Zadania z Rachunku Prawdopodobieństwa I Grupę n dzieci ustawiono w sposób losowy w szereg. Oblicz prawdopodobieństwo

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadania z Rachunku Prawdopodobieństwa I Grupę n dzieci ustawiono w sposób losowy w szereg. Oblicz prawdopodobieństwo"

Transkrypt

1 Zadaia z Rachuku Prawdopodobieństwa I Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie. 2. Ze zbioru elemetowego losujemy ze zwracaiem r elemetów. Jakie jest prawdopodobieństwo tego, że któryś elemet się powtórzył? 3. Oblicz prawdopodobieństwo tego, że w grze w brydża gracz N otrzymał a) wszystkie karty różej wartości; b) dokładie dwa piki; c) co ajmiej dwa piki; d) dwa piki, 3 kiery, 4 kara, 4 trefle; e) układ 4432; f) układ Oblicz prawdopodobieństwo tego, że w grze w pokera talią 24 kartową gracz otrzyma z ręki a) parę b) dwie pary c) straighta d) trójkę e) fulla f) karetę g) kolor h) pokera jedakowych ciastek rozdzieloo między czwórkę dzieci w sposób losowy. Oblicz prawdopodobieństwo tego, iż a) Jacek otrzymał dokładie 1 ciastko b) Jacek otrzymał co ajmiej 1 ciastko c) każde z dzieci otrzymało co ajmiej 1 ciastko 6. Jakie jest prawdopodobieństwo tego, że w totolatka wylosowaa będzie szóstka ie zawierająca dwu kolejych liczb. 7. a) Ile różych słów (iekoieczie sesowych) moża utworzyć permutując litery słowa MATEMATYKA? b) Jeśli wybierzemy losowo któreś z tych słów jakie jest prawdopodobieństwo tego, że litery T ie stoją obok siebie? 8. Klasa liczy 15 ucziów, a każdej lekcji do odpowiedzi jest losoway jede uczeń. Oblicz prawdopodobieństwo tego, że w ciągu 16 lekcji każdy uczeń będzie przepytay. 9. W szafie zajduje się par butów, a chybił trafił wybieramy z ich k butów przy czym k. Oblicz prawdopodobieństwo tego, że a) wśród wylosowaych butów jest coajmiej jeda para, b) wśród wylosowaych butów jest dokładie jeda para. 10. Jakie jest prawdopodobieństwo tego, że przy losowym umieszczeiu N listów w N zaadresowaych kopertach żade list ie trafi do właściwego adresata? 1

2 Zadaia z Rachuku Prawdopodobieństwa I Z przedziału [0, 1] wybrao w sposób losowy dwa pukty, które podzieliły go a trzy odciki. Jaka jest szasa, że z tych odcików da się zbudować trójkąt? 2. (Igła Buffoa) Igłę o długości l rzucoo w sposób losowy a płaszczyzę z zazaczoymi liiami rówoległymi. Odległość między sąsiedimi liiami wyosi d > l. Oblicz prawdopodobieństwo, że igła przetie którąś z liii. 3. Na ieskończoą szachowicę o boku 1 rzucoo moetę o średicy 2 3. Jakie jest prawdopodobieństwo tego, że moeta a) zajdzie się całkowicie we wętrzu jedego z pól b) przetie się z dwoma bokami szachowicy? 4. Załóżmy, że P(A B) = 1/2, P(A B) = 1/4, P(A \ B) = P(B \ A). Oblicz P(A) i P(B \ A). 5. Załóżmy, że A B C = Ω, P(B) = 2P(A), P(C) = 3P(A), P(A B) = P(B C) = P(A C). Wykaż, że 1/6 P(A) 1/4. 6. Załóżmy, że P(A) 2/3, P(B) 2/3, P(C) 2/3 i P(A B C) = 0. Oblicz P(A). 7. Wyzacz σ ciało geerowae przez a) dwa zbiory A i B; b) trzy zbiory A, B i C. 8. Czy istieje σ-ciało złożoe z 7-elemetów? 9. Wykaż, że dla dowolych zdarzeń A 1,..., A zachodzą ierówości i=1 ( P(A i ) P i=1 A i ) P(A i ) i=1 1 i<j P(A i A j ). 2

3 Zadaia z Rachuku Prawdopodobieństwa I Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek stoi bezpośredio przed Agatką, jeśli Agatka stoi bezpośredio przed Dorotką; b) Jacek stoi przed Agatką, jeśli Agatka stoi przed Dorotką 2. Z talii 24 kartowej losujemy 5 kart bez zwracaia. Oblicz prawdopodobieństwo, że wylosowaliśmy dokładie 3 asy jeśli wiadomo, że a) mamy coajmiej jedego asa b) mamy asa czarego koloru c) mamy asa pik d) pierwszą wylosowaą kartą jest as e) pierwszą wylosowaą kartą jest czary as f) pierwszą wylosowaą kartą jest as pik. 3. W urie zajduje się b kul białych i c kul czarych. Losujemy z ury po jedej kuli a astępie zwracamy ją do ury dokładając a kul tego samego koloru. Oblicz prawdopodobieństwo tego, że a) Pierwsza i druga wylosowaa kula będzie biała; b) Druga wylosowaa kula będzie biała; c) Za pierwszym razem wylosowao kulę białą, jeśli wiemy, że za drugim razem wylosowao kulę białą; d) W pierwszych trzech losowaiach wylosujemy kule tego samego koloru. 4. W populacji jest 15% dyslektyków. Jeśli w teście diagostyczym uczeń popełi 6 lub więcej błędów, to zostaje uzay za dylektyka. Każdy dyslektyk a pewo popełi co ajmiej 6 błędów w takim teście, ale rówież ie-dyslektyk może popełić więcej iż 5 błędów z prawdopodobieństwem 1/10. Jasio popełił w teście 6 błędów - jakie jest prawdopodobieństwo tego, że jest dyslektykiem? Jakie jest prawdopodobieństwo tego, że w kolejym teście popełi co ajmiej 6 błędów? 5. Prawdopodobieństwo, że losowo wybraa rodzia ma dzieci jest rówe { αp = 1, 2,... p = 1 =1 αp = 1 αp 1 p = 0 Zakładając, że wszystkie 2 rozkładów płci dzieci w rodziie o dzieciach jest rówoprawdopodobe oblicz prawdopodobieństwo, że losowo wybraa rodzia ma a) coajmiej jedą córkę b) dokładie jedą córkę? c) Losowo wybraa rodzia ma przyajmiej jedą córkę, jakie jest prawdopodobieństwo, że jest oa jedyaczką? 6. Rzucamy dwa razy kostką. Rozważmy zdarzeia: A za pierwszym razem wypadła liczba oczek podziela przez trzy; B za drugim razem wylosowao liczbę oczek podzielą przez trzy C suma wyrzucoych oczek jest parzysta. Czy zdarzeia A, B, C są parami iezależe? Czy są iezależe? 3

