Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie
|
|
- Ludwika Andrzejewska
- 5 lat temu
- Przeglądów:
Transkrypt
1 Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy jest tylko w kieunkach wskazywanych pzez kawędzie. Gaf skieowany można sobie wyobazić jako sieć ulic, z któych każda jest jednokieunkowa. Ruch pod pąd jest zakazany. Najczęściej gafy skieowane pzedstawia się jako zbió punktów epezentujących wiezchołki połączonych stzałkami (stąd nazwa) albo łukami zakończonymi gotem (stzałką, zwotem). Gaf zależności dla stuktu dzewiastych ozgywających paametycznie Rys. Skieowany gaf zależności pzepływu sygnałów (8wiezchołków) Gaf definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu czyli upoządkowanej pay wiezchołków. Skieowany gaf zależności składa się ze zbiou wiezchołków Q opisujących funkcje zależne od czasu: Q =,,,,,,, { } oaz ze zbiou kawędzi Z, czyli upoządkowanej pay wiezchołków:
2 {,,,,,,,,,,,,,} Z = z z z z z z z z z z z z z Rozkład gafu od wybanego wiezchołka w piewszym etapie powadzi do stuktuy dzewiastej z cyklami, a potem do ogólnej stuktuy dzewiastej ozgywającej paametycznie [7, 8]. Każda ze stuktu posiada właściwy zapis analityczny: G + i oaz G ++ i, gdzie i oznacza wiezchołek, od któego dokonano ozkładu gafu. Rozkładając gaf od każdego z wiezchołków otzymuje się zatem zbió D stuktu dzewiastych ozgywających paametycznie: {, 2, 3, 4, 5, 6, 7, 8 } D = G G G G G G G G Algoytm ozkładu gafu zależności na stuktuy dzewiaste Pzystępując do budowy wyażenia analitycznego epezentującego gaf automatu, najpiew ustalamy wiezchołek początkowy gafu. Kawędzie wychodzące z wiezchołka ozpatujemy w kolejności zgodnej z uchem wskazówek zegaa. Kolejność ozpatywania kawędzi wychodzących z danego wiezchołka ilustują cyfy w kwadatach (Rysunek poniżej ). Kawędź stanowiąca pętle odczytujemy na końcu; jeżeli z danego wiezchołka wychodzą z j dwie ównoległe kawędzie, najpiew ozpatuje się kawędź opisaną elementem o mniejszej watości indeksu j. a) b) Następnie postępuje się wg: algoytmu: Dla gafu zależności (ys. ) można okeślić wyażenie analityczne epezentujące ten gaf, a więc będące jego modelem analitycznym [0, ]. Odpowiednią postacią takiego modelu analitycznego jest ciąg utwozony z symboli występujących w opisie wiezchołków i kawędzi gafu oaz z nawiasów uwzględniających stuktuę gafu. W wyażeniu opisującym gaf stopień k podzędności danego gafu składowego oznacza się paą nawiasów (...) k, wewnątz któej zapisuje się wyażenie dotyczące danego gafu składowego. Pzystępując do budowy wyażenia analitycznego epezentującego gaf, najpiew należy ustalić wiezchołek początkowy gafu. Kawędzie
3 wychodzące z tego wiezchołka- jak ównież i z innych wiezchołków- ozpatuje się w kolejności zgodnej z uchem wskazówek zegaa. Pzyjmuje się oznaczenia: k- indeks opisujący dowolny nawias, c- indeks kolejności odczytywanych wiezchołków gafu, v- indeks kolejności odczytywanych kawędzi gafów. Zwiększenie watości indeksu k o jeden oznacza się jako k + k, zmniejszenie o jeden- jako k k, nadanie k watości zeo- jako 0 k. Po pzyjęciu takich oznaczeń algoytm pzejścia z gafu na odpowiadające mu wyażenie analityczne można pzedstawić w następujących punktach:. Nadać watość początkową indeksowi nawiasów k, tj. indeksowi k nadać watość zeo, czyli 0 k. Napisać nawias otwieający z indeksem k=0. Założyć watość początkową c= indeksu kolejności odczytywanych wiezchołków gafu. Napisać symbol wiezchołka początkowego gafu. 2. Zwiększyć watość indeksu nawiasów o jeden, tj. wykonać k + k. Napisać nawias otwieający z aktualną watością indeksu k. 3. Założyć watość początkową v= indeksu kolejności odczytywanych kawędzi. Zwiększyć o jeden watość indeksu kolejności odczytywanych wiezchołków, tj. wykonać c + c. Napisać symbol piewszej kawędzi wychodzącej z wiezchołka stojącego pzed nawiasem otwieającym z indeksem k oaz symbol wiezchołka, do któego ta kawędź dochodzi, tj. napisać z. iv C 4. Spawdzić, czy napisany symbol C nie był już wykozystany w zapisie wyażenia (w popzednich kokach); jeżeli nie- pzystąpić do wykonania punktu 5; jeżeli tak- pzystąpić do wykonania punktu Zwiększyć o jeden watość indeksu nawiasów, tj. wykonać k + k. Napisać nawias otwieający z aktualnym indeksem k. 6. Zwiększyć o jeden watość indeksu kolejności wiezchołków, tj. wykonać c + c. Zwiększyć o jeden watość indeksu kolejności kawędzi, tj. wykonać v + v. Napisać symbol z kolejnej, jeszcze nie ozpatywanej, kawędzi wychodzącej z wiezchołka i V stojącego pzed nawiasem z aktualnym indeksem k oaz symbol wiezchołka C, do któego ta kawędź dochodzi. Powócić do wykonania punktu Spawdzić, czy wszystkie kawędzie wychodzące z wiezchołka, któego symbol stoi pzed nawiasem z aktualnym indeksem k, już były wykozystane w zapisie wyażenia. Jeżeli niewykonać punkt 8; jeżeli tak- pzystąpić do wykonania punktu 9 algoytmu. 8. Za ostatnią pozycją aktualnego zapisu wyażenia postawić pzecinek i powócić do wykonania punktu Za ostatnią pozycją aktualnego zapisu postawić nawias zamykający z indeksem k. 0. Zmniejszyć watość indeksu nawiasów o jeden, tj. wykonać k k.. Spawdzić, czy aktualna watość indeksów nawiasów osiągnęła watość zeo. Jeżeli niepowócić do wykonania punktu 7, jeżeli tak- napisać nawias zamykający z indeksem k=0, oznaczający zakończenie opeacji pzekształcenia gafu na wyażenie analityczne. C Postępując zgodnie z powyższym algoytmem i pzyjmując za wiezchołek początkowy, można pzekształcić skieowany gaf zależności pzedstawiony na ys. na odpowiadające mu wyażenie analityczne, a jako wynik opeacji otzymuje się wyażenie () G ( ( z ( z ( z, z ( z ) ), = z ( z ( z, z ) ) ), z ( z ( z, z ) ) ) ) ()
4 Ponieważ z odpowiedniego wiezchołka końcowego można powócić do wiezchołka wcześniejszego, a nawet początkowego, to istnieje konieczność pzekształcenia wyażenia () na wyażenie opisujące stuktuę dzewiastą z cyklami, oznaczoną symbolem G ++. Pzy pzepowadzeniu tego typu pzekształcenia, kozysta się z tzech waunków [0, ]: Waunek Wiezchołkami końcowymi stuktuy dzewiastej mogą być te elementy, za któymi w wyażeniu G + i stoi pzecinek lub nawias zamykający. Fakt, że za danym elementem występuje w wyażeniu wystąpił już w wyażeniu G + i pzecinek lub nawias zamykający, oznacza, że dany element G + i na pozycji wcześniejszej. Waunek 2 Jeśli dany element, za któym wystąpił pzecinek lub nawias zamykający, podlega, lecz występującemu na wcześniejszej wyazowi oznaczonemu tym samym symbolem pozycji ciągu G + i, to dany element taktujemy jako wiezchołek końcowy stuktuy dzewiastej i oznaczamy dodatkowo indeksem gónym. Waunek 3 Jeśli dany element wymieniony w waunku 2 nie podlega pod wyaz oznaczony w ciągu G + i tym samym symbolem, wówczas element ten nie może być wiezchołkiem końcowym. W tym pzypadku za ozpatywanym elementem znajdującym się w członie k k k (......) zapisuje się człon (...) podlegają pod dany element + k +. Względem elementów zawieający wszystkie te elementy i, któe znajdujących się w dopisanym członie stosuje się w dalszym ciągu waunki, 2, 3 aż do momentu okeślenia tych elementów i, któe epezentują wiezchołki końcowe stuktuy dzewiastej. Pzestzegając powyższego pzekształcenia ciągu G + zadanego wyażeniem (), otzymuje się ciąg G ++ opisany wyażeniem (2). i G ( ( z ( z ( z, z ( z ) ), + + = z ( z ( z, z ( z, z ( z ) ) ) ) ), z ( z ( z ( z ), z ) ) ) (2) Poniżej pzedstawiono stuktuę dzewiastą z cyklami (Rys.2) oaz stuktuę dzewiastą ozgywającą paametycznie (powstała ze stuktuy dzewiastej z cyklami po ozpostowaniu cykli) (Rys. 3)
5 Rys. 2 Stuktua dzewiasta z cyklami z wiezchołkiem początkowym.
6 Rys. 3. Stuktua dzewiasta ozgywająca paametycznie od wiezchołka początkowego. Podobnie dokonując ozkładu gafu zależności (Rys.) od pozostałych wiezchołków otzymamy G, G, G, G, G, G, G óżniące się kształtem, kolejne stuktuy dzewiaste: { } wyglądem a w konsekwencji własnościami.
7 Rys. 4 Skieowany gaf zależności pzepływu sygnałów (3 wiezchołki) Rozkład gafu zależności z ys. 4 od wiezchołka początkowego powadzi do wyażenia: G z z z z z z = ( ( 3(, 2 3), 2 2( 3, 2 3) ) ) a następnie: G z z z z z z z z z z = ( ( 3(, 2 3), 2 2 ( 3(, 2 3), 2 3(, 2 3) ) ) ) W amach cwiczeń polecam ozłożyć gafy z ysunku oaz ysunku 4 od pozostałych wybanych wiezchołków- uzyskując odpowiednie wyażenia G + i oaz G ++ i, a także odpowiadające tym wyażeniom stuktuy dzewiaste z cyklami i stuktuy ozgywające paametycznie. Lit.: [] Kazimieczak J., System cybenetyczny, Wiedza Powszechna-Omega, Waszawa 978 [2] Kazimieczak J., Teoia gie w cybenetyce, Wiedza Powszechna-Omega, Waszawa 973 [3] Patyka M. A., Deptuła A., Zastosowanie gafów zależności i dzew ozgywających paametycznie w pocesie innowacji na pzykładzie układów maszynowych, XIII Konfeencja Komputeowo Zintegowane Zaządzanie, Zakopane 200; Pol. Towaz. Zaz. Pod. PTZP 200
Próba określenia miary jakości informacji na gruncie teorii grafów dla potrzeb dydaktyki
Póba okeślenia miay jakości infomacji na guncie teoii gafów dla potzeb dydaktyki Zbigniew Osiak E-mail: zbigniew.osiak@gmail.com http://ocid.og/0000-0002-5007-306x http://via.og/autho/zbigniew_osiak Steszczenie
Bardziej szczegółowoBinarne Diagramy Decyzyjne
Sawne tablice logiczne Plan Binane diagamy decyzyjne Oganiczanie i kwantyfikacja Logika obliczeniowa Instytut Infomatyki Plan Sawne tablice logiczne Binane diagamy decyzyjne Plan wykładu 1 2 3 4 Plan wykładu
Bardziej szczegółowoStruktura danych = system relacyjny U, U uniwersum systemu - zbiór relacji (operacji) na strukturze danych
Temat: Stuktuy dzewiste 1. Stuktua słownika { } I Stuktua danych = system elacyjny U, i i U uniwesum systemu { i } i I - zbió elacji (opeacji) na stuktuze danych Fomalna definicja stuktuy danych składa
Bardziej szczegółowodr inż. Małgorzata Langer Architektura komputerów
Instukcja współfinansowana pzez Unię Euopejską w amach Euopejskiego Funduszu Społecznego w pojekcie Innowacyjna dydaktyka bez oganiczeń zintegowany ozwój Politechniki Łódzkiej zaządzanie Uczelnią, nowoczesna
Bardziej szczegółowoDobór zmiennych objaśniających do liniowego modelu ekonometrycznego
Dobó zmiennych objaśniających do liniowego modelu ekonometycznego Wstępnym zadaniem pzy budowie modelu ekonometycznego jest okeślenie zmiennych objaśniających. Kyteium wybou powinna być meytoyczna znajomość
Bardziej szczegółowoWykład 1. Elementy rachunku prawdopodobieństwa. Przestrzeń probabilistyczna.
Podstawowe pojęcia. Wykład Elementy achunku pawdopodobieństwa. Pzestzeń pobabilistyczna. Doświadczenie losowe-doświadczenie (zjawisko, któego wyniku nie możemy pzewidzieć. Pojęcie piewotne achunku pawdopodobieństwa
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA
NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.
Bardziej szczegółowoCHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH
Politecnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Kateda Samolotów i Silników Lotniczyc Pomoce dydaktyczne Wytzymałość Mateiałów CHRKTERYSTYKI GEOMETRYCZNE FIGUR PŁSKICH Łukasz Święc Rzeszów, 18
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie
Bardziej szczegółowoKOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO
XIX Międzynaodowa Szkoła Komputeowego Wspomagania Pojektowania, Wytwazania i Eksploatacji D hab. inż. Józef DREWNIAK, pof. ATH Paulina GARLICKA Akademia Techniczno-Humanistyczna w Bielsku-Białej DOI: 10.17814/mechanik.2015.7.226
Bardziej szczegółowoWYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA
WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), (
Bardziej szczegółowoWYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.
WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,
Bardziej szczegółowoLIST EMISYJNY nr 3 /2014 Ministra Finansów
LIST EMISYJNY n /0 Minista Finansów z dnia stycznia 0. w spawie emisji kótkookesowych oszczędnościowych obligacji skabowych o opocentowaniu stałym ofeowanych w sieci spzedaży detalicznej Na podstawie at.
Bardziej szczegółowoOcena siły oddziaływania procesów objaśniających dla modeli przestrzennych
Michał Benad Pietzak * Ocena siły oddziaływania pocesów objaśniających dla modeli pzestzennych Wstęp Ekonomiczne analizy pzestzenne są ważnym kieunkiem ozwoju ekonometii pzestzennej Wynika to z faktu,
Bardziej szczegółowoModele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej
Bardziej szczegółowoEnergia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
Bardziej szczegółowoKINEMATYCZNE WŁASNOW PRZEKŁADNI
KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej
Bardziej szczegółowoII.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Bardziej szczegółowoModelowanie przepływu cieczy przez ośrodki porowate Wykład III
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości
Bardziej szczegółowoMIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH
Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie
Bardziej szczegółowoROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.
Bardziej szczegółowo2 Przykład C2a C /BRANCH C. <-I--><Flux><Name><Rmag> TRANSFORMER RTop_A RRRRRRLLLLLLUUUUUU 1 P1_B P2_B 2 S1_B SD_B 3 SD_B S2_B
PRZYKŁAD A Utwozyć model sieci z dwuuzwojeniowym, tójfazowym tansfomatoem 110/0kV. Model powinien zapewnić symulację zwać wewnętznych oaz zadawanie watości początkowych indukcji w poszczególnych fazach.
Bardziej szczegółowom q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
Bardziej szczegółowoWykład 11. Pompa ciepła - uzupełnienie II Zasada Termodynamiki Entropia w ujęciu termodynamicznym c.d. Entropia w ujęciu statystycznym
Wykład 11 Pompa ciepła - uzupełnienie II Zasada emodynamiki Entopia w ujęciu temodynamicznym c.d. Entopia w ujęciu statystycznym W. Dominik Wydział Fizyki UW emodynamika 2018/2019 1/30 G Pompa cieplna
Bardziej szczegółowoĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH
ĆWZENE 3 EZONANS W OBWODAH EEKTYZNYH el ćwiczenia: spawdzenie podstawowych właściwości szeegowego i ównoległego obwodu ezonansowego pzy wymuszeniu napięciem sinusoidalnym, zbadanie wpływu paametów obwodu
Bardziej szczegółowoWykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
Bardziej szczegółowoNotatki z II semestru ćwiczeń z elektroniki, prowadzonych do wykładu dr. Pawła Grybosia.
Notatki z II semestu ćwiczeń z elektoniki, powadzonych do wykładu d. Pawła Gybosia. Wojciech Antosiewicz Wydział Fizyki i Techniki Jądowej AGH al.mickiewicza 30 30-059 Kaków email: wojanton@wp.pl 2 listopada
Bardziej szczegółowo- substancje zawierające swobodne nośniki ładunku elektrycznego:
Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo
Bardziej szczegółowoPRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA
PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na
Bardziej szczegółowo00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym.
1 00502 Kinematyka D Dane osobowe właściciela akusza 00502 Podstawy kinematyki D Część 2 Iloczyn wektoowy i skalany. Wektoowy opis uchu. Względność uchu. Pędkość w uchu postoliniowym. Instukcja dla zdającego
Bardziej szczegółowoSiła. Zasady dynamiki
Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,
Bardziej szczegółowoROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,
Bardziej szczegółowoMODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO
Pzemysław PŁONECKI Batosz SAWICKI Stanisław WINCENCIAK MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO STRESZCZENIE W atykule pzedstawiono
Bardziej szczegółowoPodstawowe konstrukcje tranzystorów bipolarnych
Tanzystoy Podstawowe konstukcje tanzystoów bipolanych Zjawiska fizyczne występujące w tanzystoach bipolanych, a w związku z tym właściwości elektyczne tych tanzystoów, zaleŝą od ich konstukcji i technologii
Bardziej szczegółowoDOBÓR OPTYMALNEGO TYPU ŚRODKÓW TRANSPORTOWYCH
Andzej B. CHOJNACKI * DOBÓR OPTYMALNEGO TYPU ŚRODKÓW TRANSPORTOWYCH Steszczenie W efeacie pzedstawiono analityczną metodę dobou optymalnego typu śodków tanspotowych do wykonania zadania pzewozowego okeślonego
Bardziej szczegółowoOpis ćwiczeń na laboratorium obiektów ruchomych
Gdańsk 3.0.007 Opis ćwiczeń na laboatoium obiektów uchomych Implementacja algoytmu steowania obotem w śodowisku symulacyjnym gy obotów w piłkę nożną stwozonym w Katedze Systemów Automatyki Politechniki
Bardziej szczegółowoMETEMATYCZNY MODEL OCENY
I N S T Y T U T A N A L I Z R E I O N A L N Y C H w K i e l c a c h METEMATYCZNY MODEL OCENY EFEKTYNOŚCI NAUCZNIA NA SZCZEBLU IMNAZJALNYM I ODSTAOYM METODĄ STANDARYZACJI YNIKÓ OÓLNYCH Auto: D Bogdan Stępień
Bardziej szczegółowoWYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r.
Zadanie. W kolejnych okesach czasu t =,,3,... ubezpieczony, chaakteyzujący się paametem yzyka Λ, geneuje szkód. Dla danego Λ = λ zmienne N t N, N, N 3,... są waunkowo niezależne i mają (bzegowe) ozkłady
Bardziej szczegółowo1. Metoda tabel semantycznych
1. Metoda tabel semantycznych Udowodnić pawdziwość fomuły metodą tabel semantycznych: (A B) ( B A) ZALECAMY podkeślanie analizowanych fomuł, W celu zbadania pawdziwości fomuły należy zanegować fomułę i
Bardziej szczegółowoElektroenergetyczne sieci rozdzielcze SIECI 2004 V Konferencja Naukowo-Techniczna
Elektoenegetyczne sieci ozdzielcze SIECI 2004 V Konfeencja Naukowo-Techniczna Politechnika Wocławska Instytut Enegoelektyki Andzej SOWA Jaosław WIATER Politechnika Białostocka, 15-353 Białystok, ul. Wiejska
Bardziej szczegółowo(U.17) Zastosowania stacjonarnego rachunku zaburzeń
3.0.004 38. U.7 Zastosowania stacjonanego achunku zabuzeń 66 Rozdział 38 U.7 Zastosowania stacjonanego achunku zabuzeń 38. Stuktua subtelna w atomie wodoopodobnym 38.. Hamiltonian i jego dyskusja Popzednio
Bardziej szczegółowoGRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
Bardziej szczegółowoTradycyjne mierniki ryzyka
Tadycyjne mieniki yzyka Pzykład 1. Ryzyko w pzypadku potfela inwestycyjnego Dwie inwestycje mają następujące stopy zwotu, zależne od sytuacji gospodaczej: Sytuacja Pawdopodobieństwo R R Recesja 0, 9,0%
Bardziej szczegółowo11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
Bardziej szczegółowoWstęp do filogenetyki molekularnej. Krzysztof Turowski
Wstęp do filogenetyki molekulanej Kzysztof Tuowski Co to jest filogeneza? Filogeneza (z g. filos gatunek, ód i genesis pochodzenie) to doga ozwoju odowego, pochodzenie i zmiany ewolucyjne gupy oganizmów,
Bardziej szczegółowoPole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne
Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką
Bardziej szczegółowoKOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH
KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH Janusz ROMANIK, Kzysztof KOSMOWSKI, Edwad GOLAN, Adam KRAŚNIEWSKI Zakład Radiokomunikacji i Walki Elektonicznej Wojskowy Instytut Łączności 05-30
Bardziej szczegółowoBADANIE ZALEśNOŚCI POMIĘDZY WARTOŚCIĄ WYKŁADNIKA HURSTA A SKUTECZNOŚCIĄ STRATEGII INWESTYCYJNYCH OPARTYCH NA ANALIZIE TECHNICZNEJ WPROWADZENIE
Edyta Macinkiewicz Kateda Zaządzania, Wydział Oganizacji i Zaządzania Politechniki Łódzkiej e-mail: emac@p.lodz.pl BADANIE ZALEśNOŚCI POMIĘDZY WARTOŚCIĄ WYKŁADNIKA HURSTA A SKUTECZNOŚCIĄ STRATEGII INWESTYCYJNYCH
Bardziej szczegółowo1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.
Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,
Bardziej szczegółowoSpis treści JĘZYK C - FUNKCJE. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu. Numer ćwiczenia INF07Z
Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii Instukcja do pacowni specjalistycznej z pzedmiotu Inomatyka Kod pzedmiotu: EZC00 00 (studia niestacjonane) Spis
Bardziej szczegółowoZWIĄZEK FUNKCJI OMEGA Z DOMINACJĄ STOCHASTYCZNĄ
Studia konomiczne. Zeszyty Naukowe Uniwesytetu konomicznego w Katowicach ISSN 283-86 N 237 25 Infomatyka i konometia 2 wa Michalska Uniwesytet konomiczny w Katowicach Wydział Infomatyki i Komunikacji Kateda
Bardziej szczegółowoMONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH
51 Aleksande Zaemba *, Tadeusz Rodziewicz **, Bogdan Gaca ** i Maia Wacławek ** * Kateda Elektotechniki Politechnika Częstochowska al. Amii Kajowej 17, 42-200 Częstochowa e-mail: zaemba@el.pcz.czest.pl
Bardziej szczegółowoBRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:
Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,
Bardziej szczegółowo8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,
Bardziej szczegółowoZależność natężenia oświetlenia od odległości
Zależność natężenia oświetlenia CELE Badanie zależności natężenia oświetlenia powiezchni wytwazanego pzez żaówkę od niej. Uzyskane dane są analizowane w kategoiach paw fotometii (tzw. pawa odwotnych kwadatów
Bardziej szczegółowoPRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r
PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda
Bardziej szczegółowoSKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE
Publikacja współfinansowana ze śodków Unii Euopejskiej w amach Euopejskiego Funduszu Społecznego SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE d Janusz Chzanowski
Bardziej szczegółowoRodzajowy rachunek kosztów Wycena zuŝycia materiałów
Rodzajowy achunek kosztów (wycena zuŝycia mateiałów) Wycena zuŝycia mateiałów ZuŜycie mateiałów moŝe być miezone, wyceniane, dokumentowane i ewidencjonowane w óŝny sposób. Stosowane metody wywieają jednak
Bardziej szczegółowoBADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO
LABORATORIUM ELEKTRONIKI I ELEKTROTECHNIKI BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO Opacował: d inŝ. Aleksande Patyk 1.Cel i zakes ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową, właściwościami
Bardziej szczegółowoLABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Teat ćwiczenia: ZASTOSOWANIE RACHUNKU WYRÓWNAWCZEGO
Bardziej szczegółowoWyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci
Bardziej szczegółowoKONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź
Bardziej szczegółowoGEOMETRIA PŁASZCZYZNY
GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,
Bardziej szczegółowoL(x, 0, y, 0) = x 2 + y 2 (3)
0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej
Bardziej szczegółowonależą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło
07 0 Opacował: mg inż. Macin Wieczoek www.mawie.net.pl. Elementy ezystancyjne. należą do gupy odbioników enegii elektycznej idealne elementy ezystancyjne pzekształcają enegię pądu elektycznego w ciepło.
Bardziej szczegółowoĆwiczenie 9 ZASTOSOWANIE ŻYROSKOPÓW W NAWIGACJI
9.1. Cel ćwiczenia Ćwiczenie 9 ZASTSWANIE ŻYRSKPÓW W NAWIGACJI Celem ćwiczenia jest pezentacja paktycznego wykozystania efektu żyoskopowego w lotniczych pzyządach nawigacyjnych. 9.2. Wpowadzenie Żyoskopy
Bardziej szczegółowoPola elektryczne i magnetyczne
Pola elektyczne i magnetyczne Zadania z ozwiązaniami Pojekt współfinansowany pzez Unię Euopejską w amach Euopejskiego Funduszu Społecznego Zadanie 1 Cząstka alfa (jądo atomu helu) ma masę m = 6.64*1 7
Bardziej szczegółowoREZONATORY DIELEKTRYCZNE
REZONATORY DIELEKTRYCZNE Rezonato dielektyczny twozy małostatny, niemetalizowany dielektyk o dużej pzenikalności elektycznej ( > 0) i dobej stabilności tempeatuowej, zwykle w kształcie cylindycznych dysków
Bardziej szczegółowo{ 1, 2,, n } Ponadto wówczas mówimy, że formuła: oraz równoważna jej formuła:
RCHUNEK ZDŃ 6 Do ozstzygania, któe fomuły achunku zdań są tautologiami, czyli pawami logiki, stosować możemy tzy odzaje metod: 1) metodę matycową (zeo-jedynkową), 2) metodę założeniową, 3) metodę aksjomatyczną.
Bardziej szczegółowoOCZYSZCZANIE POWIETRZA Z LOTNYCH ZWIĄZKÓW ORGANICZNYCH
DZIŁ HMIZN POLITHNIKI RSZSKIJ ZKŁD THNOLOGII NIORGNIZNJ I RMIKI Laboatoium PODST THNOLOGII HMIZNJ Instukcja do ćwiczenia pt. OZSZZNI POITRZ Z LOTNH ZIĄZKÓ ORGNIZNH Powadzący: d inŝ. ogdan Ulejczyk STĘP
Bardziej szczegółowoMetody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego
Bardziej szczegółowoMECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
Bardziej szczegółowoNa skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:
E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia
Bardziej szczegółowoĆWICZENIE 6. POMIAR MOMENTU BEZWŁADNOŚCI. SPRAWDZENIE DRUGIEJ ZASADY DYNAMIKI DLA RUCHU OBROTOWEGO. BADANIE ADDYTYWNOŚCI MOMENTU BEZWłADNOŚCI
ĆWICZEIE 6 POMIAR MOMETU BEZWŁADOŚCI. SPRAWDZEIE DRUGIEJ ZASADY DYAMIKI DLA RUCHU OBROTOWEGO. BADAIE ADDYTYWOŚCI MOMETU BEZWłADOŚCI Wpowadzenie Była sztywna to układ punktów mateialnych o stałych odległościach
Bardziej szczegółowoXXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.
Bardziej szczegółowoSTANDARDY EMISJI ZANIECZYSZCZEŃ DO POWIETRZA Z PROCESÓW ENERGETYCZNEGO SPALANIA PALIW ANALIZA ZMIAN
STANISŁAW KIRSEK, JOANNA STUDENCKA STANDARDY EMISJI ZANIECZYSZCZEŃ DO POWIETRZA Z PROCESÓW ENERGETYCZNEGO SPALANIA PALIW ANALIZA ZMIAN THE STANDARDS OF AIR POLLUTION EMISSION FROM THE FUELS COMBUSTION
Bardziej szczegółowoPOMIAR PĘTLI HISTEREZY MAGNETYCZNEJ
POMAR PĘTL STEREZ MAGNETZNEJ 1. Opis teoetyczny do ćwiczenia zamieszczony jest na stonie www.wtc.wat.edu.pl w dziale DDAKTKA FZKA ĆZENA LABORATORJNE.. Opis układu pomiaowego Mateiały feomagnetyczne (feyt,
Bardziej szczegółowoAtom wodoru w mechanice kwantowej
Fizyka II, lato 016 Tójwymiaowa studnia potencjału atomu wodou jest badziej złożona niż studnie dyskutowane wcześniej np. postokątna studnia. Enegia potencjalna U() jest wynikiem oddziaływania kulombowskiego
Bardziej szczegółowoWykład FIZYKA I. 8. Grawitacja. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 8. Gawitacja D hab. inż. Władysław Atu Woźniak Instytut Fizyki Politechniki Wocławskiej http://www.if.pw.woc.pl/~wozniak/fizyka1.html CIĄŻENIE POWSZECHNE (GRAWITACJA) Wzajemne pzyciąganie
Bardziej szczegółowoModelowanie zmienności i dokładność oszacowania jakości węgla brunatnego w złożu Bełchatów (pole Bełchatów)
Akademia Góniczo-Hutnicza, Kopalnia Węgla Bunatnego, Wydział Geologii, Geofizyki i Ochony śodowiska Bełchatów Wasztaty Gónicze 24 Jacek Mucha, Tadeusz Słomka, Wojciech Mastej, Tomasz Batuś Akademia Góniczo-Hutnicza,
Bardziej szczegółowoWYZNACZANIE SIŁ MIĘŚNIOWYCH I REAKCJI W STAWACH KOŃCZYNY DOLNEJ PODCZAS NASKOKU I ODBICIA
MODELOWANIE INŻYNIERSKIE ISSN 896-77X 44, s. 49-56, Gliwice 0 WYZNACZANIE SIŁ MIĘŚNIOWYCH I REAKCJI W SAWACH KOŃCZYNY DOLNEJ PODCZAS NASKOKU I ODBICIA KRZYSZO DRAPAŁA, KRZYSZO DZIEWIECKI, ZENON MAZUR,
Bardziej szczegółowoModel klasyczny gospodarki otwartej
Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli
Bardziej szczegółowoAtom (cząsteczka niepolarna) w polu elektrycznym
Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do
Bardziej szczegółowoPakiet startowy XXX 29. Standardy Zwrotu Pojazdu
Pakiet statowy XXX 29 Standady Zwotu Pojazdu Pakiet statowy XXX 31 Spis teści: Witamy Pytania i Odpowiedzi Jak dbać o swój samochód Standady Zwotu Pojazdu Nomalne Zużycie 34 35 36 37 38 Poszę skozystać
Bardziej szczegółowoKIERUNKI ZMIAN STRUKTURY AGRARNEJ WOJEWÓDZTW WEDŁUG GRUP TYPOLOGICZNYCH (PROGNOZA DO ROKU 2020)
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/, 202, st. 58 68 KIERUNKI ZMIAN STRUKTURY AGRARNEJ WOJEWÓDZTW WEDŁUG GRUP TYPOLOGICZNYCH (PROGNOZA DO ROKU 2020) Jadwiga Bożek Kateda Statystyki Matematycznej,
Bardziej szczegółowoPracownia komputerowa
Stanisław Lampeski Ćwiczenia z chemii fizycznej Pacownia komputeowa Opis wykonania ćwiczeń WYDZIAŁ CHEMII UAM Poznań 009 Mateiały umieszczone na stonie: http://www.staff.amu.edu.pl/~slampe Spis teści Wstęp...
Bardziej szczegółowoUniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 2
LEKCJA 2 Pzykład: Dylemat Cykoa (albo Poke Dogowy) Dwie osoby wsiadają w samochody, ozpędzają się i z dużą pędkością jadą na siebie - ten kto piewszy zahamuje lub zjedzie z tasy jest "cykoem" i pzegywa.
Bardziej szczegółowoKURS GEOMETRIA ANALITYCZNA
KURS GEOMETRIA ANALITYCZNA Lekcja 2 Działania na wektoach w układzie współzędnych. ZADANIE DOMOWE www.etapez.pl Stona 1 Część 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Któe
Bardziej szczegółowoθ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z
IX. OBROTY 9.1. Zmienne obotowe W celu opisania uchu obotowego ciała wokół ustalonej osi (zwanej osią obotu) należy wybać linię postopadłą do osi obotu, któa jest związana z ciałem i któa obaca się waz
Bardziej szczegółowoZASTOSOWANIE ALGORYTMU EWOLUCYJNEGO DO OPTYMALNEJ LOKALIZACJI ŁĄCZNIKÓW W SIECI ROZDZIELCZEJ ŚREDNIEGO NAPIĘCIA
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electical Engineeing 2012 Wojciech BĄCHOREK* Janusz BROŻEK* ZASTOSOWANIE ALGORYTMU EWOLUCYJNEGO DO OPTYMALNEJ LOKALIZACJI ŁĄCZNIKÓW W SIECI ROZDZIELCZEJ
Bardziej szczegółowoWykład 15. Reinhard Kulessa 1
Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.
Bardziej szczegółowoKonkurs Matematyczny dla uczniów gimnazjów województwa lubuskiego 19 stycznia 2012 r. zawody II stopnia (rejonowe)
Kod ucznia:. Ilość punktów: Konkus Matematyczny dla uczniów gimnazjów województwa lubuskiego 19 stycznia 2012. zawody II stopnia (ejonowe) Witamy Cię na dugim etapie Konkusu Matematycznego. Pzed pzystąpieniem
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy
Bardziej szczegółowoOptymalizacja struktury kapitału w przedsiębiorstwie 1
A N N A L E S U N I V E R S I TAT I S M A R I A E C U R I E - S K Ł O D O W S K A LUBLIN POLONIA VOL. XLIV, 2 SECTIO H 2010 ANDRZEJ SZOPA Optymalizacja stuktuy kapitału w pzedsiębiostwie 1 Optimization
Bardziej szczegółowoRozdział V WARSTWOWY MODEL ZNISZCZENIA POWŁOK W CZASIE PRZEMIANY WODA-LÓD. Wprowadzenie
6 Rozdział WARSTWOWY MODL ZNISZCZNIA POWŁOK W CZASI PRZMIANY WODA-LÓD Wpowadzenie Występujące po latach eksploatacji zniszczenia zewnętznych powłok i tynków budowli zabytkowych posiadają często typowo
Bardziej szczegółowoWyznaczanie współczynnika sztywności drutu metodą dynamiczną.
Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,
Bardziej szczegółowo9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN
91 POMIAR PRĘDKOŚCI NEUTRINA W CERN Rozdział należy do teoii pt "Teoia Pzestzeni" autostwa Daiusza Stanisława Sobolewskiego http: wwwtheoyofspaceinfo Z uwagi na ozważania nad pojęciem czasu 1 możemy pzyjąć,
Bardziej szczegółowoTERMODYNAMIKA PROCESOWA. Wykład V
ERMODYNAMIKA PROCESOWA Wykład V Równania stanu substancji czystych Równanie stanu gazu doskonałego eoia stanów odpowiadających sobie Równania wiialne Pof. Antoni Kozioł, Wydział Chemiczny Politechniki
Bardziej szczegółowo