Komputerowa analiza danych doświadczalnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Komputerowa analiza danych doświadczalnych"

Transkrypt

1 Komputerowa analiza danych doświadczalnych Wykład dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 07/08

2 Zamiana zmiennych Transformacje liniowe Propagacja niepewności Metody Monte Carlo

3 Zamiana zmiennych

4 Zamiana zmiennych Na poprzednich wykładach zauważyliśmy, że dowolna funkcja zmiennej losowej X jest także zmienną losową: y dy Y =H ( X ) g(y) Pytanie: jaka jest gęstość prawdopodobieństwa g(y), jeżeli znana jest gęstość prawdopodobieństwa f(x) i oczywiście funkcja Y=H(X)? y=h(x),0cm x f(x) dx,59 dla infinitezymalnie małego przedziału zmienności prawdopodobieństwa są równe: f ( x)dx=g( y) dy pochodna funkcji Y =H ( X ) z tego wynika: dy = dy dx dx dx= dx dy dy (Y ) zatem rozkłady są powiązane: g ( y)= pochodna funkcji X=H x dx f ( x) dy 4 / 3

5 Zamiana zmiennych Warunki: funkcja Y=H(X) musi być wzajemnie jednoznaczna (musi istnieć funkcja odwrotna) funkcje wieloznaczne (np. y= ( x) ) rozpatrujemy oddzielnie tylko te części, które są dodatnie y=+ ( x) y rozkłady są unormowane: y=h(x),0cm dy g( y )dy= f ( x)dx= x g(y) f(x) dx,59 x 5 / 3

6 Zamiana zmiennych przykład szczególny Pytanie: mamy zmienną losową X opisaną rozkładem jednorodnym f(x)= na przedziale od 0 do. Jaka będzie postać funkcji Y=H(X), aby otrzymać zadany (znany) rozkład g(y)? metoda odwracania dystrybuanty y f ( x)dx=g ( y)dy gdy f ( x) dx=g ( y )dy=dg ( y ) y=h(x)=?,0cm g( y)=g ' ( y ) dx= dg ( y) x=g( y) dy g(y) x y=g ( x) H ( x ) y min=g (0), y max =G (),59 Czyli: liczymy dystrybuantę x=g(y) a następnie funkcję odwrotną y=g-(x) 0 musi istnieć x min=g( y min ), x max =G( y max ) dx f(x) dystrybuanta x Zmienna losowa X po transformacji Y=G-(X) ma rozkład g(y) 6 / 3

7 Zamiana zmiennych przypadek wielowym. Mamy dwie zmienne losowe X i Y, dokonujemy zamiany zmiennych na U i V: ( X, Y ) (U,V ) U =U ( X,Y ) V =V ( X,Y ) Szukamy funkcji J (jakobian): ( ) g (u, v )=f ( x, y ) J x, y u,v Rysunek przedstawia płaszczyznę (x,y), z układem krzywych dla u=const i v=const Mamy więc mały element powierzchni o polu da=dxdy w zmiennych x,y zatem jego pole możemy policzyć jako pole równoległoboku o wierzchołkach a,b,c,d: współrzędne pierwszych 3 wierzchołków: x a=x (u, v ) x b= x u, v dv x c =x u du, v y a=y u, v y b=y u, v dv y c= y u du, v 7 / 3

8 Zamiana zmiennych przypadek wielowym. Rozwijamy w szereg Taylora: x x b =x (u, v)+ dv v x x c =x (u, v)+ du u Z dokładnością do znaku pole powierzchni: xa da= x b xc y y b = y (u, v)+ dv v y y c = y (u, v)+ du u W ogólnym Y =Y ( X ) Y =Y ( X ) Y n=y n ( X ) x ya u = yb x yc v jakobian przejścia (transformacji) y x, y u du dv J du dv y u,v v ( ) x przypadku, dla n zmiennych: y x x J = y x g ( y)= J f (x) y y... x yn ( ) () x y x y x yn xn y xn y xn yn 8 / 3

9 Zamiana zmiennych przypadek wielowym. f ( x, y )=/( a ), x + y <a Dokonujemy zamiany zmiennych: u( x, y)= x+ y v( x, y)= x y x (u, v)= (u+ v ) y (u, v)= (u v) Obliczamy jakobian: x y = = u u x y = = v v x,y J = = u,v ( ) g (u, v )=f ( x, y ) J Otrzymujemy g(u,v): x, y = f ( x, y )=/ ( 4 a ), u < a ; v <a u, v ( ) 9 / 3

10 Zamiana zmiennych przypadek wielowym. f ( x, y )=, x + y <R πr Dokonujemy zamiany zmiennych (do wsp. bieg.): x (r, f)=r cos f r ( x, y )= x + y x f ( x, y )=arctg y (r, f)=r sin f y Obliczamy jakobian: x =cos f r x = r sin f f y =sin f r y =r cos f f x, y J =r cos f+ r sin f=r r,f ( ) Otrzymujemy g(r,f): ( ) g (r, f)=f ( x, y ) J x, y r = r,f π R 0 / 3

11 Transformacje liniowe Propagacja niepewności

12 Transformacje liniowe Najczęściej, ze względu na prostotę, posługujemy się transformacjami liniowymi (inne transformacje najczęściej aproksymujemy liniowymi, rozwijając na szereg Taylora) funkcje Y =(Y, Y,..., Y r ) są liniowymi funkcjami zmiennych Y =a + t X + t X t n X n Y =a + t X + t X t n X n Y r =a r + t r X + t r X t rn X n W zapisie macierzowym: Y =T X + a Wartość oczekiwana Y: E ( Y ) =^y =T ^x + a X=( X, X,..., X n ) Jest to przypadek ogólny zmienne X nie są niezależne (istnieją kowariancje) Mierzymy pośrednio wielkość (wielkości) fizyczną Y, która zależy od wielkości fizycznych X mierzonych bezpośrednio, które nie są niezależne od siebie. Macierz korawiancji Y: C Y =E ((Y ^y )(Y ^y )T ) T =E ( (T X + a T x^ a)(t X + a T ^x a) ) T T =E ( T ( X ^x )( X x^ ) T ) T T =TE ( ( X ^x )( X x^ ) ) T C Y =T C X T T / 3

13 Propagacja niepewności Załóżmy, że znamy pewne wartości oczekiwane (wyniki pomiarów) x^ i oraz ich niepewności σ(xi) i kowariancje cov(xi,xj). Szukamy niepewności funkcji: Y ( X) Jeśli niepewności są małe, to możemy dokonać rozwinięcia na szereg Taylora wokół wartości oczekiwanych: yi Y i =Y i ( x^ )+ x ( ) yi ( X ^x )+...+ xn x= ^x ( ) x= ^x ( X n ^x n )+ wyrazy wyższego rzędu w notacji macierzowej: Y =Y ( x^ )+T ( X x^ )+ wyrazy wyższego rzędu y y y gdzie: ( ) x x y y T= x x yn yn x x xn y xn yn xn X = ^x 3 / 3

14 Propagacja niepewności Niepewności Y to elementy diagonalne macierzy kowariancji: C Y =T C X T T jak widać, zależą one nie tylko od elementów diagonalnych macierzy CX, ale również od jej elementów pozadiagonalnych tylko i wyłącznie jeżeli wszystkie zmienne X są niezależne, tj. cij=0, dla i j możemy zapisać: n σ (Y i )= j= yi xj ( ) σ ( X j) co daje nam prawo propagacji niepewności znane z Wykładu : σ ( y i )= n j= yi xj ( ) σ ( x j) 4 / 3

15 Znaczenie macierzy kowariancji - przykład Mierzymy w układzie kartezjańskim współrzędne punktu (x,y). Pomiary x i y są niezależne. Z jakiejś przyczyny (np. w celu porównania z przewidywaniami teoretycznymi) potrzebujemy jednak wynik we współrzędnych biegunowych. Z powodu np. innego przyrządu pomiariowego pomiar daje trzykrotnie większą niepewność współrzędnej y niż x. (0 9 ) Wtedy macierz kowariancji może wyglądać np. tak: C xy = 0 Dokonujemy tranformacji na współrzędne biegunowe: r ( x, y )= x + y f ( x, y )=arctg x y x (r, f)=r cos f y (r, f)=r sin f Policzmy macierz transformacji (dla prostoty w punkcie (,)) x r y = r f y y r y r = x r ( )( )( ) r T= x f x T T = ( ) 5 / 3

16 Znaczenie macierzy kowariancji - przykład Macierz kowariancji dla zmiennych biegunowych: T C r f =T C xy T = 4 ( ) ( )( ) ( ) = 4 5 Widzimy, że nie są one niezależne Licząc w drugą stronę: ( ) Cr f = Pozadiagonalne elementy macierzy kowariancji są T '= BARDZO WAŻNE x r y r x y cos r sin = = sin r cos T T Cxy=T ' Cr T ' = ŹLE! gdyby uwzględniać tylko diagonalne niepewności są zupełnie inne Cxy=T ' Cr T ' = = = / 3

17 Generacja liczb (pseudo)losowych za pomocą komputera

18 Liczby (pseudo)losowe Do tej pory zajmowaliśmy się jedynie opisem zmiennych losowych (ich właściwości) nie zajmowaliśmy się tym, jak je otrzymać Bardzo często potrzebujemy jednak posłużyć się ciągiem (losowych) wartości jakiejś zmiennej losowej, która opisana jest danym rozkładem prawdopodobieństwa Metoda otrzymywania takich liczb może pochodzić z badania zjawiska fizycznego (np. rozpad promieniotwórczy, szumy fal elektromagnetycznych) Liczby takie możemy wygenerować również w komputerze trzeba jednak pamiętać, że taki ciąg będzie ciągiem pseudolowym, gdyż komputer cechuje się zachowaniem deterministycznym (można więc te liczby przewidzieć ) Metody analizy danych z wykorzystaniem liczb (pseudo)losowych nazywamy metodami Monte Carlo 8 / 3

19 Generatory liniowe kongruentne Komputer, urządzenie determinisityczne, może generować tylko liczby pseudolosowe kolejna generowana liczba jest funkcją liczb wcześniej wygenerowanych Generator liniowy kongruenty (LCG Linear Congruential Generator): x j+ =(a x j +c)mod m LCG generuje okresowy ciąg liczb (po jakimś czasie powtarza się) m maksymalna długość okresu generatora (szczegóły Brandt) Multiplikatywny generator liniowy kongruenty (MLCG multiplicative linear congruential generator), c=0: x j + =(a x j )mod m szybsze od LCG, ale nigdy nie dają wartości 0 i mają krótkie okresy 9 / 3

20 Jakość generatorów losowych Najdłuższy okres nie jest jedyną porządaną cechą generatora Ważniejsze jest, aby liczby następujące po sobie występowały w sposób jak najbardziej przypadkowy - w tym celu wykonujemy tzw. test widmowy: wykonujemy dwuwymiarowy wykres (sieć) par: ( x i, x i + ) obsadzamy m z m węzłow szukamy prostych łączących obsadzone węzły sieci, a następnie wybieramy największą z odległości dt między nimi jeśli odległości między sąsiednimi prostymi są podobne jednostajny rozkład węzłów sieci (tego oczekujemy!) oczekujemy, że: d t m / jeśli parametry a i m są źle dobrane, to: d t m / 0 / 3

21 Jakość generatorów losowych Najdłuższy okres nie jest jedyną porządaną cechą generatora Ważniejsze jest, aby liczby następujące po sobie występowały w sposób jak najbardziej przypadkowy - w tym celu wykonujemy tzw. test widmowy: prawy poprawny (dobre parametry), lewy - niepoprawny 0.04 ( x i, x i + ) m-/ 0.09 / 3

22 Jakość generatorów losowych Najlepsze wyniki (długie okresy) można otrzymać łącząc ze sobą kilka (np. l) generatorów liniowych (o różnych parametrach) l (m j ) (l ) Ich maksymalny okres wynosi wtedy: p= j= oddzielnie l naprzemiennie (m j ) (l ) p= j= / 3

23 Generacja liczb (pseudo)losowych metodą transformay rozkładu jednorodnego

24 Transformacja rozkładu jednorodnego To już wiemy :) Metoda z odwrotnością dystrybuanty Transformację rozkładu jednostajnego możemy wykorzystać do generowania liczb losowych o skomplikowanych gęstościach prawdopodobieństwa f ( x) dx=g ( y) dy y gdy f ( x) dx=g ( y )dy=dg ( y ) y=h(x)=?,0cm g( y)=g ' ( y ) dx= dg ( y) x=g( y) dy g(y) x y=g ( x) H ( x ) y min=g (0), y max =G (),59 Czyli: liczymy dystrybuantę G(y) a następnie funkcję odwrotną G-(y) 0 musi istnieć x min=g( y min ), x max =G( y max ) dx f(x) dystrybuanta x Zmienna losowa X po transformacji y=g-(x) ma rozkład g(y) 4 / 3

25 Przykład rozkład Breita-Wignera Rozkład Breita-Wignera ma następującą postać: Γ g ( y)= π Γ 4( y a) + Γ Liczymy dystrybuantę: y ( y a) Γ x=g ( y)= π Γ dz= π arctg + Γ 4(z a) +Γ Odwrotna dystrybuanta: ( ( )) y ( x)=g ( x)=a+ Γ tg π x ( ) y (0)= y ()= 5 / 3

26 Metoda akceptacji-odrzuceń von Neumanna

27 Metoda (akceptacji) von Neumanna Metoda generacji liczb metodą odwrotnej dystrybuanty ma swoje ograniczenia dystrybuanta musi być znana (I być funkcją wzajemnie jednoznaczną), czyli musi istnieć funkcja odwrotna Metoda (akceptcji-odrzuceń) von Neumanna wymaga znajomości jedynie gęstości prawdopodobieństwa i pozwala na otrzymanie liczb z praktycznie dowolnego rozkładu odrzucamy Jak to działa? generujemy parę liczb z rozkładu jednorodnego: ( y i, ui ) sprawdzamy, czy ui < g( y i ) jeśli warunek jest spełniony, akceptujemy liczbę yi, jeśli nie - odrzucamy akceptujemy 7 / 3

28 Metoda von Neumanna - definicje Geometryczny opis metody von Neumanna: chcemy wygenerować liczby losowe opisane gęstością g(y) w przedziale: a y b rozważamy krzywą: u=g( y ) oraz funkcję stałą: u=d, d g max losujemy z rozkładu jednorodnego liczby ( y i, ui ), które spełniają warunki: a y i b, 0 ui d jak łatwo zauważyć, nasze punkty układają się w prostokącie na płaszczyźnie ( y,u) odrzucamy wszystkie punkty spełniające nierówność: ui g ( y i ) pozostają jedynie punkty położone pod krzywą: u=g( y ) zaakceptowane wartości yi podlegają rozkładowi g(y) Wada metody: w zależności od kształtu funkcji g(y), znaczna część liczb yi jest odrzucana b Wydajność metody: E= g( y ) dy a (b a) d 8 / 3

29 Metoda von Neumanna przypadek wielowym. Metodę von Neumanna można uogólnić na wiele wymiarów: mamy funkjcę gęstości wielu zmiennych: g ( y, y,..., y n ) i i i i generujemy zbiór liczb z rozkładu jednorodnego: ( y, y,..., y n,u ) dla każdego i sprawdzamy warunek akceptacji: ui <g max ( y i, y i,..., y in ) akceptujemy lub odrzucamy cały zestaw wygenerowanych liczb dla danego i Kilka uwag do metody von Neumanna: za jej generować możemy liczby z dowolnego, nawet bardzo skomplikowanego rozkładu rozkład (czy w ogólności funkcja) g(y) nie musi być nawet unormowany b metodę tę można stosować do obliczania całek oznaczonych: g( y ) dy N zaakceptowane E= N wszystkie ( b a ) d a b N zaakceptowane I = g( y ) dy ( b a ) d N wszystkie a 9 / 3

30 Metoda von Neumanna z funkcją pomocniczą Wydajność metody von Neumanna można poprawić, jeśli odpowiednio zawęzimy obszar losowania: wprowadzamy funkcję pomocniczą s(y), z ktorej łatwo wygenerować zmienne losowe (np. metodą odwrotnej dystrybuanty), i która spełnia warunek: g ( y ) c s( y ), a< y <b generujemy liczbę losową yi z rozkładu s(y) na przedziale a< y i <b oraz liczbę ui z rozkładu jednorodnego na przedziale 0<ui < g( y i ) odrzucamy liczbę yi, jeżeli: ui c s( y i ) wydajność metody: b a g( y )dy E= b c a s( y )dy 30 / 3

31 KONIEC

32 Zapis liczb w komputerze Najmniejsza jednostka informacji bit (0 lub ), system dwójkowy) Przykład: 3=*8+*64+0*3+*6+0*8+*4+0*+*=>0000 Ogólnie k- bitów wartość bezwzględna kodowanej liczby, bit znak. Wartość bezwzględna: (k ) a=a k (k 3) +a k 3 () (0) +...+a +a 0 W komputerze zapisujemy liczby za pomocą bajtów składających się z 8 bitów (najmniejsza adresowalna jednostka pamięci) Współcześnie komputery pracują na (6), 3 i 64-bitowych liczbach Liczby bez znaku przyjmują wartości od 0 do k-, zaś liczby ze znakiem od -k- do k-- 3 / 3

33 Zapis liczb w komputerze Liczbę zmiennoprzecinkową zapisujemy jako: s x=( ) m b c Gdzie: m mantysa (część ułamkowa liczby), b podstawa, c wykładnik (albo cecha, część całkowita liczby), s bit znaku Komputery zapisują liczbę z b=, notacja naukowa to b=0 Do zapisu liczby zmiennoprzecinkowej wystarczy zatem znajomość dwóch liczb całkowitych Przykłady: 33 / 3

34 Zapis liczb w komputerze Zakres zmienności liczb zmiennoprzecinkowych: c min < x < c max Dwie liczby zmiennoprzecinkowe są różne, jeżeli ich mantysy różnią się o minimalną wartość a: 0 Δx a n x =m, x =( m+a ), Δ x=x x =a, = = n = x m e e e Przykład typy danych w języku C++: 34 / 3

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 4 8.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zamiana zmiennych Transformacje liniowe Propagacja niepewności Metody Monte

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek: 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Generacja liczb pseudolosowych

Generacja liczb pseudolosowych Generacja liczb pseudolosowych Zapis liczb w komputerze Generatory liczb pseudolosowych Liniowe kongruentne Liniowe mutiplikatywne kongruentne Jakość generatorów Test widmowy Generowanie liczb losowych

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 3 11.03.2016 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Wykłady z poprzednich lat (dr inż. H. Zbroszczyk): http://www.if.pw.edu.pl/~gos/student

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

Wynik pomiaru jako zmienna losowa

Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Zmienne ciągłe i dyskretne Funkcja gęstości i dystrybuanta Wartość oczekiwana Momenty rozkładów Odchylenie standardowe Estymator zmiennej

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Lista 6. Kamil Matuszewski 13 kwietnia D n =

Lista 6. Kamil Matuszewski 13 kwietnia D n = Lista 6 Kamil Matuszewski 3 kwietnia 6 3 4 5 6 7 8 9 Zadanie Mamy Pokaż, że det(d n ) = n.... D n =.... Dowód. Okej. Dla n =, n = trywialne. Załóżmy, że dla n jest ok, sprawdzę dla n. Aby to zrobić skorzystam

Bardziej szczegółowo

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2, Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać

Bardziej szczegółowo

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11; środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Metody numeryczne. Wykład nr 12. Dr Piotr Fronczak

Metody numeryczne. Wykład nr 12. Dr Piotr Fronczak Metody numeryczne Wykład nr 1 Dr Piotr Fronczak Generowanie liczb losowych Metody Monte Carlo są oparte na probabilistyce działają dzięki generowaniu liczb losowych. W komputerach te liczby generowane

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Całka podwójna po prostokącie

Całka podwójna po prostokącie Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i

Bardziej szczegółowo

Algorytmy zrandomizowane

Algorytmy zrandomizowane Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

Podstawy symulacji komputerowej

Podstawy symulacji komputerowej Podstawy symulacji komputerowej Wykład 3 Generatory liczb losowych Wojciech Kordecki wojciech.kordecki@pwsz-legnica.eu Państwowa Wyższa Szkoła Zawodowa im. Witelona w Legnicy Wydział Nauk Technicznych

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych. Wykład dr inż. Łukasz Graczykowski

Komputerowa analiza danych doświadczalnych. Wykład dr inż. Łukasz Graczykowski Komputerowa analiza danych doświadczalnych Wykład 3 9.03.2018 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 2017/2018 Dwuwymiarowe rozkłady zmiennych losowych Jednoczesne pomiary

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 4.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

BŁĘDY OBLICZEŃ NUMERYCZNYCH

BŁĘDY OBLICZEŃ NUMERYCZNYCH BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.

Bardziej szczegółowo

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej: Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie

Bardziej szczegółowo

1 Warunkowe wartości oczekiwane

1 Warunkowe wartości oczekiwane Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie

Bardziej szczegółowo

Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z

Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z 1 Wideo 5 1.1 Zadanie 1 1.1.1 a) f(x) = x + x f (x) = x + f (x) = 0 x + = 0 x = 1 [SZKIC] zatem w x = 1 występuje minimum 1.1. b) f(x) = x x 4 f (x) = x(x 4) x (x) (x 4) f (x) = 0 x(x 4) x (x) (x 4) =

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Geometria Lista 0 Zadanie 1

Geometria Lista 0 Zadanie 1 Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych

Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +

Bardziej szczegółowo

Wykład 2 Zmienne losowe i ich rozkłady

Wykład 2 Zmienne losowe i ich rozkłady Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie

Bardziej szczegółowo

Ilustracja metody MONTE CARLO. obliczania całek podwójnych

Ilustracja metody MONTE CARLO. obliczania całek podwójnych Ilustracja metody MONTE CARLO obliczania całek podwójnych Często jest tak, iż wiemy, że istnieje całka oznaczona z funkcji f jednak nie potrafimy jej analitycznie policzyć. Konieczne jest wtedy zastosowanie

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

Pochodne. Zbigniew Koza. Wydział Fizyki i Astronomii

Pochodne. Zbigniew Koza. Wydział Fizyki i Astronomii Pochodne Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 MOTYWACJA Rozpatrzmy gładką funkcję np. y x = x 2 w okolicach punktu (1,1) x 0 = 1, y 0 = f x 0 = 1 powiększmy wykres wokół (x 0, f(x 0

Bardziej szczegółowo

e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii

e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii Metoda Metropolisa Z = e E P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = P E =Z 1 E e E Wartość średnia energii Średnia wartość A = d r N A r N exp[ U r N ] d r N exp[

Bardziej szczegółowo

6. Całka nieoznaczona

6. Całka nieoznaczona 6. Całka nieoznaczona Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 6. Całka nieoznaczona 1 / 35 Całka nieoznaczona - motywacja Wiemy

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Krzywe Freya i Wielkie Twierdzenie Fermata

Krzywe Freya i Wielkie Twierdzenie Fermata Krzywe Freya i Wielkie Twierdzenie Fermata Michał Krzemiński 29 listopad 2006 Naukowe Koło Matematyki Politechnika Gdańska 1 1 Krzywe algebraiczne Definicja 1.1 Krzywą algebraiczną C nad ciałem K nazywamy

Bardziej szczegółowo

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Przykłady do zadania 8.1 : 0 dla x 1, c x 4/3 dla x > 1. (b) Czy można dobrać stałą c tak, aby funkcja f(x) = była gęstością pewnego

Przykłady do zadania 8.1 : 0 dla x 1, c x 4/3 dla x > 1. (b) Czy można dobrać stałą c tak, aby funkcja f(x) = była gęstością pewnego Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 8: Zmienne losowe typu ciągłego. Gęstość prawdopodobieństwa. Rozkład

Bardziej szczegółowo

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień. Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 9 27.04.2018 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 2017/2018 Metoda największej wiarygodności ierównosć informacyjna

Bardziej szczegółowo

Statystyka opisowa- cd.

Statystyka opisowa- cd. 12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa- cd. Wykład 4 Dr inż. Adam Deptuła HISTOGRAM UNORMOWANY Pole słupka = wysokość słupka x długość przedziału Pole słupka = n i n h h,

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np. Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora

Bardziej szczegółowo

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1 Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład: Generacja liczb losowych Problem generacji

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo

Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha.

Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha. Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Generator liczb losowych o rozkładzie Rayleigha. Generator liczb losowych o rozkładzie Rayleigha. 1. Cel ćwiczenia

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków

Bardziej szczegółowo

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1 Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

Rachunek różniczkowy i całkowy w przestrzeniach R n

Rachunek różniczkowy i całkowy w przestrzeniach R n Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 3.03.07 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 06/07 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 1- Generatory liczb losowych i ich wykorzystanie dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 5,12 października 2016 r.

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania

Bardziej szczegółowo

Pojęcie funkcji. Funkcja liniowa

Pojęcie funkcji. Funkcja liniowa Pojęcie funkcji. Funkcja liniowa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Wykład 2; rok akademicki 2016/2017 Zależności funkcyjne w naukach przyrodniczych Rozwój algebry

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie

Bardziej szczegółowo

Generowanie liczb o zadanym rozkładzie. ln(1 F (y) λ

Generowanie liczb o zadanym rozkładzie. ln(1 F (y) λ Wprowadzenie Generowanie liczb o zadanym rozkładzie Generowanie liczb o zadanym rozkładzie wejście X U(0, 1) wyjście Y z zadanego rozkładu F (y) = 1 e λy y = ln(1 F (y) λ = ln(1 0,1563 0, 5 0,34 Wprowadzenie

Bardziej szczegółowo

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach.

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach. Wykład 3 Generatory liczb losowych o dowolnych rozkładach.. Metoda odwracania Niech X oznacza zmienna losowa o dystrybuancie F. Oznaczmy F (t) = inf (x : t F (x)). Uwaga Zauważmy, że t [0, ] : F ( F (t)

Bardziej szczegółowo