4 Zadaia z Rachuku Prawdopodobieństwa I W Małej Większej są dwie szkoły podstawowe. Przeprowadzoe pod koiec roku szkolego egzamiy wykazały, że większy procet dziewczyek w szkole r 1 potrafi rozłożyć liczbe 2012 a czyiki pierwsze iż w szkole r 2, podobie większy procet chłopców z jedyki potrafi to zrobić iż w dwójce. Czy zaczy to, że statystycze dziecko ze szkoły r 1 lepiej wypadło w rozkładaiu 2012 od statystyczego dziecka ze szkoły r 2? 2. Na kartkach zapisao różych liczb rzeczywistych, astępie kartki włożoo do pudełka, wymieszao i losowao kolejo bez zwracaia. Niech A k ozacza zdarzeie, że k-ta z wylosowaych liczb jest większa od wszystkich poprzedich. Wykaż, że P(A k ) = 1/k oraz zdarzeia A 1, A 2,..., A są iezależe. 3. Wyzacz ajbardziej prawdopodobą liczbę sukcesów w schemacie Beroulliego. 4. Rzucoo 10 razy kostką. Jakie jest prawdopodobieństwo tego, że w pierwszym rzucie wypadła szóstka, jeśli wiadomo, że a) w 10 rzutach wypadło dokładie 7 szóstek b) w 9 astępych rzutach wypadło dokładie 7 szóstek. 5. Rzucamy szóstką do mometu aż wypadie piątka lub po raz trzeci szóstka. Jakie jest prawdopodobieństwo tego, że rzucimy dokładie razy. 6. Prawdopodobieństwo tego, że w ciągu jedego dia a autostradzie będzie k wypadków jest rówe 5 k e 5 /k!, k = 1, 2,.... Prawdopodobieństwo tego, że w daym wypadku będzie uczesticzył samochód czerwoy jest 1/3. Oblicz prawdopodobieństwo tego, że w ciągu jedego dia a autostradzie będzie k wypadków z udziałem samochodów czerwoych. 7. Rzucoo symetryczymi moetami. Oblicz prawdopodobieństwo tego, że otrzymaa liczba orłów jest podziela przez k dla k = 2, 3, Wykaż (używając metod probabilistyczych), że dla dowolych liczb całkowitych dodatich, m oraz p, q [0, 1] takich, że p + q + 1 zachodzi ierówość (1 p ) m + (1 p m ) Niech (Ω, F, P) będzie przestrzeią probabilistyczą modelującą schemat Beroulliego z parametrami i p. Dla 0 k przez A k określamy zdarzeie, że zaszło k sukcesów. Wykaż, że P(B A k ) dla B F ie zależy od parametru p. 10. Rzucamy ieskończeie wiele razy kostką. Udowodij, że z prawdopodobieństwem 1 wystąpi ieskończeie wiele serii złożoych z 2012 szóstek pod rząd. 4

5 11. Rzucamy ieskończeie wiele razy moetą a której orzeł wypada z prawdopodobieństwem p. Przez A ozaczmy zdarzeie, że w pierwszych rzutach wypadło tyle samo orłów, co reszek. Wykaż, że i) jeśli p 1/2, to z prawdopodobieństwem 1 zajdzie skończeie wiele spośród zdarzeń A 1, A 2,... ii*) jeśli p = 1/2, to z prawdopodobieństwem 1 zajdzie ieskończeie wiele spośród zdarzeń A 1, A 2, Dwaj gracze grają w orła i reszkę moetą symetryczą. Jeśli wypadie orzeł gracz A płaci B 1 zł., jeśli reszka, to B płaci A 1 zł. Gra się kończy, gdy któryś z graczy zostaie bez pieiędzy. Na początku gry gracz A ma a zł., a B b zł. a) Oblicz prawdopodobieństwo tego, że grę wygra gracz A. b) Jak zmiei się to prawdopodobieństwo, jeśli moeta jest sfałszowaa tz. orzeł wypada z prawdopodobieństwem p 1/2? 13. Rzucoo kostkami do gry. Określmy zdarzeia A k - a k-tej kostce wypadła szóstka, 1 k oraz A +1 - suma wyrzucoych oczek jest podziela przez 6. Wykaż, że dowole spośród zdarzeń A 1,..., A +1 jest iezależych, ale łączie zdarzeia A 1,..., A ie są iezależe. 14. Niech X ozacza ajdłuższą serię orłów w rzutach moetą symetryczą. Wykaż, że a) P(X a log 2 ) 0 przy dla a < 1, b) P(X a log 2 ) 1 przy dla a > Z przedziału [0, 1] losujemy dwie liczby dzielące go a trzy przedziały. Oblicz prawdopodobieństwo tego, że ajkrótszy z powstałych przedziałów ma długość miejszą iż 1/5. 5

6 Zadaia z Rachuku Prawdopodobieństwa I Jaś i Małgosia raz w tygodiu grają w teisa. Prawdopodobieństwo, że w pojedyczym meczu zwycięży Małgosia jest rówe p (0, 1). Niech X ozacza umer meczu w którym Małgosia wygrała z Jasiem po raz k-ty. Zajdź rozkład X. 2. Rzucamy dwa razy kostką. Niech X ozacza miimum, a Y maksimum z uzyskaych liczb oczek. Zajdź rozkłady zmieych X i Y i sprawdż, że 7 X ma te sam rozkład co Y. 3. Zmiea losowa X ma dystrybuatę 0 dla t < 0 1 F X (t) = 7 + 2t dla 0 t < t dla 1 14 t < dla t 3 7. Oblicz P(X 3 7 ), P(0 < X < 3 7 ), P(X = 0), P( 1 14 X 3 7 ). 4. Dystrybuata zmieej losowej X ma postać 0 dla t < 0 1 F X (t) = 2t dla 0 t < 2 1 dla t 2. Zajdź dystrybuatę zmieych mi(1, X) i max(x, X 2 ). 5. Na pewym skrzyżowaiu zieloe światło dla pieszych świeci się przez 30 sekud, a czerwoe przez 2 miuty (ie ma światła żółtego). Pa Abacki przychodzi a skrzyżowaie w losowym momecie czasu. a) Zajdź rozkład czasu oczekiwaia przez paa Abackiego a zieloe światło. b) Pa Abacki czeka już miutę a zieloe światło. Jakie jest prawdopodobieństwo tego, że będzie musiał czekać jeszcze poad pół miuty? 6. Niech F : R [0, 1] będzie prawostroie ciągłą, iemalejącą fukcją taką, że lim t F (t) = 1 oraz lim t F (t) = 0. Wykaż, że F jest dystrybutą pewej zmieej losowej. 6

7 Zadaia z Rachuku Prawdopodobieństwa I Z talii 52 kartowej losujemy 5 razy ze zwracaiem po jedej karcie. Niech X ozacza liczbę wyciągiętych pików, Y - kierów, a Z - waletów. Czy zmiee X i Y są iezależe? Czy zmiee X i Z są iezależe? 2. Zmiee X 1, X 2,..., X są iezależe oraz P(X i = ±1) = 1/2. i) Czy zmiee X 1 + X 2, X 1 X 2 są iezależe? ii) Czy zmiee X 1 + X 2, X 3, X 4 + X 5 X 6 są iezależe? iii) Czy zmiee X 1, X 1 X 2,..., X 1 X 2 X są iezależe? 3. Dla t [0, 1] i = 1, 2,... iech X (t) ozacza -tą cyfrę rozwiięcia dwójkowego liczby t (w przypadku dwu rozwiięć wybieramy to ze skończoą liczbą 1). Udowodij, że X 1, X 2,... są iezależymi zmieymi losowymi a ([0, 1], B([0, 1]),. ). 4. Zmiee losowe X i Y są iezależe oraz mają rozkłady geometrycze z parametrami odpowiedio p i q. Oblicz P(X Y ). 5. Zmiee losowe X i Y są iezależe oraz mają rozkłady wykładicze z parametrami odpowiedio λ i µ. Oblicz P(X Y ). 6. Zmiee losowe X i Y są iezależe, przy czym dystrybuata X jest ciągła. Wykaż, że P(X = Y ) = Zmiea X jest iezależa od samej siebie. Wykaż, że istieje liczba c taka, że P(X = c) = Załóżmy, że dystrybuata F zmieej losowej X jest ciągła i kawałkami klasy C 1. Wykaż, że X ma rozkład ciągły (z gęstością g = F ). 9. Zajdź rozkład zmieej ax +b oraz e X, gdy X ma rozkład wykładiczy z parametrem λ. 10. Zajdź rozkłady zmieych bx + c, e X i X 2, gdy X ma rozkład ormaly N (a, σ 2 ). 11. Zmiea losowa X ma rozkład wykładiczy z parametrem 1. Wyzacz rozkłady zmieych X oraz {X}. Czy zmiee te są iezależe? 12. Zmiee X i Y są iezależe i mają rozkład N (0, 1). Zajdź łączy rozkład wektora losowego (X + Y, X Y ). Co moża powiedzieć o jego współrzędych? 13. Podaj przykład zmieej X o ciągłej dystrybuacie, która ie ma rozkładu ciągłego (tz. ie ma gęstości). 14. Niech X 1,..., X będą iezależymi zmieymi losowymi o jedakowym rozkładzie z ciągłą dystrybuatą F. Dla ω Ω iech X 1 (ω),..., X (ω) będzie ustawieiem X 1 (ω),..., X (ω) w porządku rosącym X 1 (ω) X 2 (ω)... X (ω) (czyli w szczególości X 1 = mi{x 1,..., X }, X = max{x 1,..., X }. Zajdź dystrybuatę X k dla k = 1,..., (X k azywamy k-tą statystyką porządkową ciągu X 1,..., X ). 7

8 Zadaia z Rachuku Prawdopodobieństwa I Zmiee losowe X 1,..., X są iezależe, przy czym X i ma rozkład wykładiczy z parametrem λ i. Zajdź rozkład zmieej max{x 1,..., X }. 2. Zmiee losowe X 1,..., X są iezależe i mają rozkłady Poissoa z parametrami λ 1,..., λ. Wykaż, że X 1 + X X ma rozkład Poissoa z parametrem λ 1 + λ λ. 3. Do pewej tabeli wpisao = liczb. Prawdopodobieństwo, że pojedycza liczba została błędie wpisaa wyosi 0, 005. Wprowadzoe liczby są sprawdzae przez kotrolera, który wychwytuje błąd z prawdopodobieństwem 0, 02. Oszacuj prawdopodobieństwo tego, że po weryfikacji tabela zawiera przyajmiej dwie błęde liczby. 4. Dwuwymiarowy wektor losowy (X, Y ) ma rozkład z gęstością g(x, y) = cxy1 {0 x y 1}. i) Zajdź stałą c. Czy zmiee X, Y są iezależe? ii) Oblicz P(X + Y 1). iii) Zajdź rozkład zmieej X/Y. Czy zmiea X/Y jest iezależa od Y? 5. X, Y są iezależymi zmieymi losowymi o rozkładzie wykładiczym z parametrami λ i µ, zajdź rozkład zmieej X/Y. 6. Zmiee X, Y są iezależe i mają rozkład jedostajy a przedziale [ 1, 1]. Oblicz P(X 2 + Y 2 1). 7. Mówimy, że zmiea X ma rozkład Γ z parametrem r > 0 (oz. X Γ(r)), jeśli X ma gęstość g r (x) = 1 Γ(r) xr 1 e x I {x 0}, gdzie Γ(r) = x r 1 e x dx. 0 a) Wykaż, że jeśli zmiee X 1,..., X są iezależe oraz X i Γ(r i ), to X X Γ(r r ). b) Wykaż, że jeśli zmiee X 1,..., X są iezależe oraz każda z ich ma rozkład wykładiczy z parametrem λ, to X X 1 λ Γ(). (Uwaga. Rozkład aγ(r) w zależości od przyjetej kowecji się ozacza jako rozkład Γ(r, a) lub Γ(1/a, r).) c) Wykaż, że jeśli zmiee X 1,..., X są iezależe oraz X i N (0, 1), to X X 2 2Γ(/2). (Uwaga. Rozkład te występuje w wielu zastosowaiach statystyczych i się azywa rozkładem chi kwadrat o stopiach swobody.) 8. Zmiee X 1, X 2, ε 1, ε 2 są iezależe, przy czym X i mają rozkład wykładiczy z parametrem λ, a P(ε i = ±1) = 1/2. Zajdź rozkład ε i X i, X 1 X 2 oraz ε 1 X 1 + ε 2 X 2. 8

9 Zadaia z Rachuku Prawdopodobieństwa I Załóżmy, że P(X = 0) = P(X = 1) = 1 4 oraz P(X = 5) = 1 2. Oblicz EX,, E si(πx) i Var(X). E 1 X+1 2. Oblicz Et X dla t R i X o rozkładzie Poissoa z parametrem λ. 3. Zmiea losowa X ma gęstość g(x) = 3 8 x2 I [0,2] (x). Oblicz EX, E 1 2+X oraz Var(X 2 ). 4. Oblicz wartość oczekiwaą i wariację rozkładu geometryczego z parametrem p. 5. Zmiea losowa X ma dystrybuatę 0 dla t < 0 1 F X (t) = 2t dla 0 t < dla 1 t < 5 1 dla t 5. Oblicz E(10X + 2). 6. Roztrzepaa sekretarka umieściła w sposób losowy N listów w N uprzedio zaadresowaych kopertach. Niech X ozacza liczbę listów, które trafiły do właściwej koperty. Zajdź wartość oczekiwaą i wariację X. 7. Do klasy chodzi 20 ucziów. Nauczyciel a każdej lekcji pyta losowo wybraego uczia. Zajdź wartość oczekiwaą i wariację liczby ucziów przepytaych w ciągu 15 lekcji. 8. Każdy bok i przekątą siedmiokąta pomalowao w sposób losowy a jede z trzech kolorów (zakładamy, że kolory różych odcików są dobierae iezależie i każdy z trzech dostępych kolorów jest wybieray z jedakowym prawdopodobieństwem). Oblicz wartość oczekiwaą liczby jedobarwych trójkątów o wierzchołkach bedących wierzchołkami siedmiokąta. 9. Udowodij, że dla dowolej rzeczywistej zmieej losowej X i p > 0, E X p = p 0 t p 1 P( X t)dt. 10. Wykaż, że jeśli zmiea losowa X przyjmuje tylko wartości całkowite ieujeme, to EX = P(X k) = P(X > k). k=1 11. Niech (π(1),..., π()) ozacza losową permutację zbioru {1,..., }. Niech N ozacza ajwiększą liczbę taką, że π(k) > π(k 1) dla k N. Oblicz EN. k=0 9

10 Zadaia z Rachuku Prawdopodobieństwa I Zmiee X 0, X 1,... są iezależe i mają jedakowy rozkład z ciągłą dystrybuatą. Niech N := if{ : X > X 0 }. Zajdź rozkład N i oblicz EN. 2. Kij o długości 1 złamao w losowym pukcie. Oblicz wartość oczekiwaą stosuku i) długości kawałka prawego do długości lewego, ii) długości kawałka krótszego do długości kawałka dłuższego. 3. Zmiee losowe X, Y spełiają waruki Var(X) = 2, Var(Y ) = 4, Cov(X, Y ) = 1. Oblicz Var(2X 3Y ) i Cov(5X + 2Y, X 3Y ). 4. Zmiea losowa X ma wariację σ 2, wykaż, że P( X EX 4σ) Niech S = i=1 a iε i, gdzie (ε i ) są iezależymi zmieymi losowymi takimi, że P(ε i = ±1) = 1/2. Wykaż, że dla wszystkich λ R, Ee λs e 1 2 λ2 ES 2 i wywioskuj stąd, że dla t 0, ( P S t(es 2 ) 1/2) 2e t2 /2. 6. Niech S = ε 1 + ε ε, gdzie (ε i ) są jak w poprzedim zadaiu. Wykaż, że S lim sup 1 p.. 2 log oraz lim if S 2 log 1 p Zmiea losowa X spełia waruek ( ) 2 E X = 1, 2,.... Wykaż, że X <, tz. istieje liczba M < taka, że P( X > M) = Nadajik wysyła sygał X, a odbiorik odbiera sygał Z = ax + Y, gdzie a > 0, a Y jest losowym zaburzeiem iezależym od X. Załóżmy, że EX = m, Var(X) = 1, EY = 0, Var(Y ) = σ 2. Oblicz współczyik korelacji X i Z oraz regresję liiową X względem Z, tz. ajlepsze (względem wariacji) przybliżeie liiowe X za pomocą Z. 10

11 Zadaia z Rachuku Prawdopodobieństwa I Zmiee (ε ) 1 są iezależymi zmieymi Rademachera, tz. P(ε i = ±1) = 1/2. Wykaż, że ciąg X ie jest zbieży p... Czy jest zbieży według prawdopodobieństwa? 2. Niech (ε ) 1 będą jak w poprzedim zadaiu. Wykaż, że szereg S = =1 2 ε jest zbieży p.. i zajdź rozkład S. 3. Ciągi zmieych losowych (X ) 1 oraz (Y ) 1 są zbieże według prawdopodobieństwa odpowiedio do X i Y. Udowodij, że i) ciąg X + Y jest zbieży do X + Y według prawdododobieństwa, ii) ciąg X Y jest zbieży do XY według prawdododobieństwa. 4. Daa jest całkowala zmiea losowa X. Określamy dla 1, dla X (ω) < X (ω) = X(ω) dla X (ω) dla X (ω) >. Czy ciąg X jest zbieży prawie a pewo? Czy jest zbieży w L 1? 5. Zmiee X 1, X 2,... są iezależe, mają te sam rozkład oraz P( X i < 1) = 1. Wykaż, że ciąg R = X 1 X 2 X zbiega do 0 p Zmiee X 1, X 2,... są iezależe, ieujeme, mają te sam rozkład oraz P( X i = 0) < 1. Wykaż, że ciąg =1 X = p Zmiee X 1, X 2,... są iezależe (o iekoieczie jedakowym rozkładzie). Wykaż, że i) ciąg średich 1 (X 1 + X X ) albo jest zbieży p.. albo z prawdopodobieństwem 1 jest rozbieży, ii) jeśli powyższy ciąg jest zbieży p.., to jego graica ma rozkład jedopuktowy. 11

12 Zadaia z Rachuku Prawdopodobieństwa I Day jest ciąg (X ) 1 iezależych zmieych losowych o rozkładzie wykładiczym z parametrem λ. i) Wykaż, że jeśli λ > 1, to z prawdopodobieństwem 1, X < log dla dużych, a jeśli λ 1, to z prawdopodobieństwem 1, X log dla ieskończeie wielu. ii) Zbadaj zbieżość według prawdopodobieństwa i prawie a pewo ciągu (X / log ) Zmiee (X ) 1 są iezależe, przy czym X ma rozkład Poissoa ze średią 1/. Zbadaj zbieżość ciągu X i) według prawdopodobieństwa; ii) prawie a pewo; iii) w L 2 i L 3/2. 3. Liczby p, q > spełiają waruek 1/p + 1/q = 1. Wykaż, że jeśli X zbiega do X w L p oraz Y zbiega do Y w L q, to X Y zbiega do XY w L Zmiee X i Y są zbieże p.. do zmieych X i Y odpowiedio. Wykaż, że jeśli dla każdego, zmiea X ma te sam rozkład co zmiea Y, to zmiee X i Y mają jedakowy rozkład. 5. Wykaż, że X P X wtedy i tylko wtedy gdy E mi( X X, 1) Niech X 1, X 2,... będzie ciągiem zmieych iezależych o jedakowym rozkładzie takim, że E X <. Wykaż, że 1 max P i X i Wykaż, że jeśli ε jest ciągiem liczb dodatich zbieżych do 0 takim, że =1 P( X X ε ) <, to X X p Jakie waruki musi spełiać zbiór T (0, ), by rodzia (X t ) t T była jedostajie całkowala, jeśli i) X t ma rozkład jedostajy a przedziale [0, t], ii) X t ma rozkład wykładiczy z parametrem t. 9. Załóżmy, że fukcja G [0, ) [0, ) spełia waruek lim t G(t) t =. Wykaż, że każda rodzia zmieych losowych (X i ) i I spełiająca waruek sup i I EG( X i ) < jest jedostajie całkowala. 12

13 Zadaia z Rachuku Prawdopodobieństwa I Zmiee losowe X 1, X 2,... są iezależe o wspólym rozkładzie wykładiczym z parametrem λ. Pokaż, że ciągi zmieych losowych a) X 1X 2 + X 2 X X X +1, b) X 1 + X X X1 2 + X X2 są zbieże prawie a pewo i wyzacz ich graice. 2. Day jest ciąg (X ) 1 iezależych zmieych losowych o rozkładzie Poissoa z parametrem Wykaż, że ciąg zmieych losowych X 1 X 2 X 3 + X 2 X 3 X X X +1 X jest zbieży prawie a pewo i zajdź jego graicę. 3. Zmiee X 1, X 2,... są iezależe, przy czym X ma rozkład jedostajy a przedziale (1/, 1]. Udowodij, że ciąg średich X 1 + X X jest zbieży prawie a pewo i oblicz jego graicę. 4. Dae są iezależe zdarzeia A 1, A 2,.... Wykaż, że 1 A1 + 1 A A P(A 1) + P(A 2 ) P(A ) 0 według prawdopodobieństwa przy. 5. Zmiee X 1, X 2,... są iezależe o wspólym rozkładzie jedostajym a [0, 2]. Czy ciąg M = (X 1 X 2 X ) 1/ jest zbieży p..? Jeśli tak, to do jakiej graicy? 6. Wykaż, że dla dowolego ciągu (X ) 1 iezależych zmieych losowych o jedakowym rozkładzie takim, że E X i < ciąg średich X 1 + X X EX 1 w L 1 przy. 7. Załóżmy, że zmiea N ma rozkład Poissoa z parametrem. Wykaż, że N / 1 w L 1 przy. 8. Zmiee X 1, X 2,... są iezależe i mają rozkład jedostajy a [ 1, 1]. Czy ciąg X 1 + X X jest zbieży prawie a pewo przy? 9. Oblicz graice 1 a) lim x x2 0 x x dx 1... dx ; 1 1 b) lim x x 2 dx 1... dx ; )dx 1... dx, gdzie f : [0, 1] R jest fuk- 1 c) lim cją ciągłą. f( x1+...+x 13

14 Zadaia z Rachuku Prawdopodobieństwa I Załóżmy, że X, X 1, X 2,... są iezależymi zmieymi losowymi o jedakowym rozkładzie takim, że tp( X t) 0 przy t. Wykaż, że X 1 + X X E(XI X ) 0 według prawdododobieństwa. 2. Zmiee X 1, X 2,... są iezależe o jedakowym rozkładzie z gęstością c (1+x 2 ) l(e+ x ). Wykaż, że (X 1 + X X )/ 0 według prawdopodobieństwa. Czy ciąg te jest zbieży prawie a pewo? 3. Udowodij twierdzeie o dwóch szeregach: jeśli (X ) 1 jest ciągiem zmieych losowych o skończoych wariacjach, takim, że zbieże są szeregi 1 EX i 1 Var(X ), to szereg 1 X jest zbieży prawie a pewo. 4. Zmiee losowe (ε ) 1 są iezależe i P(ε = ±1) = 1/2. Dla jakich ciągów (a ) szereg 1 a ε jest zbieży prawie a pewo? 5. Dae są iezależe zmiee losowe X 1, X 2,... takie, że X ma rozkład jedostajy a [, ]. Wyzacz wszystkie liczby p dla których szereg jest zbieży prawie a pewo. 1 X p 6. Prawdopodobieństwo urodzeia chłopca wyosi 0, 517. Oszacuj prawdopodobieństwo tego, że wśród oworodków liczba chłopców ie przewyższy liczby dziewczyek. 7. Rzucamy kostką do gry aż do wystąpieia szóstki po raz 50. Oszacuj prawdopodobieństwo tego, że rzucimy co ajwyżej 400 razy. 8. Na campusie uiwersyteckim są dwie restauracja po 120 miejsc każda. Wiadomo, że codzieie 200 osób będzie chciało zjeść obiad, a wyboru restauracji dokouje losowo i iezależie. Jaka jest szasa, że w którejś restauracji zabrakie miejsc? Ile miejsc ależy przygotować w każdej restauracji, by powyższe prawdopodobieństwo było miejsze od 0,001? 9. W pewym staie w wyborach prezydeckich głosuje osób. Zakładając, że wyborcy głosują a każdego z dwu kadydatów losowo i iezależie z prawdopodobieństwem 50% jaka jest szasa, że różica między kadydatami będzie miejsza iż 100 głosów? 10. Agata rzuciła moetą 100 razy i uzyskała 70 orłów. Ja chce powtórzyć te wyczy (tz. otrzymać 70 lub więcej orłów) i zamierza w tym celu rzucać moetą aż do skutku. Ile średio serii po 100 rzutów potrzeba, aby się doczekać 70 lub więcej orłów? 14

15 11. Pewe biuro badaia opiii publiczej plauje zrobić sodaż wyborczy przed wyborami prezydeckimi. Przy założeiu losowego wyboru uczestików sodażu ile musi przepytać osób by z prawdopodobieństwem 0.95 uzyskae w sodażu wyiki poparcia dla poszczególych kadydatów róziły się od prawdziwych preferecji wyborczych ie więcej iż o 2 pukty procetowe? Jak zmiei się odpowiedź jeśli biuro bada poparcie kadydatów, których chce wybrać ie więcej iż 10% wyborców? 12. Zmiee (ε ) 1 są iezależe i P(ε = ±1) = 1/2. a) Oblicz w zależości od t, lim P(ε 1 + ε ε t ). b) Wykaż, że ciąg ε1+ε2+...+ε ie jest zbieży prawie a pewo. 13. Zmiee X 1, X 2,... są iezależe oraz P(X i = 1/2) = P(X i = 2) = 1/2. Niech R = (X 1 X 2 X ) 1/. Oblicz lim P(R t). 15

16 Zadaia z Rachuku Prawdopodobieństwa I Zmiee losowe ε 1, ε 2, ε 3 są iezależe oraz P(ε i = ±1) = 1/2. Oblicz E(ε 1 ε 1 + ε 2 + ε 3 ) i E(ε 1 ε 2 ε 1 + ε 2 ε 3 ). 2. Zmiee losowe X i Y są iezależe, przy czym X ma rozkład Beroulliego Bi(, p), Y ma rozkład Beroulliego Bi(, p). Oblicz E(X + Y X) oraz E(X X + Y ). 3. Rzucoo kostką ajpierw raz, a astępie tyle razy ile oczek wypadło w pierwszym rzucie. Oblicz wartość oczekiwaą sumy wyrzucoych oczek oraz liczby wyrzucoych trójek. 4. W urie zajduje się a kul białych, b kul czarych i c kul czerwoych, przy czym a, b, c 1. Losujemy ze zwracaiem po jedej kuli z ury dopóki ie wylosujemy kuli czerwoej. Oblicz wartość oczekiwaą wylosowaych kul białych. 5. W woreczku zajduje się pewa liczba moet, z których p procet jest sfałszowaa, z orłem po obu stroach. Powtarzamy razy astępujące doświadczeie - wyciągamy z woreczka moetę i ją rzucamy, a astępie zwracamy do woreczka. Niech O ozacza liczbę wyrzucoych orłów, zaś F liczbę wylosowań sfałszywaych moet. Wykaż, że E(F O) = wyosi E(O F )? 2p 100+p O. Ile 6. Zmiee X 1, X 2,... są iezależe o rozkładzie wykładiczym z parametrem λ, iech S = X 1 + X X. a) 0blicz E(S X 1 ), E(S 2 X 1 ). b) Dla k wyzacz E(S S k ), E(S 2 S k ) oraz E(e S S k ). 7. Zajdź przykład zmieych losowych X, Y, które ie są iezależe, ale E(X Y ) = EX. 8. Zmiea losowa (X, Y ) ma gęstość g(x, y) = x3 2 e x(y+1) I x>0,y>0. Wyzacz E(Y X), E(Y 2 X 2 ) oraz P(Y > 1 X 3 + 1). 9. Zmiee X i Y są iezależe o rozkładzie jedostajym a [0, 1]. Oblicz E(max(X, Y ) mi(x, Y )) oraz E(X 3 X + Y ). 16

17 10. Niezależe zmiee losowe X i Y mają rozkład wykładiczy z parametrem 1. Oblicz P(X B X + Y ) oraz E(si X X + Y ). 11. Zmiea losowa X ma rozkład wykładiczy z parametrem 1, zaś Y jest zmieą losową taką, że jeśli X = x, to Y ma rozkład wykładiczy z parametrem x. a) Wyzacz rozkład Y. b) Oblicz P(X > r Y ). 12. Zmiee X 1, X 2,..., X są iezależe, całkowale i mają jedakowy rozkład. Oblicz E(X 1 X 1 + X X ). 13. Dae jest σ-ciało G oraz zmiee losowe X i Y takie, że zmiea X jest mierzala względem G, a Y jest iezależa od G. Wykaż, że dla dowolej fukcji borelowskiej h takiej, że E h(x, Y ) <, gdzie H(x) = Eh(x, Y ). E(h(X, Y ) G) = H(X) p.., 14. Załóżmy, że X jest całkowalą zmieą losową, zaś σ-ciało G 2 jest iezależe od X i σ-ciała G 1. Udowodij, że E(X σ(g 1, G 2 )) = E(X σ(g 1 )) p Zmiee losowe X, Y i Z są iezależe, przy czym X ma rozkład N (0, 1), Y jest ieujemą zmieą ograiczoą oraz P(Z = ±1) = 1/2. Oblicz E(e XY Y ) oraz E(e XY Y Z). 16. Zmiee N, X 1, X 2,... są iezależe, przy czym N ma rozkład Poissoa z parametrem λ, a X i mają rozkład jedostajy a [0, 1]. Oblicz E(X 1 + X X N ). 17

Zadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo

Zadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1

Zadania z Rachunku Prawdopodobieństwa I - 1 Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo

Zadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

Zadania z rachunku prawdopodobieństwa I* Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo

Zadania z rachunku prawdopodobieństwa I* Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo Zadaia z rachuku prawdopodobieństwa I* - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

Trochę zadań kombinatorycznych. 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach?

Trochę zadań kombinatorycznych. 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach? Trochę zadań kombiatoryczych 1. a ile sposobów moża siedmiu stojących a peroie pasażerów umieścić w trzech wagoach? 2. Na szachowicy o wymiarach umieszczamy 8 ierozróżialych wież szachowych tak aby żade

Bardziej szczegółowo

1 Twierdzenia o granicznym przejściu pod znakiem całki

1 Twierdzenia o granicznym przejściu pod znakiem całki 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae

Bardziej szczegółowo

Twierdzenia graniczne:

Twierdzenia graniczne: Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie.

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie. Zadania z Rachunku Prawdopodobieństwa I - 1 1. Grupę n dzieci ustawiono w sposón losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją

Bardziej szczegółowo

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest

Bardziej szczegółowo

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0, Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi

Bardziej szczegółowo

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

12DRAP - parametry rozkładów wielowymiarowych

12DRAP - parametry rozkładów wielowymiarowych DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEOSTWA

RACHUNEK PRAWDOPODOBIEOSTWA RACHUNEK PRAWDOPODOBIEOSTWA Elemetarym pojęciem w rachuku prawdopodobieostwa jest zdarzeie elemetare tz. możliwy wyik pewego doświadczeia p. rzut moetą: wyrzuceie orła lub reszki arodziy człowieka: urodzeie

Bardziej szczegółowo

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2 (LUX), lato 2017/18. a n n = 10.

Jarosław Wróblewski Analiza Matematyczna 2 (LUX), lato 2017/18. a n n = 10. Czy istieje ciąg (a ) taki, że (podać przykład lub dowieść, że ie istieje) : 576. a > 1 dla ieskończeie wielu, a > 0, szereg a jest zbieży. N 577. a = 1 2 dla ieskończeie wielu, a = 10. 578. a 2 = 1 N,

Bardziej szczegółowo

Zadanie 3. ( ) Udowodnij, że jeśli (X n, F n ) jest martyngałem, to. X i > t) E X n. . t. P(sup

Zadanie 3. ( ) Udowodnij, że jeśli (X n, F n ) jest martyngałem, to. X i > t) E X n. . t. P(sup Szkice rozwiązań zadań z serii dwuastej oraz części zadań z kartkówki. Zadaie 1. Niech (X, F ) będzie martygałem. Czy X jest domykaly, jeśli ciąg EX l X jest zbieży? X jest zbieży prawie a pewo? X jest

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka.0.00 r. Zadaie Rozważy astępującą, uproszczoą wersję gry w,,woję. Talia składa się z 5 kart. Dobrze potasowae karty rozdajey dwó graczo, każdeu po 6 i układay w dwie kupki.

Bardziej szczegółowo

Statystyka matematyczna. Wykład II. Estymacja punktowa

Statystyka matematyczna. Wykład II. Estymacja punktowa Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

θx θ 1, dla 0 < x < 1, 0, poza tym,

θx θ 1, dla 0 < x < 1, 0, poza tym, Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.

Bardziej szczegółowo

ZADANIA NA ĆWICZENIA 3 I 4

ZADANIA NA ĆWICZENIA 3 I 4 Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi

Bardziej szczegółowo

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1.

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1. Podstawy teorii miary probabilistyczej. Zbiory mierzale σ ciało zbiorów Załóżmy, że mamy jakiś zbiór Ω. Niech F będzie taką rodzią podzbiorów Ω, że: Ω F A F A F i I A i F i I A i F Wtedy rodzię F azywamy

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska Zestaw zadań do skryptu z Teorii miary i całki Katarzya Lubauer Haa Podsędkowska Ciała σ - ciała. Zbadaj czy rodzia A jest ciałem w przestrzei X=[0] a) A = X 0 b) A = X 0 3 3 c) A = { X { }{}{ 0}{ 0 }

Bardziej szczegółowo

STATYSTKA I ANALIZA DANYCH LAB II

STATYSTKA I ANALIZA DANYCH LAB II STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i

Bardziej szczegółowo

Kurs Prawdopodobieństwo Wzory

Kurs Prawdopodobieństwo Wzory Kurs Prawdoodobieństwo Wzory Elemety kombiatoryki Klasycza deiicja rawdoodobieństwa gdzie: A - liczba zdarzeń srzyjających A - liczba wszystkich zdarzeń P A Tel. 603 088 74 Prawdoodobieństwo deiicja Kołmogorowa

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa Dana jest przestrzeń probabilistyczna (Ω, F, P ), gdzie Ω jest zbiorem przeliczalnym

Zadania z Rachunku Prawdopodobieństwa Dana jest przestrzeń probabilistyczna (Ω, F, P ), gdzie Ω jest zbiorem przeliczalnym Zadania z Rachunku rawdopodobieństwa - 1 1. Dana jest przestrzeń probabilistyczna (Ω, F, ), gdzie Ω jest zbiorem przeliczalnym i F = 2 Ω. Udowodnij, że istnieją liczby p ω 0, ω Ω p ω = 1 takie, że (A)

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

1. Dany odcinek podzielić dwoma punktami na trzy części. Jakie jest prawdopodobieństwo, że z tych części da się zbudować trójkąt?

