Energia kinetyczna i praca. Energia potencjalna
|
|
- Wiktor Woźniak
- 9 lat temu
- Przeglądów:
Transkrypt
1 negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1
2 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut 63 kg Paul Andeson Rekod Guinnessa 1957 Cięża 7900N (850kg)
3 NRGIA KINTYCZNA I PRACA 5.XI.011 negia Temin enegia pochodzi od geckiego słowa enegeia używanego już pzez Aystotelesa i w óżnych tłumaczeniach oznacza działanie, pzyczynę uchu, moc. A jak należy ozumieć słowo enegia w języku fizyki? Słownik wyazów obcych PWN: wielkość fizyczna okeślająca zdolność ciała lub układu ciał do wykonywania pacy pzy pzejściu z jednego stanu do dugiego negia wielkość skalana opisująca stan w jakim się w danym momencie znajduje jedno lub wiele ciał. 3
4 NRGIA KINTYCZNA I PRACA 5.XI.011 negia kinetyczna negię kinetyczną k ciała o masie m, pouszającego się z pędkością o watości v, znacznie mniejszej od pędkości światła, definiujemy jako: k 1 mv Jednostką enegii kinetycznej (i każdego innego odzaju enegii) w układzie SI jest dżul (J). Nazwa ta pochodzi od nazwiska XIX-wiecznego uczonego angielskiego, Jamesa Pescotta Joule'a. 1J kg m s James Pescott Joule 4
5 NRGIA KINTYCZNA I PRACA 5.XI.011 negia kinetyczna W 1896 oku w Waco, w Teksasie William Cush na oczach widzów ustawił dwie lokomotywy napzeciwko siebie, na końcach tou o długości 6.4km. Zablokował dźwignie w położeniu pełnego gazu i pozwolił ozpędzonym lokomotywom zdezyć się ze sobą czołowo. Wyznacz łączną enegię kinetyczną lokomotyw tuż pzed zdezeniem zakładając, że każda z nich miała cięża ówny N, a pzyspieszenia obydwu lokomotyw wzdłuż tou były stałe i wynosiły 0.6 m/s. pzed po 5
6 NRGIA KINTYCZNA I PRACA 5.XI.011 negia kinetyczna Pzyspieszenie każdej z lokomotyw było stałe, więc do obliczenia jej pędkości v tuż pzed zdezeniem możemy zastosować wzó: v v v m / s a x x0 1 8 k mv kg40.8m / s 10 J negia wybuchu totylu: 6 WT J / kg zdezenia lokomotyw 51kg totylu 6
7 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Paca W jest to enegia pzekazana ciału lub od niego odebana na dodze działania na ciało siłą. Gdy enegia jest pzekazana ciału, paca jest dodatnia, a gdy enegia jest ciału odebana, paca jest ujemna. W cos 7
8 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Jeśli siła jest funkcją położenia, tzn. = () to całkowite pzemieszczenie ciała ozkładamy na n odcinków, tak aby w każdym z nich siłę można uważać za stałą. Wówczas paca całkowita wykonana pzez siłę () pzy pzesunięciu ciała z punktu 1 do punktu, któych położenia są dane pzez pomienie wodzące 1 i, wynosi: W (1 ) lim i 0 W 1 n i1 n i1 i d i i 1 i d 8
9 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca W n W d d 9
10 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Jeśli cos(, d ) 0, tzn. kąt między kieunkiem i d jest mniejszy od 90 o, to wówczas W>0, czyli paca wykonana pzez siłę jest dodatnia. Pzykładem takiej sytuacji jest paca wykonana pzez siły gawitacji podczas swobodnego spadku ciała. Jeśli natomiast cos(, d ) 0, tzn. kąt między i d jest większy od 90 o, to paca siły jest ujemna. Pzykładem takich sił są siły opou uchu. Jednostka pacy: dżul. m J 1kg1 1N 1m s 1 10
11 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Gdy na ciało działa wekto siły iˆ x y ˆj kˆ w wyniku któej cząstka doznaje niewielkiego pzesunięcia paca wynosi d W d dxiˆ dyj ˆ dzkˆ dx x z dy Całkowita paca z punktu pocz do punktu kon W kon pocz d kon pocz dx x y kon pocz y dz z dy kon pocz dz z 11
12 NRGIA KINTYCZNA I PRACA 5.XI.011 y Paca a enegia kinetyczna x v 0 1 v mv d v a d 0 1 mv0 x ma x d v K kon K pocz x d 1
13 13 Paca a enegia kinetyczna NRGIA KINTYCZNA I PRACA 5.XI.011 Ponieważ więc vdt d 1 1 t t vdt d W Jeśli założymy, że masa ciała jest stała, to wtedy dt dv m a m v m v m v m dv v m W v v v v Gdzie v 1 i v są pędkościami ciała odpowiednio w punkcie 1 i.
14 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca a enegia kinetyczna Zmiana enegii kinetycznej ciała jest ówna pacy wykonanej nad tym ciałem: K K kon K pocz W ZMIANA NRGII KINTYCZNJ CZĄSTKI = CAŁKOWITA PRACA WYKONANA NAD CZĄSTKĄ Związek ten można zapisać inaczej K kon K pocz W NRGIA KINTYCZNJ PO WYKONANIU PRACY = NRGIA KINTYCZNJ PRZD WYKONANIM PRACY + CAŁKOWITA PRACA WYKONANA NAD CZĄSTKĄ 14
15 NRGIA KINTYCZNA I PRACA 5.XI.011 Moc Jeżeli w pzedziale czasu Δt została wykonana paca ΔW, to śednia moc P jest okeślana P W t Mocą chwilową nazywamy ganicę do jakiej zmieza moc śednia gdy Δt = 0 P lim t0 W t dw dt Moc chwilowa jest więc pochodną pacy względem czasu. 15
16 NRGIA KINTYCZNA I PRACA 5.XI.011 Moc P dw dt d dt v W zapisie wektoowym P v Moc danej siły jest popocjonalna do pędkości v. Jednostką mocy w układzie SI jest wat [W]. Moc jest ówna jednemu watowi, jeżeli stała siła wykonuje pacę jednego dżula w czasie jednej sekundy. 1J 1W 1 s 16
17 NRGIA POTNCJALNA 5.XI.011 negia potencjalna Definicja enegii potencjalnej p : jest to enegia związana z konfiguacją (czyli ustawieniem) układu ciał, działających na siebie siłami. Gdy zmienia się konfiguacja tych ciał, może się ównież zmieniać enegia potencjalna układu. Zmianę gawitacyjnej enegii potencjalnej Δ p definiujemy zaówno dla wznoszenia, jak i dla spadku ciała jako pacę wykonaną nad ciałem pzez siłę ciężkości, wziętą z pzeciwnym znakiem. Oznaczając pacę jak zwykle symbolem W, zapisujemy to stwiedzenie w postaci: W p 17
18 NRGIA POTNCJALNA 5.XI.011 Siły zachowawcze i niezachowawcze W sytuacji, gdy zawsze spełniony jest związek W 1 = W, enegia kinetyczna zamieniana jest na enegię potencjalną, a siłę nazywamy siłą zachowawczą. Siła ciężkości i siła spężystości są siłami zachowawczymi (gdyby tak nie było. nie moglibyśmy mówić o gawitacyjnej enegii potencjalnej i enegii potencjalnej spężystości). Siłę, któa nie jest zachowawcza, nazywamy siłą niezachowawczą. Siła tacia kinetycznego i siła opou są niezachowawcze. 18
19 NRGIA POTNCJALNA 5.XI.011 Siły zachowawcze i niezachowawcze Ile wynosi paca pzesunięcia masy m pod działaniem siły (x,y) z punktu 1 do po dodze A oaz B? B A 1 Jeśli paca pzemieszczenia masy m między punktami A i B nie zależy od dogi po któej nastąpiło pzemieszczenie to mówimy, że siła jest zachowawcza, albo potencjalna. Paca pzemieszczenia masy m z punktu A po dodze 1 do punktu B i potem z punktu B po dodze do punktu A wynosi zeo. 19
20 NRGIA POTNCJALNA 5.XI.011 negia potencjalna Jeżeli paca pzemieszczenia masy m po dodze (kzywej) zamkniętej wynosi zeo to mówimy, że siła jest zachowawcza, albo potencjalna. Możemy zapisać pacę siły (x,y) na dodze elementanego pzemieszczenia d jako: dw = o d Ponieważ paca siły (x,y) nie zależy od dogi, a tylko od punktu statu i końca pzemieszczenia to można okeślić funkcję skalaną, zależną tylko od współzędnych (x,y). Nazywamy ją enegią potencjalną i okeślamy jej nieskończenie mały pzyost: du = - o d Minus został wybany ze względu na to, że ubytek enegii potencjalnej jest ówny wykonanej elementanej pacy. 0
21 NRGIA POTNCJALNA 5.XI.011 Gadient enegii potencjalnej Pzyost funkcji U(x,y) można wyazić jako sumę pzyostów funkcji względem obydwu zmiennych niezależnych x i y jako: du U x dx U dy y Pochodne U względem x i y nazywają się pochodnymi cząstkowymi i liczymy je tak, jakby duga zmienna była stałą pzy liczeniu pochodnej cząstkowej po piewszej zmiennej. U U Z dugiej stony: du d x dx y dy dx dy x y Gupując wyazy z odpowiednimi pzyostami dx i dy otzymamy: x U x dx y U y dy 0 1
22 NRGIA POTNCJALNA 5.XI.011 Gadient enegii potencjalnej W pzestzeni tójwymiaowej ównanie to obowiązuje dla dowolnych pzyostów dx, dy i dz stąd muszą znikać tożsamościowo wyażenia w nawiasach: x U x U y Siła ówna jest ujemnemu gadientowi enegii potencjalnej: Stąd: - p x p ; y p p y ; z p kon pocz x d p z i U z p y j Gawitacyjna enegia potencjalna negia potencjalna spężystości p (y) mgy 1 p (x) kx p z k
23 NRGIA POTNCJALNA 5.XI.011 Zasada zachowania enegii mechanicznej negia mechaniczna mech układu jest sumą jego enegii potencjalnej p oaz enegii kinetycznej k wszystkich jego składników: mech p k Gdy siła zachowawcza wykonuje pacę W w układzie izolowanym nad jednym z ciał układu, zachodzi zamiana enegii kinetycznej k ciała w enegię potencjalną p układu. Zmiana enegii kinetycznej Δ k jest ówna: Z dugiej stony wiadomo, że zmiana enegii potencjalnej wynosi: Stąd otzymujemy, że Δ k W Δ p W Δ k Δ p 3
24 NRGIA POTNCJALNA 5.XI.011 Zasada zachowania enegii mechanicznej k k k1 pzy czym wskaźniki 1 i odnoszą się do dwóch óżnych chwil, a zatem dwóch óżnych konfiguacji składników układu. Pzekształcając otzymujemy zasadę zachowania enegii mechanicznej: k1 Δ p1 Δ p1 p k p p SUMA k i p DLA DOWOLNGO STANU UKŁADU = SUMA k i p DLA KAŻDGO INNGO STANU UKŁADU W układzie izolowanym, w któym zamiana enegii pochodzi jedynie od sił zachowawczych enegia kinetyczna i enegia potencjalna mogą się zmieniać, lecz ich suma czyli enegia mechaniczna mech nie może ulegać zmianie. 4
25 NRGIA POTNCJALNA 5.XI.011 Zasada zachowania enegii mechanicznej 5
26 NRGIA POTNCJALNA 5.XI.011 Zasada zachowania enegii Zmiana całkowitej enegii układu jest ówna enegii dostaczonej do układu lub od niego odebanej. W Δ Δ mech Δ wewn pzy czyni Δ mech jest dowolną zmianą enegii mechanicznej układu. Δ tem dowolną zmianą jego enegii temicznej, a Δ wewn dowolną zmianą innych postaci jego enegii wewnętznej. Zmiana enegii mechanicznej Δ mech zawiea w sobie zmianę enegii kinetycznej Δ k oaz zmianę enegii potencjalnej Δ p układu (spężystości, gawitacyjnej lub jakiejkolwiek innej). tem Δ Całkowita enegia układu izolowanego nie może się zmieniać. Δ mech Δ tem Δ wewn 0 6
Energia kinetyczna i praca. Energia potencjalna
Enegia kinetyczna i paca. Enegia potencjalna Wykład 4 Wocław Uniesity of Technology 1 5-XI-011 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut 63 kg Paul Andeson
Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych
Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny
Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie
dr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :
Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasada zachowania pędu p Δp i 0 p i const. Zasady zachowania: pęd W układzie odosobnionym całkowity pęd (suma pędów wszystkich ciał) jest wielkością stałą. p 1p + p p + = p 1k + p
dr inż. Zbigniew Szklarski
ykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
dr inż. Zbigniew Szklarski
Wykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.
PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r
PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Paca Paca jest ówna iloczynowi pzemieszczenia oaz siły, któa te pzemieszczenie wywołuje. Paca jest wielkością skalaną wyażaną w dżulach (ang. Joul) [J] i w ogólności może być zdefiniowana
Kto wykonał większą pracę?
Energia, Praca, Moc Kto wykonał większą pracę? Andiej Czemerkin 1996 r Igrzyska Olimpijskie Rekord : m 60 kg H m Paul Anderson 1957 r Q 7900 N m 3000 kg Energia kinetyczna Energia związana ze stanem ruchu
dr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Energia i praca Energia inny sposób badania ruchu Energia jest wielkością skalarną charakteryzującą stan ciała lub układu ciał. Energia
XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.
Praca w języku potocznym
Praca w języku potocznym Kto wykonuje większą pracę? d d https://www.how-to-draw-funny-cartoons.com/cartoontable.html http://redwoodbark.org/016/09/1/text-heavy-hidden-weight-papertextbook-use/ https://www.freepik.com/free-photos-vectors/boy
Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
Fizyka 5. Janusz Andrzejewski
Fizyka 5 Przykład R y F s x F n mg W kierunku osi Y: W kierunku osi X: m*0=r-f n m*a=f s F s =mgsinα F n =mgcosα Dynamiczne równania ruchu Interesujące jest tylko rozpatrywanie ruchu w kierunku osi X a=gsin
Siła. Zasady dynamiki
Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:
E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia
GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
Podstawy fizyki sezon 1 III. Praca i energia
Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy
Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 3 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Siły bezwładności Układy cząstek środek masy pęd i zasada zachowania pędu II zasada dynamiki Newtona dla układu
PRACA. MOC. ENERGIA. 1/20
PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej
Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii
Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą
Wykład Energia kinetyczna potencjalna 4.2. Praca i moc 4.3. Zasady zachowania DYNAMIKA
DYNAMIKA Wykład 4. 4.1. Energia kinetyczna potencjalna 4.2. Praca i moc 4.3. Zasady zachowania Słyszę i zapominam. Widzę i pamiętam. Robię i rozumiem. -Konfucjusz Dziecko ześlizguje się ze zjeżdżalni wodnej
Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers
Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia
MECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość
POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
Zasady zachowania, zderzenia ciał
Naa -Japonia -7 (Jaoszewicz) slajdów Zasady zachowania, zdezenia ciał Paca, oc i enegia echaniczna Zasada zachowania enegii Zasada zachowania pędu Zasada zachowania oentu pędu Zasady zachowania a syetia
Zasady dynamiki Newtona
Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa
v p dr dt = v dr= v dt
Rozpędzanie obiektów Praca sił przy rozpędzaniu obiektów b W = a b F dr = a m v dv dt dr = k v p dr dt =v dr=v dt m v dv = m v 2 k 2 2 m v p 2 Wyrażenie ( mv 2 / 2 )nazywamy energią kinetyczną rozpędzonego
Wykład Energia kinetyczna potencjalna 4.2. Praca i moc 4.3. Zasady zachowania DYNAMIKA
DYNAMIKA Wykład 4. 4.1. Energia kinetyczna potencjalna 4.2. Praca i moc 4.3. Zasady zachowania Słyszę i zapominam. Widzę i pamiętam. Robię i rozumiem. -Konfucjusz Dziecko ześlizguje się ze zjeżdżalni wodnej
Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne
Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką
Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:
PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci
Zasada zachowania energii
Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca
Wykład Energia kinetyczna potencjalna 4.2. Praca i moc 4.3. Zasady zachowania DYNAMIKA
DYNAMIKA Wykład 4. 4.1. Energia kinetyczna potencjalna 4.2. Praca i moc 4.3. Zasady zachowania Słyszę i zapominam. Widzę i pamiętam. Robię i rozumiem. -Konfucjusz Dziecko ześlizguje się ze zjeżdżalni wodnej
cz. 1. dr inż. Zbigniew Szklarski
Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie
= ± Ne N - liczba całkowita.
POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9
Wykład 17. 13 Półprzewodniki
Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa
WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.
WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;
Grzegorz Kornaś. Powtórka z fizyki
Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,
Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie
Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy
PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA
PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
Wykład 5: Praca i Energia. Matematyka Stosowana
Wykład 5: Praca i Energia Matematyka Stosowana Praca w codziennym życiu Czynności w codziennym życiu: Podnosisz pudło z książkami Popychasz zepsute auto Co dokładnie robisz? Działasz z pewną siłą Ciało
Przedmiot: Fizyka PRACA I ENERGIA. Wykład 7, 2015/2016 1
PRACA I ENERGIA Wykład 7, 015/016 1 ENERGIA A PRACA Enegia jest to wielkość skalana, chaakteyzująca stan, w jakim znajduje się jedno lub wiele ciał. Enegia kinetyczna jest związana ze stanem uchu ciała.
Guma Guma. Szkło Guma
1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma
I ZASADA DYNAMIKI. m a
DYNAMIKA (cz.1) Zasady dynamiki Newtona Siły w mechanice - przykłady Zasady zachowania w mechanice Praca, energia i moc Pęd i zasada zachowania pędu Popęd siły Zderzenia ciał DYNAMIKA Oddziaływanie między
Prawo zachowania energii
Skąd czerpiemy energię? Prawo zachowania energii Biosfera Słońce Grawitacja Wielki Wybuch Wszechświat jako GRA ENERGII 1. Nie ma darmowych lunchy SYMETRIA. Nie można wyjść na zero 3. Nie można opuścić
Fizyka. Wykład 2. Mateusz Suchanek
Fizyka Wykład Mateusz Suchanek Zadanie utwalające Ruch punktu na płaszczyźnie okeślony jest ównaniai paaetycznyi: x sin(t ) y cos(t gdzie t oznacza czas. Znaleźć ównanie tou, położenie początkowe punktu,
Prawo Gaussa. Potencjał elektryczny.
Pawo Gaussa. Potencjał elektyczny. Wykład 3 Wocław Univesity of Technology 7-3- Inne spojzenie na pawo Coulomba Pawo Gaussa, moŝna uŝyć do uwzględnienia szczególnej symetii w ozwaŝanym zagadnieniu. Dla
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub
Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa
Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna
Model klasyczny gospodarki otwartej
Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź
m q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
Fizyka 10. Janusz Andrzejewski
Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety
Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej
Prawo powszechnego ciążenia Newtona
Pawo powszechnego ciążenia Newtona m M FmM Mm =G 2 Mm FMm = G 2 Stała gawitacji G = 6.67 10 11 2 Nm 2 kg Wielkość siły gawitacji z jaką pzyciągają się wzajemnie ciała na Ziemi M = 100kg N M = Mg N m =
20 ELEKTROSTATYKA. PRAWO COULOMBA.
Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna
1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.
Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno
L(x, 0, y, 0) = x 2 + y 2 (3)
0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej
Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika.
ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWANIA: Enegii Pęd Moent pęd Ładnk Liczby baionowej ZASADA ZACHOWANIA ENERGII W = E calk Paca siły zewnętznej Jeżeli W=0 to E calk =0 Ziana enegii całkowitej Ziana
00507 Praca i energia D
00507 Paca i enegia D Dane oobowe właściciela akuza 00507 Paca i enegia D Paca i moc mechaniczna. Enegia mechaniczna i jej kładniki. Zaada zachowania enegii mechanicznej. Zdezenia dokonale pęŝyte. ktualizacja
WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA
WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), (
Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.
Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Modelowanie przepływu cieczy przez ośrodki porowate Wykład III
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości
Oddziaływania fundamentalne
Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego
Dobó zmiennych objaśniających do liniowego modelu ekonometycznego Wstępnym zadaniem pzy budowie modelu ekonometycznego jest okeślenie zmiennych objaśniających. Kyteium wybou powinna być meytoyczna znajomość
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 2 Pawo Coulomba Jeżeli dwie naładowane cząstki o ładunkach q1 i q2 znajdują się w odległości, to siła elektostatyczna pzyciągania między nimi ma watość: F k k stała elektostatyczna k 1
Stabilność II Metody Lapunowa badania stabilności
Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli
Materiały pomocnicze dla studentów I roku do wykładu Wstęp do fizyki I Wykład 1
Mateiał pomocnicze dla studentów I oku do wkładu Wstęp do fizki I Wkład 1 I. Skala i Wekto. Skala: Jest to wielkość, któą można jednoznacznie okeślić za pomocą liczb i jednostek; a więc mająca jednie watość,
Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18
Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe
Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2018 Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Praca wykonana przez siłę wypadkową działającą
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
dr inż. Małgorzata Langer Architektura komputerów
Instukcja współfinansowana pzez Unię Euopejską w amach Euopejskiego Funduszu Społecznego w pojekcie Innowacyjna dydaktyka bez oganiczeń zintegowany ozwój Politechniki Łódzkiej zaządzanie Uczelnią, nowoczesna
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego
Zasady dynamiki ruchu obrotowego
DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,
PRĘDKOŚCI KOSMICZNE OPRACOWANIE
PRĘDKOŚCI KOSMICZNE OPRACOWANIE I, II, III pędkość komiczna www.iwiedza.net Obecnie, żyjąc w XXI wieku, wydaje ię nomalne, że człowiek potafi polecieć w komo, opuścić Ziemię oaz wylądować na Kiężycu. Poza
Wykład 15. Reinhard Kulessa 1
Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.
Zasada zachowania energii
Zasada zachowania energii Fizyka I (Mechanika) Wykład VI: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne Układ środka masy Praca i energia