Komputerowa aaliza daych doświadczalych Wykład 5.03.09 dr iż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr leti 08/09
Trasformacje liiowe Propagacja iepewości
Trasformacje liiowe Najczęściej, ze względu a prostotę, posługujemy się trasformacjami liiowymi (ie trasformacje ajczęściej aproksymujemy liiowymi, rozwijając a szereg Taylora) fukcje Y =(Y, Y,..., Y r ) są liiowymi fukcjami zmieych Y =a + t X + t X +...+ t X Y =a + t X + t X +...+ t X Y r =a r + t r X + t r X +...+ t r X W zapisie macierzowym: Y =T X + a Wartość oczekiwaa Y: E ( Y ) =^y =T ^x + a X=( X, X,..., X ) Jest to przypadek ogóly zmiee X ie są iezależe (istieją kowariacje) Mierzymy pośredio wielkość (wielkości) fizyczą Y, która zależy od wielkości fizyczych X mierzoych bezpośredio, które ie są iezależe od siebie. Macierz korawiacji Y: C Y =E ((Y ^y )(Y ^y )T ) T =E ( (T X + a T x^ a)(t X + a T ^x a) ) T T =E ( T ( X ^x )( X x^ ) T ) T T =TE ( ( X ^x )( X x^ ) ) T C Y =T C X T T 3 / 43
Przykład (z laboratorium) Mierzymy bezpośredio trzy wielkości fizycze X, X, X3 X X X3 Pomiar Pomiar 4 / 43
Przykład (z laboratorium) Mierzymy bezpośredio trzy wielkości fizycze X, X, X3 5 / 43
Przykład (z laboratorium) Mierzymy bezpośredio trzy wielkości fizycze X, X, X3 Z tych wielkości wyzaczamy mierzoe pośredio ie wielkości Y oraz Y Y =T X + a Y = X +5 X + X 3 Y =3+ 0.5 X + 4 X T= 5 0.5 4 0 [ ] Jaki będzie eksperymetaly wyik? E ( Y ) = ^y =T ^x +a C Y =T C X T T 6 / 43
Metody Mote Carlo Najważiejsze rozkłady prawdopodobieństwa
Metoda akceptacjiodrzuceń vo Neumaa
Metoda (akceptacji) vo Neumaa Jak to działa? geerujemy parę liczb z rozkładu jedorodego: ( y i, ui ) a y i b, 0 ui d rozważamy krzywą: u=g( y ) oraz fukcję stałą: sprawdzamy, czy ui <g( y i ) jeśli waruek jest spełioy, akceptujemy liczbę yi, jeśli ie - odrzucamy zaakceptowae wartości yi podlegają rozkładowi g(y) rozkład g(y) ie musi być uorm. wydajość metody: u=d, d g max odrzucamy akceptujemy b g( y ) dy N accept E= N all ( b a ) d a 9 / 43
Metoda vo Neumaa z fukcją pom. Wydajość metody vo Neumaa moża poprawić, jeśli odpowiedio zawęzimy obszar losowaia: wprowadzamy fukcję pomociczą s(y), z której łatwo wygeerować zmiee losowe (p. metodą odwrotej dystrybuaty), i która spełia waruek: g ( y ) c s( y ), a< y <b geerujemy liczbę losową yi z rozkładu s(y) a przedziale a< y i <b oraz liczbę ui z rozkładu jedorodego a przedziale 0<ui < odrzucamy liczbę yi, jeżeli: u g( y i ) i c s( y i ) b wydajość metody: a g( y )dy E= b c a s( y )dy 0 / 43
Metoda vo Neumaa z fukcją pom. Rozważmy fukcję gęstości postaci: g ( y)=cos(π x)/(π x+)+/ 4, 0 y Fukcja ta, w przedziale od 0 do, ma dwa maksima: g (0)=c, g ()=d W zwykłej metodzie vo Neumaa wybieramy prostą: umax =c Tutaj możemy łatwo wybrać fukcję pomociczę s(y) jako prostą przechodzącą przez pubkty (0, c) i (, d) 3." c Aby otrzymać wzór s(y) rozważamy układ rówań: c=a 0+ b d =a + b Z czego wzór a s(y): d " s( y)= d c y+ c Jak otrzymać wartość losową z tego rozkładu? / 43
Metoda vo Neumaa z fukcją pom. Metodą odwrotej dystrybuaty! Liczymy dystrybuatę: S y = d c y cy 4 Oraz jej fukcję odwrotą: c xc(d c)+(d c) y=s ( x)= c(c d ) Losujemy wartość xi z rozkładu jedorodego w graicach: 50% wzrost wydajości! S (0)=0, S ()=d +c I wstawiamy ją do wzoru a odwrotą dystrybuatę by otrzymać yi z rozkł. s(y) Losujemy pomociczą wartość ui z g ( yi ) rozkładu jedorodego 0<u i < Tutaj będzie jeszcze lepiej! ui < Sprawdzamy waruek akceptacji yi: s ( y i ) / 43
Całkowaie metodą Mote Carlo Jak już zauważylismy, pole powierzchi pod rozpatrywaą krzywą w stosuku do pola prostokąta, z którego losujemy dwie liczby pseudolosowe, ma się (w przybliżeiu) do siebie tak jak liczba par b zaakceptowaych do odrzucoych: g( y )dy N accept N all ( b a ) d a Co pozwala a przybliżoe obliczeie wartości całki ozaczoej: b N accept g( y )dy N ( b a ) d all a W te sposób moża obliczyć dowolą całkę ozaczoą poprzez prostą geerację dwóch liczb z rozkładu jedorodego. W wersji -wymiarowej oczywiście możemy to zrobić dla dowolej liczby zmieych losowych (i obliczać całki wielowymiarowe) Względa dokładość obliczeia całki: Δ I = I N wszystkie 3 / 43
Całkowaie metodą Mote Carlo - przykład Najpopulariejszy przypadek to wykorzystaie metody Mote Carlo do obliczeia wartości liczby π W tym celu rozpatrzmy ćwiartkę okręgu o jedostkowym promieiu. Fukcja opisująca tę ćwiartkę to: g ( y)= ( R y ); 0 y ; 0 y Pole ćwiartki jedostkowego okręgu to: I = g ( y )dy =π / 4 π=4 I 0 Wartość całki obliczamy metodą Mote Carlo: I wszystko przypomia rzucaie lotkami (darts) N accept ( b a ) d N all 4 / 43
Całkowaie metodą Mote Carlo - przykład Najpopulariejszy przypadek to wykorzystaie metody Mote Carlo do obliczeia wartości π W tym celu rozpatrzmy ćwiartkę okręgu o jedostkowym promieiu. Fukcja opisująca tę ćwiartkę to: g ( y)= ( R y ); 0 y ; 0 y Pole ćwiartki jedostkowego okręgu to: I = g ( y )dy =π / 4 π=4 I 0 Wartość całki obliczamy metodą Mote Carlo: I N accept ( b a ) d N all 5 / 43
Całkowaie metodą Mote Carlo - przykład Najpopulariejszy przypadek to wykorzystaie metody Mote Carlo do obliczeia wartości π W tym celu rozpatrzmy ćwiartkę okręgu o jedostkowym promieiu. Fukcja opisująca tę ćwiartkę to: g ( y)= ( R y ); 0 y ; 0 y Pole ćwiartki jedostkowego okręgu to: I = g ( y )dy =π / 4 π=4 I 0 Wartość całki obliczamy metodą Mote Carlo: I N accept ( b a ) d N all 6 / 43
Całkowaie metodą Mote Carlo - przykład Najpopulariejszy przypadek to wykorzystaie metody Mote Carlo do obliczeia wartości π W tym celu rozpatrzmy ćwiartkę okręgu o jedostkowym promieiu. Fukcja opisująca tę ćwiartkę to: g ( y)= ( R y ); 0 y ; 0 y Pole ćwiartki jedostkowego okręgu to: I = g ( y )dy =π / 4 π=4 I 0 Wartość całki obliczamy metodą Mote Carlo: I N accept ( b a ) d N all 7 / 43
Całkowaie metodą Mote Carlo - przykład Najpopulariejszy przypadek to wykorzystaie metody Mote Carlo do obliczeia wartości π W tym celu rozpatrzmy ćwiartkę okręgu o jedostkowym promieiu. Fukcja opisująca tę ćwiartkę to: g ( y)= ( R y ); 0 y ; 0 y Pole ćwiartki jedostkowego okręgu to: I = g ( y )dy =π / 4 π=4 I 0 Wartość całki obliczamy metodą Mote Carlo: I N accept ( b a ) d N all 8 / 43
Geeracja liczb o rozkładzie ormalym Jak pamiętamy, rozkład ormaly ie ma aalityczej formy dystrybuaty Do geerowaia liczb z rozkładu ormalego o x^ =0, σ= (stadardowego) służy metoda Box a-muller a z f ( z)= exp π ( ) Geerujemy parę liczb (u,u) z rozkładów jedorodych (0,) i dokoujemy zamiay zmieych: v = u v = u Obliczamy: s=v + v Gdy s odrzucamy parę trasformacja x x^ dowolego rozkł. orm. z= σ do stadardowego Otrzymujemy dwie liczby pseudolosowe opisae rozkładem ormalym stadardowym: x =v (/ s)l s x =v (/ s) l s 9 / 43
Najważiejsze rozkłady prawdopodobieństwa
Rozkład dwumiaowy W Polsce zay rówież jako rozkład Beroulliego (ag. biomial distributio) w iych krajach może ozaczać iy rozkład Rozważmy proste doświadczeie rzut moetą: w wyiku rzutu możemy otrzymać dwa wykluczające się wyiki zatem przestrzeń zdarzeń elemetarych: E= A+ A możemy zdefiiować prawdopodobieństwa: P A = p P A = p=q Wyik doświadczeia może być zmieą losową Xi, która przybiera wartość lub 0 w zależości od tego, czy zaszło zdarzeie A lub A Jeśli powtórzymy wielokrotie doświadczeie, to otrzymamy rozkład zmieej losowej X=X+X+.X / 43
Rozkład dwumiaowy Z rachuku prawdopodobieństwa wiemy, że jeżeli przestrzeń zdarzeń elemetarych E= A + A +...+ A i zdarzeia są iezależe, to: P ( A A... A )= P( A ) P( A )... P( A ) Z tego wyika, że prawdopodobieństwo, że k pierwszych doświadczeń (z ) da wyik zdarzeia A a pozostałe -k dadzą wyik zdarzeia A, wyosi: k P ( A A k k )= p q k Zgodie z kombiatoryką, pojawieie się k razy zdarzeia A w doświadczeiach realizuje się a po k sposobów:! = różiących się kolejością zdarzeń A i A k k!( k)! () Prawdopodobieństwo wystąpieia k razy zdarzeia A i -k razy zdarzeia A w doświadczeiach, w dowolej kolejości, wyosi: k k P (k )=W k = p q ; q= p k Tak zdefiioway rozkład azywamy rozkładem dwumiaowym () / 43
Rozkład dwumiaowy Dystrybuata Rozkład prawdopodobieństwa P(k) F(k) k liczba sukcesów k liczba sukcesów 3 / 43
Rozkład dwumiaowy Policzmy wartość oczekiwaą i wariację rozkładu dwumiaowego Dla pojedyczego doświadczeia Xi (zmieej losowej, która może przyjąć wartość lub 0): E ( X )= xi P ( X =x i ) i= E ( X i )= P ( X i =)+0 P( X i=0) E ( X i )= p+0 q= p σ ( X i )=E ( ( x i p) ) =( p) p+(0 p) q= pq Z własości warotści oczekiwaej: E ( X = X + X... + X )= E ( X i )=p i= Zakładając iezależość zmieych (zerowe kowariacje) otrzymamy z kolei: σ ( X )=pq Dla zdarzeń losowych: X = p p pq p q 0 p = 0 p 4 8p 4p p p p p 4p =p p =pq 4 / 43
Rozkład dwumiaowy - właściwości Dla różych, stałe p p=0.3 p=0.6 5 / 43
Rozkład dwumiaowy tablica Galtoa Iym przykładem realizacji rozkładu dwumiaowego jest tablica (deska) Galtoa: mamy rzędów kołeczków kuleczka może przesuąć się w lewo (z prawdopod. p=0,5) lub w prawo (q=0.5) kuleczka przesuie się k razy w lewo i -k razy w prawo każde przesuięcie jest iezależe zatem dla jedej kokretej kofiguracji (drogi) spadku kulki prawdopodobieństwo: pk q k jeśli mamy róże kofiguracje przesuięć: P(k )=W k = p k q k ; q= p k () deska Galtoa a Wydziale Fizyki PW http://www.if.pw.edu.pl/~pluta/pl/tgak.jpg 6 / 43
Rozkład dwumiaowy ie przykłady k k P(k )=W k = p q ; q= p k () ) ilość studetów a 3 roku fizyki p prawdopodobieństwo zaliczeia KADD (załóżmy, że p>0.5 :) ) k ilość osób, które przedmiot zaliczyły ) liczba dzieci urodzoych w 05 roku p prawdopodobieństwo, że urodzi się dziewczyka (p=0,5) k ilość urodzoych dziewczyek 3) Małe i duże ryby w stawie - liczba wszystkich ryb p - prawdopodobieństwo złowieia dużej ryby k - liczba dużych ryb 7 / 43
Rozkład wielomiaowy uogólieie Uogólieie, gdy mamy więcej możliwości iż dwie (sukces i porażka) Jeśli przestrzeń zdarzeń elemetarych: E= A + A +...+ A l l Zdarzeia się wzajemie wykluczają: P( A j )= p j, p j= To prawdopodobieństwo zajścia kj razy zdarzeia Aj: l l! k P=W k k..., k = l p j, k j = j= j= k! j j= j,, l j= Taki rozkład azywamy rozkładem wielomiaowym Jeśli zdefiiujemy zmiee losowe Xij rówe, gdy wyikiem i-tego doświadczeia jest zdarzeie Aj, lub rówe 0 w przeciwym razie, oraz X j= X ij i= Wtedy wartość oczekiwaa i kowariacja: E ( X j )= ^ x j = p j cij =p i ij p j 8 / 43
Rozkład wielomiaowy uogólieie Przykład gra w karty: troje graczy (A, B,C) rozgrywa serię gier: prawdopodobieństwo, że gracz A wygra dowolą grę jest 0% prawdopodobieńśtwo, że gracz B wygra dowolą grę jest 30% prawdopodobieństwo, że gracz C wygra dowolą grę jest 50% Jeśli rozegrają 6 gier, jakie jest prawdopodobieństwo, że gracz A wygra grę, gracz B wygra gry, a gracz C wygra 3 gry? 9 / 43
Rozkład wielomiaowy uogólieie Przykład gra w karty: troje graczy (A, B,C) rozgrywa serię gier: prawdopodobieństwo, że gracz A wygra dowolą grę jest 0% prawdopodobieńśtwo, że gracz B wygra dowolą grę jest 30% prawdopodobieństwo, że gracz C wygra dowolą grę jest 50% Jeśli rozegrają 6 gier, jakie jest prawdopodobieństwo, że gracz A wygra grę, gracz B wygra gry, a gracz C wygra 3 gry? P=W k, k,..., k = l! l kj! l kj pj j= j= = 6 liczba gier k = wygrywa gracz A (ilość sukcesów zdarzeia A) k = wygrywa gracz B k3 = 3 wygrywa gracz C p = 0. prawd. wygraia gracza A p = 0.3 prawd. wygraia gracza B p3 = 0.5 prawd. wygraia gracza C 6! 3 P ( A=, B=,C=3)= 0. 0.3 0.5 =0.35!! 3! 30 / 43
Częstość i prawo wielkich liczb Defiicja prawdopodobieństwa przeprowadzeie prób dostateczie dużo razy (N) umożliwia pomiar prawdopodobieństwa zdarzeia A P ( A)= lim N N Jak uzasadić tę defiicję? W rzeczywistości ie zamy prawodpodobieństw zdarzeń (p. pj w rozkł. wielomiaowym) wyzaczamy je eksperymetalie Częstość wystąpieia zdarzeia Aj w doświadczeiach będzie określoa wzorem: H j = X ij = X j i= Częstość jest zmieą losową, dla ktorej (przy próbach): Xj ^ E ( H j )= h j = E =pj ( ) σ ( H j ) =σ Xj = σ ( X j ) = p j ( p j )= p j q j ( ) 3 / 43
Częstość i prawo wielkich liczb Częstość wystąpieia zdarzeia Aj w doświadczeiach będzie określoa wzorem: H j = X ij = X j i= Częstość jest zmieą losową, dla ktorej (przy próbach): xj ^ E ( H j ) = h j =E =pj ( ) σ ( H j ) =σ Xj = σ ( X j ) = p j ( p j )= p j q j ( ) Wartość oczekiwaa częstości jest rówa jego prawdopodobieństwu. Odchyleie stadardowe częstości jest miejsze iż / i może osiągać dowolie małe wielkości (gdy ). Jest to prawo wielkich liczb Możemy zatem użyć częstości jako przybliżoej wartości prawdopodobieńśtwa z odpowiedia iepewością jej wyzaczeia Kwadrat iepewości jest w przybliżeiu odwrotie proporcjoaly do liczby przeprowadzoych prób jest to iepewość statystycza 3 / 43
Częstość i prawo wielkich liczb 33 / 43
Rozkład hipergeometryczy W urie jest N kul k białych i N-K czarych W próbach wyciągamy (bez zwracaia) k kul białych i -k=l kul czarych. Jakie jest prawdopodobieństwo wyciągięcia k kul białych? Wylosowaie kolejej kulki zmieia proporcje kul białych do czarych i wpływa a wyik kolejego losowaia rozkład dwumiaowy ie ma tu zastosowaia. Mamy jedak: N liczbę możliwości wylosowaia z N kulek: N prawdopodobieństwo takiego zdarzeia: / możliwość wylosowaia k spośród K białych i l spośród L czarych kulek wyoszą: K L K L k l l prawdopodobieństwo szukae wyosi zatem: W = k k N Aalogiczie jak w rozkładzie dwumiaowym, defiiujemy zmieą losową: X = X i ( ) ( ) () ( ) i= 34 / 43
Rozkład hipergeometryczy Aalogiczie jak w rozkładzie dwumiaowym, X = X i defiiujemy zmieą losową: i= Xi przyjmuje wartość dla białych i 0 dla czarych wylosowaych kul Moża pokazać, że (Bradt): K K K N N E ( X )= X = N N N Dla N rezultat kolejego losowaia iewiele wpływa a astępe wyiki. Wtedy rozkłąd hipergeometryczy upodabia się do dwumiaowego: pq ( N ) K N K K p=, q=, E ( X ) = =p, σ ( X )= N N N N 35 / 43
Rozkład Poissoa Rozważmy rozkład dwumiaowy: k k P(k )=W k = p q ; q= p k dla ale przy stałym p=λ rozkład dwumiaowy dąży do rozkładu Poissoa (wyprowadzeie Bradt): k lim k k W k = f k = e W k= p q k! k ormalizacja: () k f (k)= λk! e =e k =0 k=0 wartość oczekiwaa: wariacja: λ ( 3 σ (K )=E ( K ) ( E ( K ) ) =λ (λ +) λ =λ 3 Skosość i wsp. asymetrii: μ3 =E ( ( k k^ ) )=λ ) +λ + λ + λ + =e λ e λ =! 3! k j λ λ λ E ( K ) = k e =λ e λ =λ k=0 k! j=0 j! λ γ= μ3 σ = 3 λ / =λ λ 3/ 36 / 43
Rozkład Poissoa - przykłady Rozkład Poissoa stosujemy wtedy, gdy mamy dużą liczbę iezależych zdarzeń, z których tylko ielicze mają iteresującą as własość (duże, małe p w rozkł. dwumiaowym) Rozkład Poissoa występuje tam, gdzie mamy zjawiska dyskrete, gdy prawdopodobieństwo wystąpieia zjawiska jest stałe w czasie lub przestrzei: liczba połączeń przychodzących do cetrali a miutę liczba mutacji w daym odciku DNA po ekspozycji a pewą dawkę promieiowaia liczbę zabitych każdego roku przez kopięcie koia w korpusie kawalerii w Prusach (Wikipedia) 37 / 43
Rozkład Poissoa przykłady Mamy jądro promieiotwórcze o czasie życia τ. Obserwujemy je w czasie T«ττ. Prawdopodobieństwo rozpadu jądra w tym czasie W«τ. Dzielimy czas T a przedziałów, prawdopodobieństwo: p=w/. Obserwujemy w czasie T źródło zawierające N jąder. Liczba przedziałów czasowych k, w których zaobserwowao k=0,,, 3 itd. rozpadów. Wtedy częstość h(k) = k/. Doświadczalie zaobserwowao, że dla N i dużych rozkład h(k) dąży do rozkładu Poissoa, co staowi bezpośredi dowód a iezależość i statystyczy charakter rozpadów promieiotwórczych (badaia Rutherforda i Geigera). Aalogiczie częstość obserwowaia k gwiazd w elemecie kąta bryłowego sfery iebieskiej lub k rodzyek w jedostkowym elemecie objętości ciasta 38 / 43
Rozkład jedostajy Gęstość prawdopodobieństwa: f(x) f ( x)=c ; x a, b f ( x)=0 ; x ℝ a, b Współczyik (ormalizacja) c: b f ( x) dx=c dx=c (b a)= c= a ; x a, b b a f ( x)=0 ; x ℝ a, b f ( x)= Dystrybuata: F ( x)=0 ; x <a x x a dx '= ; x a ; b b a a b a F ( x)= ; x >b F ( x)= c b a a b x Wariacja: σ ( X )=E ( X ) ( E ( X )) b (b3 a 3 ) E ( X )= x dx= 3(b a) = b a a (b a)(b +ba+a ) b +ba+a = = 3(b a) 3 b +ba+ a b +a σ ( X )= = 3 b +ba+a b + ba+a (b a) = = 3 4 ( ) Wartość oczekiwaa: b (b a)(b+a) b +a E ( X )= x^ = xdx= (b a )= = b a a (b a) (b a) 39 / 43
Rozkład wykładiczy Gęstość prawdopodobieństwa: λ x f ( x)=λ e ; x 0 ; λ>0 f ( x)=0 ; x<0 Dystrybuata: F ( x)=0 ; x <0 x x F ( x)= f ( x) dx=λ e 0 0 F ( x)= e λ x ' λ x dx '= λ e λ x ' λ [ 0 ; x 0 Wartość oczekiwaa: 0 0 E ( x)= x^ = x f ( x )dx=λ e λ x x dx= ] x λ Wariacja: E ( x )= x f ( x)dx= 0 σ ( x)=e ( x ) ( E ( x)) = λ = λ λ λ 40 / 43
Rozkład ormaly stadardowy Gęstość prawdopodobieństwa: x / f ( x) ϕ 0 ( x)= e π rozkład o średiej 0 i wariacji Dystrybuata ie ma postaci aalityczej (korzystamy z tabel) Rozkład jest uormoway: e x / dx= π Jeśli wprowadzimy zmieą: Y =( X a)/ b Otrzymamy rozkład Gaussa: f ( y ) ϕ ( y )= e ( y a ) / b π b średia (przesuięcie): ^y =a wariacja (szerokość): σ (Y )=b 4 / 43
Rozkład ormaly stadardowy - własości Pukt przegięcia rozkładu: stadardowego x=± Gaussa x=a±b Załóżmy, że zamy dystrybuatę: F 0 ( x) Φ0 ( x)=p ( X x) Ze względu a asymetrię gęstości: P ( X > x )= Φ0 ( x )=( ϕ 0 ( x )) Aalogiczie, wewątrz przedziału x: P ( X x)= Φ0 ( x ) Dystrybuatę r. orm. moża uogólić a r. Gaussa: Φ ( y)=φ0 ( x a b ) 4 / 43
Rozkład ormaly stadardowy - własości Wtedy szczególie iteresujące jest obliczeie występowaia zmieej los. dla wielokrotości odchyleia stadardowego: P ( Y a σ )= Φ 0 ( ) Otrzymamy wtedy: P ( Y a σ)=68,3 % b = Φ0 () b P ( Y a >σ)=3,7 % P ( Y a σ)=95,4 % P ( Y a > σ )=4,6 % P ( Y a 3 σ )=99,8 % P ( Y a >3 σ )=0, % Z Wykładu pamiętamy, że współczyik rozszerzeia iepewość typu A zwykle jest między a 3 tu widać dlaczego W auce przez odchyleie stadardowe określamy rówież różice w obserwowaym sygale eksperymetalym w stosuku do sytuacji, gdy efektu fizyczego ie ma 43 / 43
Wielokrotości sigma Idealym przykładem jest odkrycie bozou Higgsa W fizyce cząstek przyjęło się, że dopiero mając odchyleie 5σ moża mówić o odkryciu: P ( Y a 5 σ)=99,99994 % Różica a takim poziomie wymagała zebraia dużej ilości daych, stąd potwierdzeie jego istieia zajęło poad 3 lata 44 / 43
KONIEC