1. Dany odcinek podzielić dwoma punktami na trzy części. Jakie jest prawdopodobieństwo, że z tych części da się zbudować trójkąt? 1.5. Prawdopodoieństwo warukowe 15 Zadaia 1. Day odciek podzielić dwoma puktami a trzy części. Jakie jest prawdopodoieństwo, że z tych części da się zudować trójkąt? 2. Moetę o promieiu r rzucoo a parkiet

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

TESTY LOSOWOŚCI. Badanie losowości próby - test serii.

TESTY LOSOWOŚCI. Badanie losowości próby - test serii. TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla

Bardziej szczegółowo

WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD Zdarzeia losowe i prawdopodobieństwo Zmiea losowa i jej rozkłady Metody statystycze metody opisu metody wioskowaia statystyczego sytetyczy liczbowy opis właściwości zbioru daych ocea charakterystyk

Bardziej szczegółowo

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204. Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych

Bardziej szczegółowo

1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n.

1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n. Przedziały ufości W tym rozdziale będziemy zajmować się przede wszystkim zadaiami związaymi z przedziałami ufości Będą as rówież iteresować statystki pozycyje oraz estymatory ajwiększej wiarygodości (Eg

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

Scenariusz lekcji: Kombinatoryka utrwalenie wiadomości

Scenariusz lekcji: Kombinatoryka utrwalenie wiadomości Sceariusz lekcji: Kombiatoryka utrwaleie wiadomości 1 1. Cele lekcji a) Wiadomości Uczeń: za pojęcia: permutacja, wariacja i kombiacja, zdarzeie losowe, prawdopodobieństwo, za iezbęde wzory. b) Umiejętości

Bardziej szczegółowo

Podstawowe rozkłady zmiennych losowych typu dyskretnego

Podstawowe rozkłady zmiennych losowych typu dyskretnego Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

3. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

3. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II - Mówimy, że i) ciąg miar probabilistycznych µ n zbiega słabo do miary probabilistycznej µ (ozn. µ n µ), jeśli fdµ n fdµ dla dowolnej funkcji ciągłej ograniczonej

Bardziej szczegółowo

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego

Bardziej szczegółowo

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B; Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.

Bardziej szczegółowo

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω) ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:

Bardziej szczegółowo

IV Uniwersytecka Sobota Matematyczna 14 kwietnia Funkcje tworzące w kombinatoryce

IV Uniwersytecka Sobota Matematyczna 14 kwietnia Funkcje tworzące w kombinatoryce IV Uiwersyteca Sobota Matematycza 4 wietia 208 Fucje tworzące w ombiatoryce Dla ciągu a 0 a a 2... defiiujemy fucję tworzącą: G(x) = a x = a 0 + a x + a 2 x 2 + a 3 x 3 + =0. Zajdź fucje tworzące dla poiższych

Bardziej szczegółowo

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podaj przykład

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podać przykład

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Tematy zadań 2 razy 33 przykładowe zadania maturalne. Matura podstawowa

Tematy zadań 2 razy 33 przykładowe zadania maturalne. Matura podstawowa Tematy zadań razy przykładowe zadaia maturale Matura podstawowa Porówaj liczby: 54 + 5 oraz 4 W klasie jest 9 ucziów o średiej wieku 6 lat Średia wieku wzrośie o rok, jeżeli doliczy się wiek wychowawcy

Bardziej szczegółowo

ćwiczenia z rachunku prawdopodobieństwa

ćwiczenia z rachunku prawdopodobieństwa ćwiczenia z rachunku prawdopodobieństwa 9.10.2010 ogólna definicja prawdopodobieństwa, własności 1. Niech Ω = [0, 1] oraz niech Σ będzie pewną σ-algebrą podzbiorów odcinka [0, 1]. Udowodnić, że funkcja

Bardziej szczegółowo

WYK LAD Z RACHUNKU PRAWDOPODOBIEŃSTWA I

WYK LAD Z RACHUNKU PRAWDOPODOBIEŃSTWA I WYK LAD Z RACHUNKU PRAWDOPODOBIEŃSTWA I ADAM OS EKOWSKI 1. Aksjomatyka Rachuku Prawdopodobieństwa Przypuśćmy, że wykoujemy pewie eksperymet losowy. Powstaje atychmiast pytaie: w jaki sposób opisać go matematyczie?

Bardziej szczegółowo

Statystyka i rachunek prawdopodobieństwa

Statystyka i rachunek prawdopodobieństwa Statystyka i rachuek prawdopodobieństwa Filip A. Wudarski 22 maja 2013 1 Wstęp Defiicja 1. Statystyka matematycza opisuje i aalizuje zjawiska masowe przy użyciu metod rachuku prawdopodobieństwa. Defiicja

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

1 Wersja testu A 21 czerwca 2017 r. 1. Wskazać taką liczbę wymierną w, aby podana liczba była wymierna. w = w 2, w = 2.

1 Wersja testu A 21 czerwca 2017 r. 1. Wskazać taką liczbę wymierną w, aby podana liczba była wymierna. w = w 2, w = 2. 1 Wersja testu A 1 czerwca 017 r. 1. Wskazać taką liczbę wymierą w, aby podaa liczba była wymiera. 10 1 ) 10 +w, w = 1 5 1 ) 10 +w, w = ) 10 10 3 +w 3, w = 1 ) 5 10 3 +w 3, w = 4. Zapisać wartość podaej

Bardziej szczegółowo

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że: Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

rachunek prawdopodobieństwa - zadania

rachunek prawdopodobieństwa - zadania rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 6.10.2012 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0,1] oraz

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE.

ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE. ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. 1. Niech (X, ρ) będzie przestrzeią metryczą zaś a liczbą rzeczywistą dodatią. Wykaż, że fukcja σ: X X R określoa wzorem σ(x, y) = mi {ρ(x, y), a} jest metryką

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo