WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA
|
|
- Tadeusz Jóźwiak
- 6 lat temu
- Przeglądów:
Transkrypt
1 WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), ( )... ( )} (.) ( m Może to yć żądanie osiągnięcia np. maksimum eektów pzy minimalnych nakładach, maksimum spawności pzy minimum masy, lu minimum kosztów podukcji pzy minimum kosztów eksploatacji. Pzy ealizacji tych wymagań występują najczęściej spzeczności tzn. w danej pzestzeni zmiennych decyzyjnych {} poszczególne kyteia nie mogą jednocześnie osiągnąć swoich watości ekstemalnych. Mówimy wówczas, że zachodzi potzea znalezienia ozwiązania kompomisowego, to jest takiego ziou zmiennych decyzyjnych { p }, któy możliwie najlepiej spełnia wymagania F(). Załóżmy, że poszczególne wymagania i (), i=,...m, są od sieie liniowo niezależne oaz są unkcjami ciągłymi i oganiczonymi w pzestzeni {}. Dla uposzczenia analizy pzyjmijmy, że występują jedynie dwa kyteia () oaz () a zadanie polega na ich jednoczesnej maksymalizacji ( ) ( ) ma! ma! (.) Z waunku oganiczoności i () można stwiedzić, nie nauszając ogólności ozważań min min ( ) ( ) ma ma (.3) Pzedstawiając w pzestzeni celów uzyskiwane watości kyteiów dla wszystkich dopuszczalnych watości zmiennych decyzyjnych otzymuje się zió F pokazany na ys.. ma D A B C zió kompomisów dla () = ma! () = ma! min F min ma ys... Pzestzeń celów pzykładowej polioptymalizacji
2 Zauważa się, że ozwiązanie D o watościach kyteiów { D, D } może yć uznane za gosze od ozwiązania B ponieważ zachodzi D D B B (.4) Tego typu ozumowanie można pzepowadzić dla wszystkich punktów oszau F za wyjątkiem linii (ABC). Punkty należące do tej linii odpowiadają konstukcjom, dla któych popawienie jednego kyteium jakości uzyskuje się wyłącznie kosztem pogoszenia pzynajmniej jednego z pozostałych. Zió ten nazywamy zioem kompomisów w pzestzeni unkcji celu. W pzypadku, kiedy zió kyteiów ma inną postać, na pzykład ( ) ( ) ulega mianie położenie ziou kompomisów ma! (.5) min! ma min F C D B A zió kompomisów dla () = ma! () = min! min ma ys... Pzestzeń celów pzykładowej polioptymalizacji Zió kompomisów w ogólnym pzypadku nie musi yć jednospójny. Jego kształt zależy owiem od postaci składowych unkcji celu. Pzykładowy układ dwuodcinkowego ziou kompomisów pokazano na ys..3. gdzie poównując pzykładowo punkt E i B mamy B > E oaz B < E. ma min F D C E B A zió kompomisów (AB) () = ma! () = min! (CD) dla min ma ys..3. Pzestzeń celów pzykładowej polioptymalizacji z wielospójnym zioem kompomisów
3 Pzykład. Analizowany jest aktywny dwójnik elektyczny o sile elektomotoycznej E i ezystancji wewnętznej, któy jest ociążony ezystancją. Jako zmienne decyzyjne pzyjęto pzy oganiczeniu Składnikami kyteium jakości są spawność zależnościami min ma (.6) (.7) P E oaz moc oddawana P okeślone (.8) Wpowadzając pzyjęte zależności na zmienne decyzyjne otzymuje się (, ) (, ) E ozkłady składowych unkcji celu pokazano na ys..4. (.9) = min.5 = ma ys..4. Składniki unkcji celu ociążonego dwójnika elektycznego spawność, moc oddawana. Zwyczajowo wyóżnia się tzy stany:. jałowy =,. dopasowania =, 3. zwacia =
4 ozkład składników unkcji celu w pzestzeni zmiennych decyzyjnych zamieszczono na ys..5, a w pzestzeni celów na ys.6.6. zió kompomisów =.7 P=.5E P=.3E P=.E P=.E min =.5 =.3 =. =. ma ys..5. Izolinie składników unkcji celu w pzestzeni zmiennych decyzyjnych E /4 min min zió kompomisów ma.5. ys..6. Zió kompomisów aktywnego dwójnika elektycznego
5 Elementana teoia kompomisów dwukyteialnych Zakładamy, ze istnieją dwa kyteia jakości (), () zależne od pewnej liczy zmiennych decyzyjnych, z któych wszystkim za wyjątkiem, pzypoządkowano stałe watości ( ) ( ) (, (,, 3, ) ) (.) Funkcje (), () są ciągłe i óżniczkowalne względem i. Załóżmy, że poszukiwane jest ozwiązanie zagadnienia podwójnej maksymalizacji ( ) ( ) ma! (.) ma! Waunkiem koniecznym występowania ekstemów unkcji skalanych jest k ()=. Pzy ustalonych watościach i (i>) i aku oganiczeń dla zmiennych, mamy do czynienia w polioptymalizacji z zutowaniem punktów należących do nieoganiczonej dwuwymiaowej pzestzeni zmiennych decyzyjnych na dwuwymiaową pzestzeń celów. Kzywa zegowa tak otzymanego ziou w pzestzeni celów może się pojawić wyłącznie w pzypadku, kiedy składowe kyteia jakości (), () są oganiczone z góy (z dołu), co pzy założonej ciągłości tych unkcji jest ównoznaczne z istnieniem ich maksimów (minimów). Pzypuśćmy, że znajdujemy się w punkcie a o składowych { a, a }. Kieunek d ędzie kieunkiem popawy jednocześnie dla oydwu kyteiów jeżeli zachodzi ( a ( a (.) Osiągnięcie ziou kompomisów K oznacza, że dla dowolnego d w jeden z powyższych iloczynów skalanych musi zmienić znak, czyli możliwe są dwa waianty ( ( ( ( (.3) Oznacza to z kolei anty-ównoległość gadientów ) ( ) (.4) ( i w konsekwencji ( ) ( ) (.5)
6 zió kompomisów ys..7. Zió kompomisów w pzestzeni zmiennych decyzyjnych Wyażenie L L ( ) ( ) ( ) (.6) jest nazywane zastępczym liniowym kyteium jakości. Można stwozyć ównież tzw. nieliniowe kyteium zastępcze N wykozystując nieówność Cauchy ego Schwatza zapisaną tu dla wyanych dwu wektoów, y, y y (.7) gdzie ówność zachodzi wyłącznie w pzypadku, kiedy, y są liniowo zależne. Stąd unkcja N zdeiniowana popzez N ( ) ( ) ( ), ( ) (.8) jest zawsze dodatnia i osiąga zeo dla punktu K. Kyteium to nie pozwala na pzeszukiwanie punkt po punkcie ziou kompomisów, umożliwia jedynie dotacie do tego ziou.
7 Stategie wyznaczania ziou kompomisów..wyznaczanie punktów ziou za pomocą liniowego kyteium zastępczego Wpowadzamy (n+) liniowych zadań zastępczych i i L i ( ) ( ) i,,,... n (.9) n n Dla każdego i wyznaczamy minimum Oi za pomocą optymalizacji skalanej. Zió punktów { O, O,... On } twozy zió kompomisów z żądaną dokładnością. Li.Wyznaczanie punktów ziou pzy pomocy nieliniowego kyteium zastępczego.. Wyznaczamy optimum każdej ze składowych unkcji celu, np. ( O )=ma!, ( O )=ma!.. Statując np. z punktu O wyznaczamy punkt a jako a = O + ( O ) O a O zió kompomisów.3. W punkcie a wyznaczamy kieunek popawy d= ( a ) + ( a ), wzdłuż któego minimalizujemy nieliniowe kyteium jakości N( a + d)= uzyskując. O a d O zió kompomisów.4. Spawdzamy kyteium zatzymania O.5. Jeśli tak to stop, jeśli nie to O = i powót do p... Uwaga: Postępowanie wg. pzedstawionego algoytmu nadaje się do zadań z jednospójnym zioem kompomisów.
Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie
Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy
Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego
Dobó zmiennych objaśniających do liniowego modelu ekonometycznego Wstępnym zadaniem pzy budowie modelu ekonometycznego jest okeślenie zmiennych objaśniających. Kyteium wybou powinna być meytoyczna znajomość
ZWIĄZEK FUNKCJI OMEGA Z DOMINACJĄ STOCHASTYCZNĄ
Studia konomiczne. Zeszyty Naukowe Uniwesytetu konomicznego w Katowicach ISSN 283-86 N 237 25 Infomatyka i konometia 2 wa Michalska Uniwesytet konomiczny w Katowicach Wydział Infomatyki i Komunikacji Kateda
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,
GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH
ĆWZENE 3 EZONANS W OBWODAH EEKTYZNYH el ćwiczenia: spawdzenie podstawowych właściwości szeegowego i ównoległego obwodu ezonansowego pzy wymuszeniu napięciem sinusoidalnym, zbadanie wpływu paametów obwodu
XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.
Modelowanie przepływu cieczy przez ośrodki porowate Wykład III
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości
ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.
Energia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.
WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,
MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH
Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie
PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA
PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na
INSTRUKCJA DO ĆWICZENIA
NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.
REZONATORY DIELEKTRYCZNE
REZONATORY DIELEKTRYCZNE Rezonato dielektyczny twozy małostatny, niemetalizowany dielektyk o dużej pzenikalności elektycznej ( > 0) i dobej stabilności tempeatuowej, zwykle w kształcie cylindycznych dysków
CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH
Politecnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Kateda Samolotów i Silników Lotniczyc Pomoce dydaktyczne Wytzymałość Mateiałów CHRKTERYSTYKI GEOMETRYCZNE FIGUR PŁSKICH Łukasz Święc Rzeszów, 18
2 Przykład C2a C /BRANCH C. <-I--><Flux><Name><Rmag> TRANSFORMER RTop_A RRRRRRLLLLLLUUUUUU 1 P1_B P2_B 2 S1_B SD_B 3 SD_B S2_B
PRZYKŁAD A Utwozyć model sieci z dwuuzwojeniowym, tójfazowym tansfomatoem 110/0kV. Model powinien zapewnić symulację zwać wewnętznych oaz zadawanie watości początkowych indukcji w poszczególnych fazach.
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia
L(x, 0, y, 0) = x 2 + y 2 (3)
0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej
Wykład 1. Elementy rachunku prawdopodobieństwa. Przestrzeń probabilistyczna.
Podstawowe pojęcia. Wykład Elementy achunku pawdopodobieństwa. Pzestzeń pobabilistyczna. Doświadczenie losowe-doświadczenie (zjawisko, któego wyniku nie możemy pzewidzieć. Pojęcie piewotne achunku pawdopodobieństwa
Podstawowe konstrukcje tranzystorów bipolarnych
Tanzystoy Podstawowe konstukcje tanzystoów bipolanych Zjawiska fizyczne występujące w tanzystoach bipolanych, a w związku z tym właściwości elektyczne tych tanzystoów, zaleŝą od ich konstukcji i technologii
KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH
KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH Janusz ROMANIK, Kzysztof KOSMOWSKI, Edwad GOLAN, Adam KRAŚNIEWSKI Zakład Radiokomunikacji i Walki Elektonicznej Wojskowy Instytut Łączności 05-30
15. STANOWISKOWE BADANIE MECHANIZMÓW HAMULCOWYCH Cel ćwiczenia Wprowadzenie
15. STANOWISKOWE BADANIE MECHANIZMÓW HAMULCOWYCH 15.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie na stanowisku podstawowyc zależności caakteyzującyc funkcjonowanie mecanizmu amulcowego w szczególności
23 PRĄD STAŁY. CZĘŚĆ 2
Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,
m q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
Opis ćwiczeń na laboratorium obiektów ruchomych
Gdańsk 3.0.007 Opis ćwiczeń na laboatoium obiektów uchomych Implementacja algoytmu steowania obotem w śodowisku symulacyjnym gy obotów w piłkę nożną stwozonym w Katedze Systemów Automatyki Politechniki
ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?
ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest
Elektroenergetyczne sieci rozdzielcze SIECI 2004 V Konferencja Naukowo-Techniczna
Elektoenegetyczne sieci ozdzielcze SIECI 2004 V Konfeencja Naukowo-Techniczna Politechnika Wocławska Instytut Enegoelektyki Andzej SOWA Jaosław WIATER Politechnika Białostocka, 15-353 Białystok, ul. Wiejska
Wykład 17. 13 Półprzewodniki
Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa
9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN
91 POMIAR PRĘDKOŚCI NEUTRINA W CERN Rozdział należy do teoii pt "Teoia Pzestzeni" autostwa Daiusza Stanisława Sobolewskiego http: wwwtheoyofspaceinfo Z uwagi na ozważania nad pojęciem czasu 1 możemy pzyjąć,
Fizyka elektryczność i magnetyzm
Fizyka elektyczność i magnetyzm W1 1. Elektostatyka 1.1. Ładunek elektyczny. Cała otaczająca nas mateia składa się z elektonów, potonów i neutonów. Dwie z wymienionych cząstek - potony i elektony - obdazone
DZIAŁANIE MECHANIZMÓW BRONI AUTOMATYCZNEJ Z ODPROWADZENIEM GAZÓW PO ZATRZYMANIU TŁOKA GAZOWEGO
mg inż. ałgozata PAC pof. d hab. inż. Stanisław TORECKI Wojskowa Akademia Techniczna DZIAŁANIE ECHANIZÓW BRONI AUTOATYCZNEJ Z ODPROWADZENIE GAZÓW PO ZATRZYANIU TŁOKA GAZOWEGO Steszczenie: W efeacie pzedstawiono
PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r
PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda
Próba określenia miary jakości informacji na gruncie teorii grafów dla potrzeb dydaktyki
Póba okeślenia miay jakości infomacji na guncie teoii gafów dla potzeb dydaktyki Zbigniew Osiak E-mail: zbigniew.osiak@gmail.com http://ocid.og/0000-0002-5007-306x http://via.og/autho/zbigniew_osiak Steszczenie
Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej
Wpływ błędów parametrów modelu maszyny indukcyjnej na działanie rozszerzonego obserwatora prędkości
Daniel WACHOWIAK Zbigniew KRZEMIŃSKI Politechnika Gdańska Wydział Elektotechniki i Automatyki Kateda Automatyki Napędu Elektycznego doi:1015199/48017091 Wpływ błędów paametów modelu maszyny indukcyjnej
Tradycyjne mierniki ryzyka
Tadycyjne mieniki yzyka Pzykład 1. Ryzyko w pzypadku potfela inwestycyjnego Dwie inwestycje mają następujące stopy zwotu, zależne od sytuacji gospodaczej: Sytuacja Pawdopodobieństwo R R Recesja 0, 9,0%
TERMODYNAMIKA PROCESOWA. Wykład V
ERMODYNAMIKA PROCESOWA Wykład V Równania stanu substancji czystych Równanie stanu gazu doskonałego eoia stanów odpowiadających sobie Równania wiialne Pof. Antoni Kozioł, Wydział Chemiczny Politechniki
BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO
LABORATORIUM ELEKTRONIKI I ELEKTROTECHNIKI BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO Opacował: d inŝ. Aleksande Patyk 1.Cel i zakes ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową, właściwościami
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie
Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli
AKADEMIA GÓRNICZO HUTNICZA im. Stanisława Staszica WYDZIAŁ GÓRNICTWA I GEOINŻYNIERII KATEDRA GEOMECHANIKI, BUDOWNICTWA I GEOTECHNIKI Rozpawa doktoska Badania nad kształtowaniem się watości współczynnika
00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym.
1 00502 Kinematyka D Dane osobowe właściciela akusza 00502 Podstawy kinematyki D Część 2 Iloczyn wektoowy i skalany. Wektoowy opis uchu. Względność uchu. Pędkość w uchu postoliniowym. Instukcja dla zdającego
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
Guma Guma. Szkło Guma
1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma
MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO
Pzemysław PŁONECKI Batosz SAWICKI Stanisław WINCENCIAK MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO STRESZCZENIE W atykule pzedstawiono
LINIOWA MECHANIKA PĘKANIA
odstawowe infomacje nt. LNOWA MECHANA ĘANA Wytzymałość mateiałów J. Geman OLE NARĘŻEŃ W LNOWO SRĘŻYSTYM OŚRODU ZE SZCZELNĄ oe napężeń w dwuwymiaowym ośodku iniowo-spężystym ze szczeiną zostało wyznaczone
ZASTOSOWANIE ALGORYTMU EWOLUCYJNEGO DO OPTYMALNEJ LOKALIZACJI ŁĄCZNIKÓW W SIECI ROZDZIELCZEJ ŚREDNIEGO NAPIĘCIA
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electical Engineeing 2012 Wojciech BĄCHOREK* Janusz BROŻEK* ZASTOSOWANIE ALGORYTMU EWOLUCYJNEGO DO OPTYMALNEJ LOKALIZACJI ŁĄCZNIKÓW W SIECI ROZDZIELCZEJ
Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.
Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest
Wykład 15. Reinhard Kulessa 1
Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.
Sterowanie nieholonomicznym manipulatorem z zastosowaniem funkcji transwersalnych
Steowanie nieholonomicznym manipulatoem z zastosowaniem funkcji tanswesalnych Batłomiej Kysiak Paweł Szulczyński Kzysztof Kozłowski Steszczenie Paca pezentuje zastosowanie funkcji tanswesalnych w pawie
dr inż. Małgorzata Langer Architektura komputerów
Instukcja współfinansowana pzez Unię Euopejską w amach Euopejskiego Funduszu Społecznego w pojekcie Innowacyjna dydaktyka bez oganiczeń zintegowany ozwój Politechniki Łódzkiej zaządzanie Uczelnią, nowoczesna
Model klasyczny gospodarki otwartej
Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli
Spis treści JĘZYK C - FUNKCJE. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu. Numer ćwiczenia INF07Z
Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii Instukcja do pacowni specjalistycznej z pzedmiotu Inomatyka Kod pzedmiotu: EZC00 00 (studia niestacjonane) Spis
Siła. Zasady dynamiki
Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
Ćwiczenie 9 ZASTOSOWANIE ŻYROSKOPÓW W NAWIGACJI
9.1. Cel ćwiczenia Ćwiczenie 9 ZASTSWANIE ŻYRSKPÓW W NAWIGACJI Celem ćwiczenia jest pezentacja paktycznego wykozystania efektu żyoskopowego w lotniczych pzyządach nawigacyjnych. 9.2. Wpowadzenie Żyoskopy
Wyznaczanie współczynnika wzorcowania przepływomierzy próbkujących z czujnikiem prostokątnym umieszczonym na cięciwie rurociągu
Wyznaczanie współczynnika wzocowania pzepływomiezy póbkujących z czujnikiem postokątnym umieszczonym na cięciwie uociągu Witold Kiese W pacy pzedstawiono budowę wybanych czujników stosowanych w pzepływomiezach
5 Postulaty mechaniki kwantowej
5 Postulaty mechaniki kwantowej Mo zemy teaz sfomu ować postulaty mechaniki kwantowej. POSTULAT. Stan uk adu zycznego w danej chwili t wyznaczony jest pzez wekto stanu j (t)i w pzestzeni Hilbeta H. Pzypomnijmy,
Wykład 11. Pompa ciepła - uzupełnienie II Zasada Termodynamiki Entropia w ujęciu termodynamicznym c.d. Entropia w ujęciu statystycznym
Wykład 11 Pompa ciepła - uzupełnienie II Zasada emodynamiki Entopia w ujęciu temodynamicznym c.d. Entopia w ujęciu statystycznym W. Dominik Wydział Fizyki UW emodynamika 2018/2019 1/30 G Pompa cieplna
GEOMETRIA PŁASZCZYZNY
GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,
Plan wykładu. Rodzaje pól
Plan wykładu Pole gawitacyjne d inż. Ieneusz Owczaek CMF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 2013/14 1 Wielkości chaakteyzujace pole Pawo Gaussa wewnatz Ziemi 2 Enegia układu ciał
Wpływ prędkości podziemnej eksploatacji górniczej na obiekty budowlane
WARSZTATY z cyklu Zagożenia natualne w gónictwie Mat. Symp. st. 3 7 Jezy WIATE Główny Instytut Gónictwa, atowice Wpływ pędkości podziemnej eksploatacji góniczej na obiekty budowlane Steszczenie Pzedstawiono
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
KINEMATYCZNE WŁASNOW PRZEKŁADNI
KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej
Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych
Michał Benad Pietzak * Ocena siły oddziaływania pocesów objaśniających dla modeli pzestzennych Wstęp Ekonomiczne analizy pzestzenne są ważnym kieunkiem ozwoju ekonometii pzestzennej Wynika to z faktu,
ROZKŁAD NORMALNY. 2. Opis układu pomiarowego
ROZKŁAD ORMALY 1. Opis teoetyczny do ćwiczenia zamieszczony jest na stonie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE (Wstęp do teoii pomiaów). 2. Opis układu pomiaowego Ćwiczenie
OKREŚLANIE WARTOŚCI MOMENTU STATYCZNEGO DLA STANU NIERUCHOMEGO WAŁU SILNIKA INDUKCYJNEGO W PRZEKSZTAŁTNIKOWYM UKŁADZIE NAPĘDOWYM DŹWIGU
Zeszyty Poblemowe Maszyny Elektyczne N 75/6 15 Jan Anuszczyk, Maiusz Jabłoński Politechnika Łódzka, Łódź OKREŚLANE WARTOŚC MOMENTU STATYCZNEGO DLA STANU NERUCHOMEGO WAŁU SLNKA NDUKCYJNEGO W PRZEKSZTAŁTNKOWYM
Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne
Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką
Ruch jednostajny po okręgu
Ruch jednostajny po okęgu W uchu jednostajnym po okęgu pędkość punktu mateialnego jest stała co do watości ale zmienia się jej kieunek. Kieunek pędkości jest zawsze styczny do okęgu będącego toem. Watość
STRUKTURA STEROWANIA UKŁADEM TRÓJMASOWYM Z REGULATOREM STANU
Pace Naukowe Instytutu Maszyn, Napędów i Pomiaów Elektycznych N 69 Politechniki Wocławskiej N 69 Studia i Mateiały N 0 Kaol WRÓBEL* egulato stanu, układy tójmasowe, układy z połączeniem spężystym STRUKTURA
{ 1, 2,, n } Ponadto wówczas mówimy, że formuła: oraz równoważna jej formuła:
RCHUNEK ZDŃ 6 Do ozstzygania, któe fomuły achunku zdań są tautologiami, czyli pawami logiki, stosować możemy tzy odzaje metod: 1) metodę matycową (zeo-jedynkową), 2) metodę założeniową, 3) metodę aksjomatyczną.
Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego:
Zadanie Rafineria naftowa otrzymała zamówienie na dwa rodzaje specjalnych paliw węglowodorowych X oraz Y. Zamówienie opiewa na minimum 4 000 galonów paliwa X i minimum 2 400 galonów paliwa Y. Paliwa te
= ± Ne N - liczba całkowita.
POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
Rodzajowy rachunek kosztów Wycena zuŝycia materiałów
Rodzajowy achunek kosztów (wycena zuŝycia mateiałów) Wycena zuŝycia mateiałów ZuŜycie mateiałów moŝe być miezone, wyceniane, dokumentowane i ewidencjonowane w óŝny sposób. Stosowane metody wywieają jednak
Mechanika ogólna. Łuki, sklepienia. Zalety łuków (1) Zalety łuków (2) Geometria łuku (2) Geometria łuku (1) Kształt osi łuku (1) Kształt osi łuku (2)
Łuki, skepienia Mechanika ogóna Wykład n Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposó, że podpoy nie
Składowe przedmiotu MECHANIKA I MECHATRONIKA. mechanika techniczna podstawy konstrukcji maszyn mechatronika
Składowe pzedmiotu MECHANIKA I MECHATRONIKA mechanika techniczna podstawy konstukcji maszyn mechatonika mechanika techniczna mechanika ogólna (teoetyczna): kinematyka (badanie uchu bez wnikania w jego
Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci
Elementarne przepływy potencjalne (ciąg dalszy)
J. Szanty Wykład n 4 Pzepływy potencjalne Aby wytwozyć w pzepływie potencjalnym siły hydodynamiczne na opływanych ciałach konieczne jest zyskanie pzepływ asymetycznego.jest to możliwe pzy wykozystani kolejnego
E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW
4. BADANI POLA LKTRYCZNGO W POBLIŻU NAŁADOWANYCH PRZWODNIKÓW tekst opacował: Maek Pękała Od oku 1785 pawo Coulomba opisuje posty pzypadek siły oddziaływania dwóch punktowych ładunków elektycznych, któy
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi
KOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO
XIX Międzynaodowa Szkoła Komputeowego Wspomagania Pojektowania, Wytwazania i Eksploatacji D hab. inż. Józef DREWNIAK, pof. ATH Paulina GARLICKA Akademia Techniczno-Humanistyczna w Bielsku-Białej DOI: 10.17814/mechanik.2015.7.226
IV.2. Efekt Coriolisa.
IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż
Energia kinetyczna i praca. Energia potencjalna
Enegia kinetyczna i paca. Enegia potencjalna Wykład 4 Wocław Uniesity of Technology 1 5-XI-011 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut 63 kg Paul Andeson
należą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło
07 0 Opacował: mg inż. Macin Wieczoek www.mawie.net.pl. Elementy ezystancyjne. należą do gupy odbioników enegii elektycznej idealne elementy ezystancyjne pzekształcają enegię pądu elektycznego w ciepło.
DARIUSZ SOBCZYŃSKI 1, JACEK BARTMAN 2
Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Infomatyka n 4/18/2016 www.eti.zeszow.pl DOI: 10.15584/eti.2016.4.53 DARIUSZ SOBCZYŃSKI 1, JACEK BARTMAN 2 Model symulacyjny pzeciwsobnego
Dobór zmiennych do modelu ekonometrycznego
Dobó zmiennych do modelu ekonometycznego Metody dobou zmiennych do modelu ekonometycznego opate na teście F Model zedukowany ya 0 +a x+a x+.+a x Model pełny ya 0 +a x+a x+.+a x +a + x + + +a k x k Częściowy
( ) 2. 4πε. Prawo Coulomba
Pawo Coulomba. Cztey identyczne ładunki dodatnie q umieszczono w wiezchołkach kwadatu o boku a. W śodku symetii kwadatu umieszczono ładunek ujemny taki, Ŝe cały układ pozostaje w ównowadze. Znaleźć watość
Uwagi: LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie nr 16 MECHANIKA PĘKANIA. ZNORMALIZOWANY POMIAR ODPORNOŚCI MATERIAŁÓW NA PĘKANIE.
POLITECHNIKA KRAKOWSKA WYDZIAŁ MECHANZNY INSTYTUT MECHANIKI STOSOWANEJ Zakład Mechaniki Doświadczalnej i Biomechaniki Imię i nazwisko: N gupy: Zespół: Ocena: Uwagi: Rok ak.: Data ćwicz.: Podpis: LABORATORIUM
PRĘDKOŚCI KOSMICZNE OPRACOWANIE
PRĘDKOŚCI KOSMICZNE OPRACOWANIE I, II, III pędkość komiczna www.iwiedza.net Obecnie, żyjąc w XXI wieku, wydaje ię nomalne, że człowiek potafi polecieć w komo, opuścić Ziemię oaz wylądować na Kiężycu. Poza
KURS GEOMETRIA ANALITYCZNA
KURS GEOMETRIA ANALITYCZNA Lekcja 2 Działania na wektoach w układzie współzędnych. ZADANIE DOMOWE www.etapez.pl Stona 1 Część 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Któe
WYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
Binarne Diagramy Decyzyjne
Sawne tablice logiczne Plan Binane diagamy decyzyjne Oganiczanie i kwantyfikacja Logika obliczeniowa Instytut Infomatyki Plan Sawne tablice logiczne Binane diagamy decyzyjne Plan wykładu 1 2 3 4 Plan wykładu
dr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź