Komputerowa analiza danych doświadczalnych

Podobne dokumenty
Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

STATYSTKA I ANALIZA DANYCH LAB II

Kurs Prawdopodobieństwo Wzory

Komputerowa analiza danych doświadczalnych

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Prawdopodobieństwo i statystyka

WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Twierdzenia graniczne:

ZADANIA NA ĆWICZENIA 3 I 4

1 Twierdzenia o granicznym przejściu pod znakiem całki

Podstawowe rozkłady zmiennych losowych typu dyskretnego

Lista 6. Estymacja punktowa

16 Przedziały ufności

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE

Ważne rozkłady i twierdzenia

Matematyka ubezpieczeń majątkowych r.

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,

Prawdopodobieństwo i statystyka r.

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Komputerowa analiza danych doświadczalnych

Statystyka matematyczna. Wykład II. Estymacja punktowa

Komputerowa analiza danych doświadczalnych

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

Rozkład normalny (Gaussa)

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

Komputerowa analiza danych doświadczalnych

d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

Estymacja przedziałowa

STATYSTYKA MATEMATYCZNA

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

TESTY LOSOWOŚCI. Badanie losowości próby - test serii.

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja

KADD Metoda najmniejszych kwadratów

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

Prawdopodobieństwo i statystyka r.

Komputerowa analiza danych doświadczalnych

1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n.

2. INNE ROZKŁADY DYSKRETNE

Ciągi liczbowe wykład 3

1 Układy równań liniowych

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1.

STATYSTYKA I ANALIZA DANYCH

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora

1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,

Funkcja generująca rozkład (p-two)

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

ZDARZENIE ELEMENTARNE to możliwy wynik doświadczenia losowego. Wszystkie takie możliwe wyniki tworzą zbiór zdarzeń elementarnych.

Podprzestrzenie macierzowe

Parametryzacja rozwiązań układu równań

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

Wyższe momenty zmiennej losowej

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

Model ciągły wyceny opcji Blacka Scholesa - Mertona. Wzór Blacka - Scholesa na wycenę opcji europejskiej.

Podprzestrzenie macierzowe

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).

RACHUNEK PRAWDOPODOBIEOSTWA

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11

n n X n = σ σ = n n n Ponieważ zmienna losowa standaryzowana ma rozkład normalny N(0, 1), więc

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

0.1 ROZKŁADY WYBRANYCH STATYSTYK

Wykład 11 ( ). Przedziały ufności dla średniej

Statystyka matematyczna dla leśników

θx θ 1, dla 0 < x < 1, 0, poza tym,

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

Materiał ćwiczeniowy z matematyki Marzec 2012

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

MODELOWANIE (SYMULACJA) PROCESÓW STOCHASTYCZNYCH

STATYSTYKA MATEMATYCZNA. WYKŁAD 0 (powt. wiadomości z r. p-stwa)

Komputerowa analiza danych doświadczalnych

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Statystyka i rachunek prawdopodobieństwa

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Prawdopodobieństwo i statystyka r.

Rozkład Poissona. I. Cel ćwiczenia. Obowiązujący zakres materiału. Podstawy teoretyczne. Opracował: Roman Szatanik

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Transkrypt:

Komputerowa aaliza daych doświadczalych Wykład 5 4.03.07 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 06/07

Metody Mote Carlo Najważiejsze rozkłady prawdopodobieństwa

Metoda akceptacji-odrzuceń vo Neumaa

Metoda (akceptacji) vo Neumaa Jak to działa? geerujemy parę liczb z rozkładu jedorodego: ( y i, ui ) a y i b, 0 ui d rozważamy krzywą: u=g( y ) oraz fukcję stałą: sprawdzamy, czy ui <g( y i ) jeśli waruek jest spełioy, akceptujemy liczbę yi, jeśli ie - odrzucamy zaakceptowae wartości yi podlegają rozkładowi g(y) rozkład g(y) ie musi być uorm. wydajość metody: u=d, d g max odrzucamy akceptujemy b g( y ) dy N accept E= N all ( b a ) d a 4 / 34

Metoda vo Neumaa z fukcją pomociczą Wydajość metody vo Neumaa moża poprawić, jeśli odpowiedio zawęzimy obszar losowaia: wprowadzamy fukcję pomociczą s(y), z której łatwo wygeerować zmiee losowe (p. metodą odwrotej dystrybuaty), i która spełia waruek: g ( y ) c s( y ), a< y <b geerujemy liczbę losową yi z rozkładu s(y) a przedziale a< y i <b oraz liczbę ui z rozkładu jedorodego a przedziale 0<ui < odrzucamy liczbę yi, jeżeli: ui g( y i ) wydajość metody: b c s( y i ) a g( y )dy E= b c a s( y )dy 5 / 34

Metoda vo Neumaa z fu. pom. - przykład Rozważmy fukcję gęstości postaci: g ( y)=cos(π x)/(π x+)+/ 4, 0 y Fukcja ta, w przedziale od 0 do, ma dwa maksima: g (0)=c, g ()=d W zwykłej metodzie vo Neumaa wybieramy prostą: umax =c Tutaj możemy łatwo wybrać fukcję pomociczę s(y) jako prostą przechodzącą przez pubkty (0, c) i (, d) 3." c Aby otrzymać wzór s(y) rozważamy układ rówań: c=a 0+ b d =a + b Z czego wzór a s(y): d " s( y)= d c y+ c Jak otrzymać wartość losową z tego rozkładu? 6 / 34

Metoda vo Neumaa z fu. pom. - przykład Metodą odwrotej dystrybuaty! Liczymy dystrybuatę: S y = d c y cy 4 Oraz jej fukcję odwrotą: c xc(d c)+(d c) y=s ( x)= c(c d ) Losujemy wartość xi z rozkładu jedorodego w graicach: 50% wzrost wydajości! S (0)=0, S ()=d +c I wstawiamy ją do wzoru a odwrotą dystrybuatę by otrzymać yi z rozkł. s(y) Losujemy pomociczą wartość ui z rozkładu jedorodego 0<u i < g ( yi ) Tutaj będzie jeszcze lepiej! ui < Sprawdzamy waruek akceptacji yi: s ( y i ) 7 / 34

Geeracja liczb o rozkładzie ormalym Jak pamiętamy, rozkład ormaly ie ma aalityczej formy dystrybuaty Do geerowaia liczb z rozkładu ormalego o x^ =0, σ= (stadardowego) służy metoda Box a-muller a z f ( z)= exp π ( ) Geerujemy parę liczb (u,u) z rozkładów jedorodych (0,) i dokoujemy zamiay zmieych: v = u v = u Obliczamy: s=v + v Gdy s odrzucamy parę trasformacja x x^ dowolego rozkł. orm. z= σ do stadardowego Otrzymujemy dwie liczby pseudolosowe opisae rozkładem ormalym stadardowym: x =v (/ s)l s x =v (/ s) l s 8 / 34

Całkowaie metodą Mote Carlo Jak już zauważylismy, pole powierzchi pod rozpatrywaą krzywą w stosuku do pola prostokąta, z którego losujemy dwie liczby pseudolosowe, ma się (w przybliżeiu) do siebie tak jak liczba par b zaakceptowaych do odrzucoych: g ( y) dy N accept N all ( b a ) d a Co pozwala a przybliżoe obliczeie wartości całki ozaczoej: b N accept g ( y) dy N ( b a ) d all a W te sposób moża obliczyć dowolą całkę ozaczoą poprzez prostą geerację dwóch liczb z rozkładu jedorodego. W wersji -wymiarowej oczywiście możemy to zrobić dla dowolej liczby zmieych losowych (i obliczać całki wielowymiarowe) Względa dokładość obliczeia całki: Δ I = I N wszystkie 9 / 34

Całkowaie metodą Mote Carlo - przykład Najpopulariejszy przypadek to wykorzystaie metody Mote Carlo do obliczeia wartości liczby π W tym celu rozpatrzmy ćwiartkę okręgu o jedostkowym promieiu. Fukcja opisująca tę ćwiartkę to: g ( y)= ( R y ); 0 y ; 0 y Pole ćwiartki jedostkowego okręgu to: I = g ( y )dy =π / 4 π=4 I 0 Wartość całki obliczamy metodą Mote Carlo: N accept ( b a ) d I N all wszystko przypomia rzucaie lotkami (darts) 0 / 34

Całkowaie metodą Mote Carlo - przykład Najpopulariejszy przypadek to wykorzystaie metody Mote Carlo do obliczeia wartości π W tym celu rozpatrzmy ćwiartkę okręgu o jedostkowym promieiu. Fukcja opisująca tę ćwiartkę to: g ( y)= ( R y ); 0 y ; 0 y Pole ćwiartki jedostkowego okręgu to: I = g ( y )dy =π / 4 π=4 I 0 Wartość całki obliczamy metodą Mote Carlo: N accept ( b a ) d I N all / 34

Całkowaie metodą Mote Carlo - przykład Najpopulariejszy przypadek to wykorzystaie metody Mote Carlo do obliczeia wartości π W tym celu rozpatrzmy ćwiartkę okręgu o jedostkowym promieiu. Fukcja opisująca tę ćwiartkę to: g ( y)= ( R y ); 0 y ; 0 y Pole ćwiartki jedostkowego okręgu to: I = g ( y )dy =π / 4 π=4 I 0 Wartość całki obliczamy metodą Mote Carlo: N accept ( b a ) d I N all / 34

Całkowaie metodą Mote Carlo - przykład Najpopulariejszy przypadek to wykorzystaie metody Mote Carlo do obliczeia wartości π W tym celu rozpatrzmy ćwiartkę okręgu o jedostkowym promieiu. Fukcja opisująca tę ćwiartkę to: g ( y)= ( R y ); 0 y ; 0 y Pole ćwiartki jedostkowego okręgu to: I = g ( y )dy =π / 4 π=4 I 0 Wartość całki obliczamy metodą Mote Carlo: N accept ( b a ) d I N all 3 / 34

Całkowaie metodą Mote Carlo - przykład Najpopulariejszy przypadek to wykorzystaie metody Mote Carlo do obliczeia wartości π W tym celu rozpatrzmy ćwiartkę okręgu o jedostkowym promieiu. Fukcja opisująca tę ćwiartkę to: g ( y)= ( R y ); 0 y ; 0 y Pole ćwiartki jedostkowego okręgu to: I = g ( y )dy =π / 4 π=4 I 0 Wartość całki obliczamy metodą Mote Carlo: N accept ( b a ) d I N all 4 / 34

Najważiejsze rozkłady prawdopodobieństwa

Rozkład dwumiaowy W Polsce zay rówież jako rozkład Beroulliego (ag. biomial distributio) w iych krajach może ozaczać iy rozkład Rozważmy proste doświadczeie rzut moetą: w wyiku rzutu możemy otrzymać dwa wykluczające się wyiki zatem przestrzeń zdarzeń elemetarych: E= A+ A możemy zdefiiować prawdopodobieństwa: P A = p P A = p=q Wyik doświadczeia może być zmieą losową Xi, która przybiera wartość lub 0 w zależości od tego, czy zaszło zdarzeie A lub A Jeśli powtórzymy wielokrotie doświadczeie, to otrzymamy rozkład zmieej losowej X=X+X+.X 6 / 34

Rozkład dwumiaowy Z rachuku prawdopodobieństwa wiemy, że jeżeli przestrzeń zdarzeń elemetarych E= A + A +...+ A i zdarzeia są iezależe, to: P( A A... A )=P ( A ) P ( A )... P ( A ) Z tego wyika, że prawdopodobieństwo, że k pierwszych doświadczeń (z ) da wyik zdarzeia A a pozostałe -k dadzą wyik zdarzeia A, wyosi: P( A k A k )=P ( A k ) P( A k )= p k q k Zgodie z kombiatoryką, pojawieie się k razy zdarzeia A w! doświadczeiach realizuje się a po k sposobów: = różiących się kolejością zdarzeń A i A k!( k )! k () Prawdopodobieństwo wystąpieia k razy zdarzeia A i -k razy zdarzeia A w doświadczeiach, w dowolej kolejości, wyosi: k k P(k )=W k = p q ; q= p k Tak zdefiioway rozkład azywamy rozkładem dwumiaowym () 7 / 34

Rozkład dwumiaowy Policzmy wartość oczekiwaą i wariację rozkładu dwumiaowego Dla pojedyczego doświadczeia Xi (zmieej losowej, która może przyjąć wartość lub 0): E ( X )= xi P ( X =x i ) i= E ( X i )= P ( X i =)+0 P( X i=0) E ( X i )= p+0 q= p σ ( X i )=E ( ( x i p) ) =( p) p+(0 p) q= pq Z własości warotści oczekiwaej: E ( X = X + X... + X )= E ( X i )=p i= Zakładając iezależość zmieych (zerowe kowariacje) otrzymamy z kolei: σ ( X )=pq Dla zdarzeń losowych: X = p p pq p q 0 p = 0 p 4 8p 4p p p p p 4p =p p =pq 8 / 34

Rozkład dwumiaowy - rysuek p=0.3 =0 p=0.6 p=3.0 p=cost 9 / 34

Rozkład dwumiaowy tablica Galtoa Iym przykładem realizacji rozkładu dwumiaowego jest tablica (deska) Galtoa: mamy rzędów kołeczków kuleczka może przesuąć się w lewo (z prawdopod. p=0,5) lub w prawo (q=0.5) kuleczka przesuie się k razy w lewo i -k razy w prawo każde przesuięcie jest iezależe zatem dla jedej kokretej kofiguracji (drogi) spadku kulki prawdopodobieństwo: pk q k jeśli mamy róże kofiguracje przesuięć: P(k )=W k = p k q k ; q= p k () deska Galtoa a Wydziale Fizyki PW http://www.if.pw.edu.pl/~pluta/pl/tgak.jpg 0 / 34

Rozkład dwumiaowy ie przykłady z życia k k P(k )=W k = p q ; q= p k () ) ilość studetów a 3 roku fizyki p prawdopodobieństwo zaliczeia KADD'ów k ilość osób, które przedmiot zaliczyły ) liczba dzieci urodzoych w 05 roku p prawdopodobieństwo, że urodzi się dziewczyka (=0,5) k ilość urodzoych dziewczyek / 34

Rozkład wielomiaowy uogólieie Jeśli przestrzeń zdarzeń elemetarych: E= A + A +...+ Al l Zdarzeia się wzajemie wykluczają: P( A j )= p j, To prawdopodobieństwo zajścia kj razy zdarzeia Aj: l l! k W k k..., k = l p j, k j= p j= j= j,, l k j! j= j= j= Taki rozkład azywamy rozkładem wielomiaowym Jeśli zdefiiujemy zmiee losowe Xij rówe, gdy wyikiem i-tego doświadczeia jest zdarzeie Aj, lub rówe 0 w przeciwym razie, oraz X j= X ij i= Wtedy wartość oczekiwaa i elemety macierzy kowariacji: E ( X j )= ^ x j = p j cij =p i ij p j Dokładiejsze wyprowadzeie: https://pl.wikibooks.org/wiki/statystyka_matematycza/twierdzeie_o_rozk%c5%8 adzie_wielomiaowym / 34

Częstość i prawo wielkich liczb W rzeczywistości ie zamy prawodpodobieństw zdarzeń (p. pj w rozkł. wielomiaowym) wyzaczamy je eksperymetalie Częstość wystąpieia zdarzeia Aj w doświadczeiach będzie określoa wzorem: H j= X j Częstość jest zmieą losową, dla ktorej (przy próbach): xj ^ E ( H j )=h j= E =pj ( ) H j = Xj = X j = p j p j Wartość oczekiwaa częstości jest rówa jego prawdopodobieństwu. Iloczy pj(-pj) jest zawsze miejszy od /4, więc stadardowe odchyleie częstości jest miejsze iż /. Jest to prawo wielkich liczb Przeprowadzeie prób umożliwia pomiar prawdopodobieństwa zdarzeia Aj, kwadrat iepewości jest wtedy odwrotie proporcjoaly do. Jest to tzw. iepewość statystycza 3 / 34

Rozkład hipergeometryczy W urie jest N kul k białych i N-K czarych W próbach wyciągamy (bez zwracaia) k kul białych i -k=l kul czarych. Jakie jest prawdopodobieństwo wyciągięcia k kul białych? Wylosowaie kolejej kulki zmieia proporcje kul białych do czarych i wpływa a wyik kolejego losowaia rozkład dwumiaowy ie ma tu zastosowaia. Mamy jedak: N liczba możliwości wylosowaia z N kulek: N prawdopodobieństwo takiego zdarzeia: / możliwość wylosowaia k spośród K białych i l spośród L czarych kulek wyoszą: K L K L k l k l prawdopodobieństwo szukae wyosi zatem: W = k N Aalogiczie jak w rozkładzie dwumiaowym, defiiujemy zmieą losową: X = X i ( ) ( ) () ( ) i= 4 / 34

Rozkład hipergeometryczy Aalogiczie jak w rozkładzie dwumiaowym, X = X i defiiujemy zmieą losową: i= Xi przyjmuje wartość dla białych i 0 dla czarych wylosowaych kul Moża pokazać, że (Bradt): K K K N N E ( X )= X = N N N Dla N rezultat kolejego losowaia iewiele wpływa a astępe wyiki. Wtedy rozkłąd hipergeometryczy upodabia się do dwumiaowego: pq ( N ) K N K K p=, q=, E ( X ) = =p, σ ( X )= N N N N 5 / 34

Rozkład Poissoa Rozważmy rozkład dwumiaowy: k k P(k )=W k = p q ; q= p k dla ale przy stałym p=λ rozkład dwumiaowy dąży do rozkładu Poissoa (wyprowadzeie Bradt): k lim k k W k = f k = e W k= p q k! k ormalizacja: () k f (k)= λk! e =e k =0 k=0 wartość oczekiwaa: wariacja: λ ( 3 σ (K )=E ( K ) ( E ( K ) ) =λ (λ +) λ =λ 3 Skosość i wsp. asymetrii: μ3 =E ( ( k k^ ) )=λ ) +λ + λ + λ + =e λ e λ =! 3! k j λ λ λ E ( K ) = k e =λ e λ =λ k=0 k! j=0 j! λ γ= μ3 σ = 3 λ / =λ λ 3/ 6 / 34

Rozkład Poissoa - przykłady Rozkład Poissoa stosujemy wtedy, gdy mamy dużą liczbę iezależych zdarzeń, z których tylko ielicze mają iteresującą as własość (duże, małe p w rozkł. dwumiaowym) Rozkład Poissoa występuje tam, gdzie mamy zjawiska dyskrete, gdy prawdopodobieństwo wystąpieia zjawiska jest stałe w czasie lub przestrzei: liczba połączeń przychodzących do cetrali a miutę liczba mutacji w daym odciku DNA po ekspozycji a pewą dawkę promieiowaia liczbę zabitych każdego roku przez kopięcie koia w korpusie kawalerii w Prusach (Wikipedia) 7 / 34

Rozkład Poissoa rozpad promieiotwórczy Mamy jądro promieiotwórcze o czasie życia τ. Obserwujemy je w czasie T«τ. Prawdopodobieństwo rozpadu jądra w tym czasie W«. Dzielimy czas T a przedziałów, prawdopodobieństwo: p=w/. Obserwujemy w czasie T źródło zawierające N jąder. Liczba przedziałów czasowych k, w których zaobserwowao k=0,,, 3 itd. rozpadów. Wtedy częstość h(k) = k/. Doświadczalie zaobserwowao, że dla N i dużych rozkład h(k) dąży do rozkładu Poissoa, co staowi bezpośredi dowód a iezależość i statystyczy charakter rozpadów promieiotwórczych (badaia Rutherforda i Geigera). Aalogiczie częstość obserwowaia k gwiazd w elemecie kąta bryłowego sfery iebieskiej lub k rodzyek w jedostkowym elemecie objętości keksu 8 / 34

Rozkład jedostajy Gęstość prawdopodobieństwa: f(x) f ( x)=c ; x a, b f ( x)=0 ; x ℝ a, b Współczyik (ormalizacja) c: b f ( x) dx=c dx=c (b a)= c= a ; x a, b b a f ( x)=0 ; x ℝ a, b f ( x)= Dystrybuata: F ( x)=0 ; x <a x x a dx '= ; x a ; b b a a b a F ( x)= ; x >b F ( x)= c b a a b x Wariacja: σ ( X )=E ( X ) ( E ( X )) b (b3 a 3 ) E ( X )= x dx= 3(b a) = b a a (b a)(b +ba+a ) b +ba+a = = 3(b a) 3 b +ba+ a b +a σ ( X )= = 3 b +ba+a b + ba+a (b a) = = 3 4 ( ) Wartość oczekiwaa: b (b a)(b+a) b +a E ( X )= x^ = xdx= (b a )= = b a a (b a) (b a) 9 / 34

Rozkład wykładiczy Gęstość prawdopodobieństwa: λ x f ( x)=λ e ; x 0 ; λ>0 f ( x)=0 ; x<0 Dystrybuata: F ( x)=0 ; x <0 x x F ( x)= f ( x) dx=λ e 0 0 F ( x)= e λ x ' λ x dx '= λ e λ x ' λ [ 0 ; x 0 Wartość oczekiwaa: 0 0 E ( x)= x^ = x f ( x )dx=λ e λ x x dx= ] x λ Wariacja: E ( x )= x f ( x)dx= 0 σ ( x)=e ( x ) ( E ( x)) = λ = λ λ λ 30 / 34

Rozkład ormaly stadardowy Gęstość prawdopodobieństwa: x / f ( x) ϕ 0 ( x)= e π rozkład o średiej 0 i wariacji Dystrybuata ie ma postaci aalityczej (korzystamy z tabel) Rozkład jest uormoway: e x / dx= π Jeśli wprowadzimy zmieą: Y =( X a)/ b Otrzymamy rozkład Gaussa: f ( y ) ϕ( y )= e ( y a ) / b π b średia (przesuięcie): ^y =a wariacja (szerokość): σ (Y )=b 3 / 34

Rozkład ormaly stadardowy - własości Pukt przegięcia rozkładu: stadardowego x=± Gaussa x=a±b Załóżmy, że zamy dystrybuatę: F 0 ( x) Φ0 ( x)=p ( X x) Ze względu a asymetrię gęstości: P ( X > x )= Φ0 ( x )=( ϕ 0 ( x )) Aalogiczie, wewątrz przedziału x: P ( X x)= Φ0 ( x ) Dystrybuatę r. orm. moża uogólić a r. Gaussa: Φ ( y)=φ0 ( x a b ) 3 / 34

Rozkład ormaly stadardowy - własości Wtedy szczególie iteresujące jest obliczeie występowaia zmieej los. dla wielokrotości odchyleia stadardowego: P ( Y a σ )= Φ 0 ( ) Otrzymamy wtedy: P ( Y a σ)=68,3 % b = Φ0 () b P ( Y a >σ)=3,7 % P ( Y a σ)=95,4 % P ( Y a > σ )=4,6 % P ( Y a 3 σ )=99,8 % P ( Y a >3 σ )=0, % Z Wykładu pamiętamy, że współczyik rozszerzeia iepewość typu A zwykle jest między a 3 tu widać dlaczego W auce przez odchyleie stadardowe określamy rówież różice w obserwowaym sygale eksperymetalym w stosuku do sytuacji, gdy efektu fizyczego ie ma 33 / 34

Wielokrotości sigma Idealym przykładem jest odkrycie bozou Higgsa W fizyce cząstek przyjęło się, że dopiero mając odchyleie 5σ moża mówić o odkryciu: P ( Y a 5 σ)=99,99994 % Różica a takim poziomie wymagała zebraia dużej ilości daych, stąd potwierdzeie jego istieia zajęło poad 3 lata 34 / 34

KONIEC