 1 < x 1, X 2 < x 2,..., X n < x n ) = = P(X 1 < x 1 ) P(X 2 < x 2 )... P(X n < x n ).

22 Dystrybuanta zmiennej losowej Dystrybuanta zmiennej losowej X nazywamy funkcję F : R R określona wzorem F(x) = P(X < x) = P({ω : X(ω) < x}). Własności dystrybuant: F jest niemalejaca, lewostronnie ciagła, F(x) [0, 1], lim x F(x) = 1, lim x F(x) = 0.

23 Typy zmiennych losowych zmienne losowe dyskretne (typu skokowego), zmienne losowe ciagłe, inne.

24 Zmienne losowe dyskretne To zmienne, które przyjmuja (z prawdopodobieństwem 1) wartości ze zbioru {x 1, x 2,...}. Dystrybuanta takich zmiennych losowych jest przedziałami stała, a w punktach x 1, x 2,... ma "skoki" wysokości P(X = x i ) odpowiednio.

25 Przykłady zmiennych losowych o rozkładach dyskretnych - rozkład dwupunktowy rozkład zero-jedynkowy - rozkład dwumianowy - rozkład Poissona -inne

26 Rozkład dwupunktowy Zmienna losowa X ma rozkład dwupunktowy, gdy przyjmuje dwie wartości (z prawdopodobieństwem 1): P(X = x 1 ) = p, P(X = x 2 ) = q = 1 p. Szczególnym przypadkiem rozkładu dwupunktowego jest rozkład zero-jedynkowy, gdy x 1 = 1, x 2 = 0.

27 Dystrybuanta rozkładu zero-jedynkowego

28 Rozkład dwumianowy Niech X 1, X 2,..., X n będzie ciagiem niezależnych zmiennych losowych o tym samym rozkładzie zero-jedynkowym. Oznaczmy przez X sumę tych zmiennch, tzn. X = X 1 + X X n. Mówimy, że zmienna losowa X ma rozkład dwumianowy. ( ) n P(X = k) = p k q n k, k = 0, 1,..., n. k Oznaczenie b(n, k, p) = ( n k) p k q n k - prawdopodobieństwo k sukcesów w n próbach Bernoulliego, w których prawdopodobieństwo sukcesu jest równe p.

29 Rozkład Poissona Zmienna losowa X ma rozkład Poissona z parametrem λ, gdy przyjmuje tylko wartości całkowite nieujemne, oraz P(X = k) = e λ λk k!. Oznaczenie p(λ, k) = e λ λk k!. Uwaga. Gdy n jest duże (n 100), p małe (p 0, 1), a np [0.1, 10], to dokonuje się przybliżenia gdzie λ np. b(n, k, p) p(λ, k),

30 Rozkład Poissona

31 Rozkłady ciagłe Mówimy, że zmienna losowa ma rozkład ciagły, gdy istnieje funkcja f : R R, nieujemna, taka, że f (x) dx = 1, oraz R P(X A) = A f (x) dx. Tę funkcję f nazywamy gęstościa rozkładu zmiennej X. Dystrybuantę obliczamy ze wzoru F(x) = x f (t) dt.

32 Przykłady zmiennych losowych o rozładzie ciagłym -rozkład jednostajny -rozkład wykładniczy -rozkład normalny -rozkład chi-kwadrat -rozkład t-studenta -inne

33 Rozkład jednostajny Rozkład jednostajny na odcinku [a, b] ma gęstość Dystrybuanata: f (x) = F(x) = { 1 b a, dla x [a, b]; 0, dla x / [a, b]. x a b a, dla x [a, b]; 0, dla x < a; 1, dla x > b.

34 Rozkład jednostajny

35 Rozkład wykładniczy Rozkład wykładniczy z parametrem λ ma gęstość { λ e f (x) = λx, dla x 0; 0, dla x < 0. Dystrybuanata: F(x) = { 1 e λx, dla x 0; 0, dla x < 0.

36 Rozkład wykładniczy

37 Rozkład normalny Rozkład normalny z parametrami m i σ, N(m, σ) ma gęstość f (x) = 1 σ 2π (x m) 2 e 2σ 2. W szczególności rozkład normalny N(0, 1) ma gestość f (x) = 1 2π e x2 2. Jeśli X N(m, σ), to X m σ losowej X) N(0, 1). (standaryzacja zmiennej

38 Rozkład normalny

39 Tablica dystrybuanty rozkładu normalnego

40 Reguła trzech sigm Jeżeli zmienna losowa ma rozkład normalny N(m, σ) to P( X m > 3σ) < 0, 01.

41 Rozkład chi-kwadrat Mówimy, że zmienna losowa χ 2 ma rozkład chi-kwadrat Pearsona z n stopniami swobody, gdy jest postaci χ 2 = X X X 2 n gdzie X 1, X 2,..., X n sa niezależnymi zmiennymi losowymi o rozkładzie normalnym N(0, 1).

42 Rozkład t-studenta Mówimy, że zmienna losowa t ma rozkład t-studenta o n stopniach swobody, gdy jest postaci t = X χ 2 /n gdzie X, χ 2 sa niezależnymi zmiennymi losowymi X o rozkładzie normalnym N(0, 1) a χ 2 ma rozkład chi-kwadrat o n stopniach swobody.

43 Wartość oczekiwana zmiennej losowej Wartośc oczekiwana zmiennej losowej X, to "wartość średnia", oznaczamy ja EX lub E(X), lub m, lub m 1. Dla zmiennych o rozkładzie dyskretnym P(X = x k ) = p k dla k = 1, 2,...: EX = x 1 p 1 + x 2 p Dla zmiennych o rozkładzie ciagłym o gęstości f : Własności: E(XY ) = E(X)E(Y ), EX = xf (x) dx. E(aX + by ) = aex + bey, dla zmiennych X, Y niezależnych.

44 Gra polega na rzucie kostka. Za przystapienie do gry wpłacamy 10 zł. Za wyrzucenie 1,2 lub 3 nie wygrywamy nic. Za wyrzucenie 4 wygrywmy 5 zł,a za wyrzucenie 5-10 zł. Za wyrzucenie 6 otrzymujemy 30 zł. Zmienna losowa X oznacza zysk w tej grze. Jaki jest jej rozkład, dystrybuanta i wartość oczekiwana. Rozkład: P(X = 10) = P({1, 2, 3}) = 1/6 + 1/6 + 1/6 = 1/2, P(X = 5) = P({4}) = 1/6, P(X = 0) = P({5}) = 1/6, P(X = 20) = P({6}) = 1/6. Dystrybuanta: 0, x 10; 1/2, x ( 10, 5]; F(x) = 2/3, x ( 5, 0]; 5/6, x (0, 20]; 1, x (20, ). E(X) = 10 1/2 + ( 5) 1/ / /6 = 2.5

45 Wariancja i odchylenie standardowe Wariancja zmiennej losowej X (oznaczenie D 2 X lub Var X) nazywamy D 2 X = E(X EX) 2 = E(X m) 2. Odchylenie standardowe (oznaczenie σ), to σ = D 2 X. Własności: D 2 (ax) = a 2 D 2 X, D 2 (X + Y ) = D 2 X + D 2 Y, dla zmiennych losowych X, Y niezależnych, D 2 X = E(X 2 ) (EX) 2. Dla zmiennych o rozkładzie dyskretnym: P(X = x k ) = p k, k N: D 2 X = (x 1 m) 2 p 1 +(x 2 m) 2 p = [x 2 1 p 1+x 2 2 p 2+...] (EX) 2. Dla zmiennych o rozkładzie ciagłym o gęstości f : EX = x 2 f (x) dx (EX) 2.

46 Wariancja z wcześniejszego przykładu D 2 X = = ( 10 ( 2, 5)) 2 1/2+( 5 ( 2, 5)) 2 1/6+(0 ( 2, 5)) 2 1/6+(20 ( = 114, 58(3) drugim sposobem: D 2 X = ( 10) 2 1/2+( 5) 2 1/6+(0)) 2 1/6+(20)) 2 1/6 ( 2, 5) 2 = = 114, 58(3)

47 Nierówność Czebyszewa Jeśli EX = m oraz D 2 X = σ 2 (0, ), to dla t > 0 mamy P( X m t) σ2 t 2.

48 Słabe prawo wielkich liczb Niech X 1, X 2,... będzie ciagiem niezależnych zmiennych losowych o tym samym rozkładzie, o wartości oczekiwanej m i odchyleniu standardowym σ. Wtedy dla każdego ε > 0 mamy lim P( X 1 + X X n m < ε) = 1. n n

49 Centralne Twierdzenie Graniczne Niech X 1, X 2,... będzie ciagiem niezależnych zmiennych losowych o tym samym rozkładzie, o wartości oczekiwanej m i odchyleniu standardowym σ. Wtedy lim P(X 1 + X X n nm n σ < x) = Φ(x), n gdzie Φ oznacza dystrybuantę rozkładu normalnego N(0, 1).

50 Wartości wartości oczekiwanej i wariancji dla wybranych rozkładów rozkład zero-jedynkowy z prawdopodobieństwem p: EX = p, D 2 X = pq rozkład dwumianowy (p): EX = np D 2 X = npq rozkład Poissona z parametrem λ: EX = λ, D 2 X = λ rozkład jednostajny na [a, b]: EX = (a + b)/2, D 2 X = (b a) 2 /12 rozkład wykładniczy z parametrem λ: EX = 1/λ, D 2 X = 1/λ 2 rozkład normalny N(m, σ): EX = m, D 2 X = σ 2 rozkład chi-kwadrat z n stopniami swobody: EX = n D 2 X = 2n

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

Jednowymiarowa zmienna losowa

Jednowymiarowa zmienna losowa 1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),

Bardziej szczegółowo

Rozkłady prawdopodobieństwa zmiennych losowych

Rozkłady prawdopodobieństwa zmiennych losowych Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna

Bardziej szczegółowo

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2, Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Zmienna losowa. Rozkład skokowy

Zmienna losowa. Rozkład skokowy Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

Elementy Rachunek prawdopodobieństwa

Elementy Rachunek prawdopodobieństwa Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X

Bardziej szczegółowo

Najczęściej spotykane rozkłady dyskretne:

Najczęściej spotykane rozkłady dyskretne: I. Rozkład dwupunktowy: Najczęściej spotykane rozkłady dyskretne: Def. Zmienna X ma rozkład dwupunktowy z prawdopodobieostwem 1 przyjmuje tylko dwie wartości, tzn. P(X = x 1 ) = p i P(X = x 2 ) = 1 p =

Bardziej szczegółowo

1 Elementy kombinatoryki i teorii prawdopodobieństwa

1 Elementy kombinatoryki i teorii prawdopodobieństwa 1 Elementy kombinatoryki i teorii prawdopodobieństwa 1.1 Elementy kombinatoryki W rozwiązywaniu pewnych problemów związanych z obliczaniem prawdopodobieństwa o skończonej liczbie zdażeń elementarnych bardzo

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:

Bardziej szczegółowo

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Rozkłady prawdopodobieństwa

Rozkłady prawdopodobieństwa Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 08/9 Zarządzanie e-mail: www: konsultacje: rafal.kucharski@ue.katowice.pl http://web.ue.katowice.pl/rkucharski/ Piątki, 5:0-6:0,

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW

PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW Rachunek prawdopodobieństwa (probabilitis - prawdopodobny) zajmuje się badaniami pewnych prawidłowości (regularności) zachodzących przy wykonywaniu doświadczeń

Bardziej szczegółowo

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy

Bardziej szczegółowo

Statystyka. Magdalena Jakubek. kwiecień 2017

Statystyka. Magdalena Jakubek. kwiecień 2017 Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.

WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz. Tematy: WSTĘP 1. Wprowadzenie do przedmiotu. Próbkowe odpowiedniki wielkości populacyjnych. Modele statystyczne i przykładowe zadania wnioskowania statystycznego. Statystyki i ich rozkłady. 2. Estymacja

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 21 marca 2011 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być

Bardziej szczegółowo

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

Dyskretne zmienne losowe

Dyskretne zmienne losowe Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która

Bardziej szczegółowo

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018 Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy

Bardziej szczegółowo

Biostatystyka, # 3 /Weterynaria I/

Biostatystyka, # 3 /Weterynaria I/ Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 5 Magdalena Alama-Bućko 1 kwietnia 2019 Magdalena Alama-Bućko Statystyka matematyczna 1 kwietnia 2019 1 / 19 Rozkład Poissona Po(λ), λ > 0 - parametr tzw. rozkład zdarzeń

Bardziej szczegółowo

07DRAP - Zmienne losowe: dyskretne i ciągłe

07DRAP - Zmienne losowe: dyskretne i ciągłe 07DRAP - Zmienne losowe: dyskretne i ciągłe Słynne rozkłady dyskretne Rozkład parametry P (X = k dla k = E(X Var(X uwagi ( dwumianowy n, p n k p k ( p n k 0,,, n np np( p liczba sukcesów w n próbach Bernoulliego

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH Szkic wykładu 1 Podstawowe rozkłady zmiennej losowej skokowej Rozkład dwupunktowy Rozkład dwumianowy Rozkład Poissona 2 Rozkład dwupunktowy Rozkład dwumianowy Rozkład

Bardziej szczegółowo

Szkice do zajęć z Przedmiotu Wyrównawczego

Szkice do zajęć z Przedmiotu Wyrównawczego Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X

Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X Własności EX, D 2 X i DX przy przekształceniach liniowych Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X Przemnożenie wartości zmiennej losowej przez wartość stałą: Y=a*X

Bardziej szczegółowo

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Rachunek prawdopodobieństwa - przypomnienie 1. Zdarzenia 2. Prawdopodobieństwo

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Matematyka dla biologów Zajęcia nr 13.

Matematyka dla biologów Zajęcia nr 13. Matematyka dla biologów Zajęcia nr 13. Dariusz Wrzosek 16 stycznia 2019 Matematyka dla biologów Zajęcia 13. 16 stycznia 2019 1 / 34 Plan: 1 Rachunek prawdopodobienstwa-zmienne losowe o rozkładzie ciagłym

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona

Bardziej szczegółowo

Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej

Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Statystyka i opracowanie danych Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne losowe Zmienna

Bardziej szczegółowo

Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 10 marca 2014 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka

Podstawy nauk przyrodniczych Matematyka Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 6. Momenty zmiennych losowych Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 8.11.2018 1 / 47 Funkcje zmiennych losowych Mierzalna funkcja Y

Bardziej szczegółowo

Laboratorium nr 7. Zmienne losowe typu skokowego.

Laboratorium nr 7. Zmienne losowe typu skokowego. Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

5 Przegląd najważniejszych rozkładów

5 Przegląd najważniejszych rozkładów 5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,

Bardziej szczegółowo

Wykład 2 Zmienne losowe i ich rozkłady

Wykład 2 Zmienne losowe i ich rozkłady Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Klasyfikacja metodą Bayesa

Klasyfikacja metodą Bayesa Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014 Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Zmienna losowa i jej rozkład Mając daną przestrzeń probabilistyczną, czyli parę (&, P) stanowiącą model pewnego doświadczenia losowego (gdzie

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3 ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)

Bardziej szczegółowo

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych i ich charakterystyki

Wybrane rozkłady zmiennych losowych i ich charakterystyki Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Przykłady do zadania 3.1 :

Przykłady do zadania 3.1 : Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 3: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala,

Bardziej szczegółowo

Zmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski

Zmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Powtórzenie Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 1 Podręcznik podstawowy Jacek Koronacki, Jan Mielniczuk: Statystyka dla studentów kierunków technicznych i przyrodnicznych,

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa

Bardziej szczegółowo

Zmienne losowe skokowe

Zmienne losowe skokowe Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.

Bardziej szczegółowo

Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu

Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Zmienne losowe dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu rok akademicki 2016/2017 semestr letni Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór

Bardziej szczegółowo