KOOF Szczecin: Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.

Wielkość: px
Rozpocząć pokaz od strony:

Download "KOOF Szczecin: Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW."

Transkrypt

1 LVII OLIMPIADA FIZYCZNA (007/008). Stopień III, zadanie doświadczalne D Źódło: Auto: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW. Wyznaczanie współczynnika lepkości miodu. Mechanika siła, lepkość, tacie, współczynnik, moment, uch, obót, okes, pędkość, kątowa, ciecz, ciężaek, soczewka Zadanie doświadczalne D, zawody III stopnia, LVII OF. Masz do dyspozycji: soczewkę dwuwypukłą o identycznych pomieniach kzywizny wynoszących R = 65 mm, płaską szklaną płytkę, kawałek uki plastikowej, nitkę, 3 ciężaki o masie (4,6 ± 0,) g każdy, stope, dwustonną taśmę klejącą, plastelinę, dwie szklane pobówki, papie milimetowy, linijkę, płynny miód z łyżeczką do nabieania go z naczynia. Wyznacz współczynnik lepkości miodu. Uwaga: Współczynnik lepkości cieczy η można zdefiniować popzez wzó wiążący siłę F potzebną do podtzymania jednostajnego uchu płytki nakywającej wastwę cieczy o niewielkiej (w poównaniu z ozmiaami płytki) gubości. Jeśli pędkość płytki jest niewielka, to można uznać, że pędkość v(x) cieczy maleje liniowo ze wzostem odległości x od płytki (patz ysunek) i zachodzi związek: F v = η 0 S d gdzie S powiezchnia płytki, v 0 pędkość płytki, d gubość wastwy cieczy. v 0 F x v(x) ciecz d /7

2 Rozwiązanie Część teoetyczna Rozwiązanie zadania wymaga zbudowania układu ekspeymentalnego, w któym można byłoby badać jednostajny uch jakiegoś pzedmiotu pzylegającego do wastewki miodu. Taki waunek spełnia układ pzedstawiony schematycznie na ys.. Układ zestawić można w następujący sposób. Używając dwustonnej taśmy klejącej do soczewki mocujemy centycznie ukę plastikową. Na ukę nawijamy nitkę, z pzymocowanymi na dwóch końcach ciężakami. Płytkę szklaną kładziemy na stole tak, aby jej część o długości kilku centymetów wystawała poza kawędź stołu. Następnie na śodek wystającej poza kawędź stołu części płytki nakładamy niewielką ilość miodu i umieszczamy w nim centalnie soczewkę. Dociskamy soczewkę do powiezchni płytki. Na bzegach płytki mocujemy pzy użyciu plasteliny plastikowe kołki i pzeciągamy pzez nie końce nitki z ciężakami. Zwisające ciężaki naciągają końce nitki i powodują, że soczewka zaczyna się obacać. W chwili, gdy ustali się ównowaga pomiędzy momentem siły ciężkości i momentem siły lepkości oaz opoami uchu wynikającymi z tacia nitki o powiezchnie pobówek, ciężaki zaczynają pouszać się uchem jednostajnym. Najtudniejszy element ozwiązania zadania polega na znalezieniu związku pomiędzy pędkością obotową soczewki a watością współczynnika lepkości miodu. plastikowy walec pobówka soczewka płytka szklana nitka ciężaek ciężaek Rys. Załóżmy, że potafimy tak ufomować miód pod soczewką, że zajmie on wnętze koła o pomieniu m. Pędkość kątowa soczewki ω ustala się w waunkach, gdy moment sił lepkości miodu jest ówny momentowi siły ciężkości pomniejszonej o siłę tacia nitek o powiezchnię pobówek: M c = mgr k F T, () gdzie R k pomień uki pzyklejonej do soczewki, m masa obciążnika, g pzyspieszenie ziemskie, F T siła tacia nitki o pobówkę. Żeby znaleźć wyażenie na moment sił lepkości działający na soczewkę, podzielmy w myśli obsza miodu na pieścienie o pomieniu i niewielkiej szeokości Δ. /7

3 R R k d Δ m Rys. Gubość wastwy miodu d w odległości od osi obotu jest okeślona związkiem (patz ys. ): ( R d) + = R, co można zapisać w postaci (R + d) d =. Ponieważ w ozważanej sytuacji spełniony jest waunek R >> d, to po lewej stonie ównania (3) możemy pominąć d w nawiasie i otzymujemy: () (3) d = (4) R Pzyczynek ΔF do siły opou tacia lepkiego pomiędzy miodem i soczewką dla ozważanego pieścienia wyniesie więc: v 0 ω RΔSω ΔF = ηδs = ηδs R = η, (5) d zaś moment siły lepkości względem osi obotu: RΔSω ΔM = ΔF = = η R ΔSω (6) Wato zauważyć, że pzyczynek do momentu siły lepkości pochodzący od pieścienia nie zależy od jego śednicy! Zatem sumayczny moment sił lepkości zależy tylko od całkowitej powiezchni wastwy miodu S = π i wyniesie: M = η RS ω = η R π mω. (7) Z poównania wyażeń () oaz (7) wynika, że w sytuacji gdy mamy do czynienia z jednostajnym obotem soczewki zachodzi związek: η R π mω = ( mg F ) R T k. (8) 3/7

4 Pędkość kątową soczewki ω = π/t można wyznaczyć mieząc okes jej obotu T. Rozważmy najpiew sytuację, gdy siły tacia nitki o powiezchnie pobówek są znikomo małe. Wtedy związek (8) można pzedstawić w postaci: 4π η R T = m. (9) mgr Zatem okes obotu soczewki powinien być liniową funkcją kwadatu pomienia obszau miodu stykającego się z soczewką: T = α m, (0) π R gdzie α = η. mgr k Po wykonaniu pomiaów czasu obotu soczewki dla kilku óżnych ilości miodu pod soczewką wystaczy więc spoządzić wykes zależności T ( m ) i następnie po dopasowaniu postej wyznaczyć współczynnik lepkości η. Dyskusją wpływu sił tacia na uzyskane wyniki zajmiemy w części doświadczalnej. Część doświadczalna Pomiay wykonano w układzie pzedstawionym na ys.. Okes obotu soczewki, dla kilku dla óżnych wielkości powiezchni zajmowanych pzez miód pod soczewką, wyznaczono mieząc stopeem czas pełnego obotu soczewki. Pomień uki oaz ozmiay obszau zajmowanego pzez miód można zmiezyć pzy użyciu linijki. Wielkość plamy miodu można wyznaczyć patząc na miód z boku. Uzyskane, wyniki pomiaów zostały pzedstawione na ys k α=(0,33±0,05) s/mm T(s) Rys. 3 (mm ) Z dopasowania postej do danych doświadczalnych uzyskano watość współczynnika α = (33 ± 5) 0-3 s/mm -. Bioąc pod uwagę, że pomień kzywizny soczewki wynosił R = 65 mm, masa ciężaka m = (4,6 ± 0,) g, pomień kążka R k = (4,0 ± 0,5) mm otzymujemy: η = k mgr α = (3 ± 7) Pa s. Jak to już podkeślano w części teoetycznej w pzedstawionym ozwiązaniu pzyjęto, że siła tacia nitki o powiezchnię pobówki jest π R niewielka 4/7

5 i pominięto ją w achunkach. Tak uczyniła większość ozwiązujących zadanie. Założenie to powadzi jednak do istotnego zawyżenia uzyskanej watości lepkości. Wielkość siły tacia można oszacować badając uch ciężaków pzewieszonych na pobówkach (ys. 4). Do jednego z końców nitki dowiązujemy dodatkowy ciężaek i miezymy stopeem czas w jakim ciężaki pokonują odległość h (można odmiezyć ją nitką, a następnie zmiezyć długość kawałka nitki linijką). Dla odległości h = (60 ± ) cm, uzyskano czas (3,5 ± 0,5) s. Co daje watość pzyspieszenia a = h/t = (0,3 ± 0,04) m/s. Tak małe pzyspieszenie uzyskiwane pzez ciężaki sugeuje, że watość całkowitej siły tacia w układzie jest badzo bliska ciężaowi jednego obciążnika. Można to spawdzić dokładniej. N N F T F T N N 3 N h mg mg Równania opisujące uch układu mają postać: ma = mg N N = N FT N3 = N FT ma = N3 mg Rys. 4 Stąd po wyeliminowaniu naciągu nitek dostajemy: co można zapisać w postaci 3ma = mg (F T + F T ), () 3a F T. + FT = mg () g Po podstawieniu watości pzyspieszenia a uzyskanego w doświadczeniu uzyskujemy watość siły tacia (0,950 ± 0,006) mg (czyli zgodnie z wnioskiem jakościowym). Jeśli pzyjąć, że watość siły tacia nitki o pobówkę jest zbliżona do uzyskanej powyżej, to efektywny moment siły powodującej obót soczewki wyniesie ( mg F ) R k mgr. Oznacza to, że watość T k 5/7

6 współczynnika lepkości miodu będzie o połowę mniejsza od watości uzyskanej na podstawie wzou (9). Takie uposzczone ozumowanie nie uwzględnia jednak tego, że watość siła tacia nitki o pobówkę pzy obciążeniu dwoma ciężakami óżni od siły działającej podczas pomiau okesu obotu soczewki umieszczonej w miodzie. Żeby uwzględnić wpływ siły tacia na uzyskaną watość współczynnika lepkości należy wyznaczyć współczynnik tacia nitki o pobówkę (lub jego funkcję). Najpościej można to zobić wykozystując fakt, że siła tacia nitki o pobówkę jest popocjonalna do siły napięcia nici, tzn. że F T = β N, F T = β N. (3) (Było to pzedmiotem zadań olimpijskich.) Kozystając ze związków (3) naciągi nici możemy wyazić jako funkcję siły naciągu N : N = N F T = N ( β ), (4) N 3 = N F T = N β N = N ( β ) = N ( β ). (5) Stąd: N ( N Z ównań Newtona dla ciężaków otzymujemy wyażenia na siły naciągu nitki: Zatem 3 β ) =. (6) N = mg ma oaz N 3 = mg + ma. (7) N3 mg + ma ( β ) = = N ( mg ma), (8) + a / g β =. (9) ( a / g) Znając watość pzyspieszenia ciężaków a = (0,3 ± 0,04) m/s wyznaczoną w doświadczeniu otzymujemy współczynnik β = (0,8 ± 0,003). (W sytuacji, gdy pzyspieszenie jest niewielkie w poównaniu z pzyspieszeniem ziemskim g, współczynnik β / ). Znając watość współczynnika β możemy znaleźć watość siły naciągu nitki powodującej obót soczewki: N = mg F T = mg β mg = mg( β ), co daje liczbowo N = (0,78 ± 0,00) mg. Tak więc pawidłowe uwzględnienie siły tacia powoduje, że wyznaczony w doświadczeniu współczynnik lepkości miodu uzyskuje watość η = (6,5 ± 5,0) Pa s. Jeśli w doświadczeniu uwzględniony został wpływ siły tacia nitki o pobówkę, to głównym czynnikiem wpływającymi niepewność pomiaową współczynnika lepkości, jest niepewność wyznaczenia pomienia obszau zajmowanego pzez miód pod soczewką. Poponowana punktacja. Pomysł doświadczenia umożliwiającego wyznaczenie współczynnika lepkości miodu.. Wypowadzenie związku pomiędzy czasem obotu soczewki i współczynnikiem lepkości (wzoy 0, za uwzględnienie siły tacia pkt.) 3. Zestawienie układu pomiaowego i wykonanie pomiaów umożliwiających wyznaczenie współczynnika lepkości miodu do 5pkt. do 5pkt. do 5pkt. 6/7

7 4. Podanie popawnego wyniku końcowego waz z oszacowaniem niepewności pomiaowej i dyskusją podstawowych źódeł niepewności pomiaowej wyniku końcowego do pkt. 5. Dyskusja wpływu siły tacia na uzyskany wynik do 3 pkt. 7/7

XLI OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XLI OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XLI OLIPIADA FIZYCZNA EAP I Zadanie doświadczalne ZADANIE D Pod działaniem sil zewnęznych ciała sale ulęgają odkszałceniom. Wyznacz zależność pomienia obszau syczniści szklanej soczewki z płyka szklana

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym 1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną. Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA (1980/1981). Stopień I, zadanie teoretyczne T4 1

XXX OLIMPIADA FIZYCZNA (1980/1981). Stopień I, zadanie teoretyczne T4 1 XXX OLMPADA FZYCZNA (1980/1981). Stopień, zadanie teoetyczne T4 1 Źódło: Komitet Główny Olimpiady Fizycznej; Waldema Gozowsi; Andzej Kotlici: Fizya w Szole, n 3, 1981.; Andzej Nadolny, Kystyna Pniewsa:

Bardziej szczegółowo

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej

Bardziej szczegółowo

Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.

Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW. XLVIII OLIMPIADA FIZYCZNA (1998/1999). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, 2000. Autor: Nazwa zadania: Działy: Słowa kluczowe:

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA

WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA Ćwiczenie -7 WYZNACZANE OENTU BEZWŁADNOSC KRĄŻKA. Cel ćwiczenia: zapoznanie się z teoią momentu bezwładności. Wyznaczenie momentu bezwładności były względem osi obotu z siłą tacia i bez tej siły, wyznaczenie

Bardziej szczegółowo

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź

Bardziej szczegółowo

ĆWICZENIE 6. POMIAR MOMENTU BEZWŁADNOŚCI. SPRAWDZENIE DRUGIEJ ZASADY DYNAMIKI DLA RUCHU OBROTOWEGO. BADANIE ADDYTYWNOŚCI MOMENTU BEZWłADNOŚCI

ĆWICZENIE 6. POMIAR MOMENTU BEZWŁADNOŚCI. SPRAWDZENIE DRUGIEJ ZASADY DYNAMIKI DLA RUCHU OBROTOWEGO. BADANIE ADDYTYWNOŚCI MOMENTU BEZWłADNOŚCI ĆWICZEIE 6 POMIAR MOMETU BEZWŁADOŚCI. SPRAWDZEIE DRUGIEJ ZASADY DYAMIKI DLA RUCHU OBROTOWEGO. BADAIE ADDYTYWOŚCI MOMETU BEZWłADOŚCI Wpowadzenie Była sztywna to układ punktów mateialnych o stałych odległościach

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

Fizyka. Wykład 2. Mateusz Suchanek

Fizyka. Wykład 2. Mateusz Suchanek Fizyka Wykład Mateusz Suchanek Zadanie utwalające Ruch punktu na płaszczyźnie okeślony jest ównaniai paaetycznyi: x sin(t ) y cos(t gdzie t oznacza czas. Znaleźć ównanie tou, położenie początkowe punktu,

Bardziej szczegółowo

A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO

A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO 10.X.010 ĆWCZENE NR 70 A. POMARY FOTOMETRYCZNE Z WYKORZYSTANEM FOTOOGNWA SELENOWEGO. Zestaw pzyządów 1. Ogniwo selenowe.. Źódło światła w obudowie 3. Zasilacz o wydajności pądowej min. 5A 4. Ampeomiez

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

L(x, 0, y, 0) = x 2 + y 2 (3)

L(x, 0, y, 0) = x 2 + y 2 (3) 0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl Źródło: LI OLIMPIADA FIZYCZNA (1/2). Stopień III, zadanie doświadczalne - D Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Andrzej Wysmołek, kierownik ds. zadań dośw. plik;

Bardziej szczegółowo

cz.2 dr inż. Zbigniew Szklarski

cz.2 dr inż. Zbigniew Szklarski Wykład 11: Gawitacja cz. d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pawo Gaussa - PZYKŁADY: Masa punktowa: ds Powiezchnia Gaussa M g g S g ds S g ds 0 cos180 S gds

Bardziej szczegółowo

BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:

BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy: Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,

Bardziej szczegółowo

9. 1. KOŁO. Odcinki w okręgu i kole

9. 1. KOŁO. Odcinki w okręgu i kole 9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień

Bardziej szczegółowo

Fizyka dla Informatyki Stosowanej

Fizyka dla Informatyki Stosowanej Fizyka dla Infomatyki Stosowanej Jacek Golak Semest zimowy 06/07 Wykład n 3 Na popzednim wykładzie poznaliśmy pawa uchu i wiemy, jak opisać uch punktu mateialnego w inecjalnym układzie odniesienia. Zasady

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 10: Gawitacja d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Siły centalne Dla oddziaływań gawitacyjnych C Gm 1 m C ˆ C F F 3 C C Dla oddziaływań elektostatycznych

Bardziej szczegółowo

IV.2. Efekt Coriolisa.

IV.2. Efekt Coriolisa. IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż

Bardziej szczegółowo

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D KOOF Szczecin: www.of.szc.pl XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej; Fizyka w Szkole Nr 1, 1998 Autor: Nazwa zadania: Działy:

Bardziej szczegółowo

Ruch jednostajny po okręgu

Ruch jednostajny po okręgu Ruch jednostajny po okęgu W uchu jednostajnym po okęgu pędkość punktu mateialnego jest stała co do watości ale zmienia się jej kieunek. Kieunek pędkości jest zawsze styczny do okęgu będącego toem. Watość

Bardziej szczegółowo

Sprawdzanie twierdzenia Steinera

Sprawdzanie twierdzenia Steinera Spawdzanie twiedzenia Steinea Pzyządy:. Pzyząd do badania uchu otowego, z tzea bębnai do nawijania linki o śednicach: d., d., d... Dwa odzaje ciążników otowej.. Zestaw ciężaków z haczykai.. Linka. Stope..

Bardziej szczegółowo

CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH

CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH Politecnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Kateda Samolotów i Silników Lotniczyc Pomoce dydaktyczne Wytzymałość Mateiałów CHRKTERYSTYKI GEOMETRYCZNE FIGUR PŁSKICH Łukasz Święc Rzeszów, 18

Bardziej szczegółowo

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się

Bardziej szczegółowo

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona Wyznaczanie poienia kzywizny soczewki płasko-wypukłej etodą pieścieni Newtona I. Cel ćwiczenia: zapoznanie ze zjawiskie intefeencji światła, poia poienia soczewki płasko-wypukłej. II. Pzyządy: lapa sodowa,

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

Teoria Względności. Czarne Dziury

Teoria Względności. Czarne Dziury Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie

Bardziej szczegółowo

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego PRZENIKANIE W pzemyśle uch ciepła zachodzi ównocześnie dwoma lub tzema sposobami, najczęściej odbywa się pzez pzewodzenie i konwekcję. Mechanizm tanspotu ciepła łączący wymienione sposoby uchu ciepła nazywa

Bardziej szczegółowo

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych.

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. Temat 8 Ogólny opis konstkcji 06 8. Wstęp Istnieje wiele typów i ozwiązań konstkcyjnych. Mniejsza wiedza dotycząca zjawisk pzepływowych Niski koszt podkcji Kótki cykl pojektowy Solidna konstkcja pod względem

Bardziej szczegółowo

MOBILNE ROBOTY KOŁOWE WYKŁAD 04 DYNAMIKA Maggie dr inż. Tomasz Buratowski. Wydział Inżynierii Mechanicznej i Robotyki Katedra Robotyki i Mechatroniki

MOBILNE ROBOTY KOŁOWE WYKŁAD 04 DYNAMIKA Maggie dr inż. Tomasz Buratowski. Wydział Inżynierii Mechanicznej i Robotyki Katedra Robotyki i Mechatroniki MOBILNE ROBOY KOŁOWE WYKŁD DYNMIK Maggie d inż. oasz Buatowski Wydział Inżynieii Mechanicznej i Robotyki Kateda Robotyki i Mechatoniki Modeowanie dynaiki dwu-kołowego obota obinego W odeowaniu dynaiki

Bardziej szczegółowo

BADANIE DYNAMICZNEGO TŁUMIKA DRGA

BADANIE DYNAMICZNEGO TŁUMIKA DRGA Ćwiczenie 3 BDNIE DYNMICZNEGO TŁUMIK DRGŃ. Cel ćwiczenia yłumienie dgań układu o częsości ezonansowej za pomocą dynamicznego łumika dgań oaz wyznaczenie zakesu częsości wymuszenia, w kóym łumik skuecznie

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

Wyznaczanie współczynnika wzorcowania przepływomierzy próbkujących z czujnikiem prostokątnym umieszczonym na cięciwie rurociągu

Wyznaczanie współczynnika wzorcowania przepływomierzy próbkujących z czujnikiem prostokątnym umieszczonym na cięciwie rurociągu Wyznaczanie współczynnika wzocowania pzepływomiezy póbkujących z czujnikiem postokątnym umieszczonym na cięciwie uociągu Witold Kiese W pacy pzedstawiono budowę wybanych czujników stosowanych w pzepływomiezach

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie

Bardziej szczegółowo

Uwagi: LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie nr 16 MECHANIKA PĘKANIA. ZNORMALIZOWANY POMIAR ODPORNOŚCI MATERIAŁÓW NA PĘKANIE.

Uwagi: LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie nr 16 MECHANIKA PĘKANIA. ZNORMALIZOWANY POMIAR ODPORNOŚCI MATERIAŁÓW NA PĘKANIE. POLITECHNIKA KRAKOWSKA WYDZIAŁ MECHANZNY INSTYTUT MECHANIKI STOSOWANEJ Zakład Mechaniki Doświadczalnej i Biomechaniki Imię i nazwisko: N gupy: Zespół: Ocena: Uwagi: Rok ak.: Data ćwicz.: Podpis: LABORATORIUM

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.

Bardziej szczegółowo

Nierelatywistyczne równania ruchu = zasady dynamiki Newtona

Nierelatywistyczne równania ruchu = zasady dynamiki Newtona DYNAMIKA: siły ównania uchu uch Nieelatywistyczne ównania uchu zasady dynaiki Newtona Pojęcia podstawowe dla punktu ateialnego Masa - iaa bezwładności Pęd iaa ilości uchu v v p v p v v v Siła wywołuje

Bardziej szczegółowo

Wykład FIZYKA I. 8. Grawitacja. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 8. Grawitacja.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 8. Gawitacja D hab. inż. Władysław Atu Woźniak Instytut Fizyki Politechniki Wocławskiej http://www.if.pw.woc.pl/~wozniak/fizyka1.html CIĄŻENIE POWSZECHNE (GRAWITACJA) Wzajemne pzyciąganie

Bardziej szczegółowo

należą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło

należą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło 07 0 Opacował: mg inż. Macin Wieczoek www.mawie.net.pl. Elementy ezystancyjne. należą do gupy odbioników enegii elektycznej idealne elementy ezystancyjne pzekształcają enegię pądu elektycznego w ciepło.

Bardziej szczegółowo

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton : Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);

Bardziej szczegółowo

KINEMATYCZNE WŁASNOW PRZEKŁADNI

KINEMATYCZNE WŁASNOW PRZEKŁADNI KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH

ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH ĆWZENE 3 EZONANS W OBWODAH EEKTYZNYH el ćwiczenia: spawdzenie podstawowych właściwości szeegowego i ównoległego obwodu ezonansowego pzy wymuszeniu napięciem sinusoidalnym, zbadanie wpływu paametów obwodu

Bardziej szczegółowo

Uwaga: Nie przesuwaj ani nie pochylaj stołu, na którym wykonujesz doświadczenie.

Uwaga: Nie przesuwaj ani nie pochylaj stołu, na którym wykonujesz doświadczenie. Mając do dyspozycji 20 kartek papieru o gramaturze 80 g/m 2 i wymiarach 297mm na 210mm (format A4), 2 spinacze biurowe o masie 0,36 g każdy, nitkę, probówkę, taśmę klejącą, nożyczki, zbadaj, czy maksymalna

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO LABORATORIUM ELEKTRONIKI I ELEKTROTECHNIKI BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO Opacował: d inŝ. Aleksande Patyk 1.Cel i zakes ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową, właściwościami

Bardziej szczegółowo

Rozwiązanie: Część teoretyczna

Rozwiązanie: Część teoretyczna Zgodnie z prawem Hooke a idealnie sprężysty pręt o długości L i polu przekroju poprzecznego S pod wpływem przyłożonej wzdłuż jego osi siły F zmienia swoją długość o L = L F/(S E), gdzie współczynnik E

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B Zadanie In[]:= = {x, y, z}; In[]:= B = B, B, B3 ; (* Bi to wielkości stałe *) In[3]:= A = - * Coss, B Out[3]= -B3 y + B z, B3 x - B z, -B x + B y In[4]:= {x,y,z} -B3 y + B z, B3 x - B z, -B x + B y Out[4]=

Bardziej szczegółowo

Wykład 15. Reinhard Kulessa 1

Wykład 15. Reinhard Kulessa 1 Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.

Bardziej szczegółowo

Przejmowanie ciepła przy konwekcji swobodnej w przestrzeni ograniczonej (szczeliny)

Przejmowanie ciepła przy konwekcji swobodnej w przestrzeni ograniczonej (szczeliny) inż. Michał Stzeszewski 0-006 Pzejowanie ciepła pzy konwekcji swobonej w pzestzeni oganiczonej (szczeliny) Zaania o saozielnego ozwiązania v. 0.. powazenie celu uposzczenia achunkowego ozwiązania zjawiska

Bardziej szczegółowo

θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z

θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z IX. OBROTY 9.1. Zmienne obotowe W celu opisania uchu obotowego ciała wokół ustalonej osi (zwanej osią obotu) należy wybać linię postopadłą do osi obotu, któa jest związana z ciałem i któa obaca się waz

Bardziej szczegółowo

Zastosowanie zasad dynamiki Newtona.

Zastosowanie zasad dynamiki Newtona. Wykład z fizyki. Piot Posmykiewicz 33 W Y K Ł A D IV Zastosowanie zasad dynamiki Newtona. W wykładzie tym zostanie omówione zastosowanie zasad dynamiki w zagadnieniach związanych z taciem i uchem po okęgu.

Bardziej szczegółowo

Wykład 5: Dynamika. dr inż. Zbigniew Szklarski

Wykład 5: Dynamika. dr inż. Zbigniew Szklarski Wykład 5: Dynamika d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pzyczyny uchu - zasady dynamiki dla punktu mateialnego Jeśli ciało znajduje się we właściwym miejscu,

Bardziej szczegółowo

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW 4. BADANI POLA LKTRYCZNGO W POBLIŻU NAŁADOWANYCH PRZWODNIKÓW tekst opacował: Maek Pękała Od oku 1785 pawo Coulomba opisuje posty pzypadek siły oddziaływania dwóch punktowych ładunków elektycznych, któy

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

Fizyka 10. Janusz Andrzejewski

Fizyka 10. Janusz Andrzejewski Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka

Bardziej szczegółowo

Zasady dynamiki ruchu obrotowego

Zasady dynamiki ruchu obrotowego DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

XXI OLIMPIADA FIZYCZNA ( ). Stopień III, zadanie teoretyczne T1. Źródło: XXI i XXII OLIMPIADA FIZYCZNA, WSiP, Warszawa 1975 Andrzej Szymacha,

XXI OLIMPIADA FIZYCZNA ( ). Stopień III, zadanie teoretyczne T1. Źródło: XXI i XXII OLIMPIADA FIZYCZNA, WSiP, Warszawa 1975 Andrzej Szymacha, XXI OLIMPIADA FIZYCZNA (97-97). Stopień III zadanie teoetyczne. Źódło: XXI i XXII OLIMPIADA FIZYCZNA WSiP Waszawa 975 Auto: Nazwa zadania: Działy: Słowa kluczowe: Andzej Szyacha Dwa ciała i spężynka Dynaika

Bardziej szczegółowo

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN 91 POMIAR PRĘDKOŚCI NEUTRINA W CERN Rozdział należy do teoii pt "Teoia Pzestzeni" autostwa Daiusza Stanisława Sobolewskiego http: wwwtheoyofspaceinfo Z uwagi na ozważania nad pojęciem czasu 1 możemy pzyjąć,

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

POMIAR PĘTLI HISTEREZY MAGNETYCZNEJ

POMIAR PĘTLI HISTEREZY MAGNETYCZNEJ POMAR PĘTL STEREZ MAGNETZNEJ 1. Opis teoetyczny do ćwiczenia zamieszczony jest na stonie www.wtc.wat.edu.pl w dziale DDAKTKA FZKA ĆZENA LABORATORJNE.. Opis układu pomiaowego Mateiały feomagnetyczne (feyt,

Bardziej szczegółowo

LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D

LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D LI OLIMPIADA FIZYCZNA (26/27). Stopień III, zadanie doświadczalne D Źródło: Autor: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andrzej ysmołek Komitet Główny Olimpiady Fizycznej,

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy

Bardziej szczegółowo

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej? ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest

Bardziej szczegółowo

Ruch punktu materialnego

Ruch punktu materialnego WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - infomatyka Ruch punktu mateialnego Elżbieta Kawecka

Bardziej szczegółowo

Arkusze maturalne poziom podstawowy

Arkusze maturalne poziom podstawowy Akusze matualne poziom postawowy zaania zamknięte N zaania 5 7 8 9 0 Pawiłowa opowieź a c a b c b a Liczba punktów zaania otwate N zaania Pawiłowa opowieź Punkty Q mg 00 N Z III zasay ynamiki wynika, że

Bardziej szczegółowo

METEMATYCZNY MODEL OCENY

METEMATYCZNY MODEL OCENY I N S T Y T U T A N A L I Z R E I O N A L N Y C H w K i e l c a c h METEMATYCZNY MODEL OCENY EFEKTYNOŚCI NAUCZNIA NA SZCZEBLU IMNAZJALNYM I ODSTAOYM METODĄ STANDARYZACJI YNIKÓ OÓLNYCH Auto: D Bogdan Stępień

Bardziej szczegółowo

Ć W I C Z E N I E N R C-2

Ć W I C Z E N I E N R C-2 INSTYTUT IZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA IZYKI CZĄSTECZKOWEJ I CIEPŁA Ć W I C Z E N I E N R C- POMIAR NAPIĘCIA POWIERZCHNIOWEGO CIECZY METODĄ

Bardziej szczegółowo

A r A r. r = , 2. + r r + r sr. Interferencja. Dwa źródła punktowe: Dla : Dla dużych 1,r2. błąd: 3D. W wyniku interferencji:

A r A r. r = , 2. + r r + r sr. Interferencja. Dwa źródła punktowe: Dla : Dla dużych 1,r2. błąd: 3D. W wyniku interferencji: -- G:\AA_Wyklad \FIN\DOC\Inte.doc Intefeencja. Dwa źódła punktowe: (, t) A( ) ( k ω t) U cos (, t) A( ) ( k ω t) U cos Dla : 3D ( ) Dla : A D ( ) A Dla dużych, d, A A : A ( ) A( ) A A( ) błąd: 3D % ~ U

Bardziej szczegółowo

15. STANOWISKOWE BADANIE MECHANIZMÓW HAMULCOWYCH Cel ćwiczenia Wprowadzenie

15. STANOWISKOWE BADANIE MECHANIZMÓW HAMULCOWYCH Cel ćwiczenia Wprowadzenie 15. STANOWISKOWE BADANIE MECHANIZMÓW HAMULCOWYCH 15.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie na stanowisku podstawowyc zależności caakteyzującyc funkcjonowanie mecanizmu amulcowego w szczególności

Bardziej szczegółowo

WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH

WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH LABORATORIUM DRGANIA I WIBROAKUSTYKA MASZYN Wydział Budowy Maszyn i Zaządzania Zakład Wiboakustyki i Bio-Dynamiki Systemów Ćwiczenie n 4 WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH Cel ćwiczenia:

Bardziej szczegółowo

LVII Olimpiada Fizyczna (2007/2008)

LVII Olimpiada Fizyczna (2007/2008) LVII Olimpiada Fizyczna (2007/2008) Zadanie doświadczalne Masz do dyspozycji: baterię słoneczną, sześć różnych oporników o oporach 100Ω, 500Ω, 1000Ω, 2200Ω, 3000Ω, 4300Ω określonych z dokładnością 5%,

Bardziej szczegółowo

Scenariusz lekcji. Temat: Podsumowanie wiadomości o walcu. Cele lekcji

Scenariusz lekcji. Temat: Podsumowanie wiadomości o walcu. Cele lekcji opacowała: Maia Kukułka Scenaiusz lekcji Temat: Podsumowanie wiadomości o walcu. Cele lekcji Uczeń potafi: ozpoznać walec wśód innych był obliczyć pole powiezchni walca obliczyć objętość walca zaznaczyć

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W kolejnych okesach czasu t =,,3,... ubezpieczony, chaakteyzujący się paametem yzyka Λ, geneuje szkód. Dla danego Λ = λ zmienne N t N, N, N 3,... są waunkowo niezależne i mają (bzegowe) ozkłady

Bardziej szczegółowo

Pola elektryczne i magnetyczne

Pola elektryczne i magnetyczne Pola elektyczne i magnetyczne Zadania z ozwiązaniami Pojekt współfinansowany pzez Unię Euopejską w amach Euopejskiego Funduszu Społecznego Zadanie 1 Cząstka alfa (jądo atomu helu) ma masę m = 6.64*1 7

Bardziej szczegółowo

5. Mechanika bryły sztywnej

5. Mechanika bryły sztywnej W ozdzie dpowiedzi i wskzówki znjdują się odpowiedzi do wszystkich zdń, znjdziesz tm ównież wskzówki do ozwiązń tudnych zdń. Pełne ozwiązni zdń możesz uzyskć pzysyłjąc e-mi n des: kons@x.wp.p 5. Mechnik

Bardziej szczegółowo

Lista zadań nr 1 - Wektory

Lista zadań nr 1 - Wektory Lista zadań n 1 - Wektoy Zad. 1 Dane są dwa wektoy: a = 3i + 4 j + 5k, b = i + k. Obliczyć: a) długość każdego wektoa, b) iloczyn skalany a b, c) kąt zawaty między wektoami,, d) iloczyn wektoowy a b e)

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo