Wstęp do Sztucznej Inteligencji: Laboratorium Sterownik rozmyty
|
|
- Tomasz Żurek
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wstęp do Sztucznej Inteligencji: Laboratorium Sterowni rozmt Zbior rozmte pozwalają w sposób usstematzowan modelować pojęcia niepreczjne, jaimi ludzie posługują się na co dzień. Przładem może bć wrażenie wsoa temperatura, duża prędość cz młod człowie. Również podczas rozumowania i podejmowania deczji, ludzie worzstują taie rozmte pojęcia. Rozumujem na przład: jeśli droga jest bardzo ręta i widoczność jest bardzo słaba, należ jechać bardzo powoli. W lascznej matematce mam do cznienia z odmienną stuacją. W lascznej logice operujem na zdaniach logicznch, tóre mogą bć prawdziwe lub fałszwe i nie przjmują stanów pośrednich. Jedną z reguł wniosowania lascznej logii jest reguła modus ponens: Przesłana: Impliacja: Wniose: Z prawdziwości impliacji wiadomo, że zawsze ileroć zachodzi ( przjmuje wartość prawda ) to zachodzi również. Soro wiec w pewnej onretnej stuacji zachodzi, to możem bć pewni ze zachodzi również. W logice rozmtej zamiast zdaniami, przjmującmi wartość prawda lub fałsz, posługujem się zmiennmi lingwistcznmi, tóre przjmują jao wartości niepreczjne pojęcia jęza mówionego, taie ja mał, średni, duż. Przładowo, temperatura może bć zmienną lingwistczna i przjmować wartości niepreczjne mała, średnia, wsoa. Te niepreczjne pojęcia, ja wiadomo, można modelować za pomocą odpowiednich zbiorów rozmtch. Zbiór reguł wniosowania rozmtego przjmuje postać: Jeśli x jest i x jest i... i xn jest n to jest... Jeśli x jest i x jest i... i xn jest n to jest x i oraz to zmienne lingwistczne, i j oraz i to wartości tch zmiennch lingwistcznch oreślone przez odpowiednie zbior rozmte. Górn indes oznacza numer reguł, doln numer zmiennej lingwistcznej. Rodzaj funcji oreślającej funcje prznależności danego zbioru rozmtego ja również jej współcznnii, mają duż wpłw na działanie modelu. Odpowiedniiem rozumowania modus ponens w logice rozmtej będzie następująca reguła: Przesłana: x jest Impliacja: Jeśli x jest to jest Wniose: jest W tm przpadu x i to zmienne lingwistczne a,,, to zbor rozmte. Najważniejszą rzeczą, tórą warto zauważć w powższej regule to fat, że zbiór wstępując w przesłance wcale nie jest identczn ze zbiorem rozmtm wstępującm w rozmtej impliacji. Podobnie zbiór nie jest równ zbiorowi. Pozwala to na pewną
2 elastczność. Jeśli bowiem zbiór oreśla podobną stuację ja zbiór, to możem się spodziewać, że zbiór powinien bć zbliżon znaczeniowo (lingwistcznie) do zbioru. Ilustruje to następując przład: am regułę rozmtą: Jeśli prędość samochodu jest bardzo duża, to poziom hałasu jest wsoi. Przesłana mówi natomiast: Prędość samochodu jest duża. Widać zatem, że wartość lingwistczna bardzo duża nie jest tożsama z wartością duża. Jedna z ich podobieństwa wnia, że powinniśm oczeiwać podobnego wniosu ja w regule, przładowo: Poziom hałasu jest średnio wsoi. Soro więc ludzie posługując się niepreczjnmi pojęciami i regułami rozmtmi, potrafią radzić sobie z szeregiem sompliowanch zadań, istnieje pratczna potrzeba smulowania taiego rodzaju rozumowania. Umożliwia to zastosowanie teorii zbiorów i logii rozmtej. W ten sposób powstał sterownii rozmte. Realizacja rozmtej impliacji Reguła rozmta tpu ( ) gdzie oraz są zbiorami rozmtmi, to rozmta impliacja i może bć zrealizowana na wiele sposobów. Dwa z popularnch sposobów jej realizacji to reguła minimum oraz ilocznu. Jeśli zbior i mają funcje prznależności odpowiednio (x ) oraz ( ) to rozmta impliacja ( ) jest zbiorem rozmtm o funcji prznależności oreślonej przez jedną z reguł, przładowo:. reguła tpu minimum: ( x, ) ( x) ( ) min[ ( x), ( )]. reguła tpu iloczn: ( x, ) ( x)* ( ) Realizacja rozmtego wniosowania ( > ) ( > ) W logice rozmtej wniosowanie realizuje się przez złożenie rozmtego zbioru oraz rozmtej impliacji ( ). W wniu złożenia otrzmam zbiór rozmt, tór stanowi wniose. ' ' ( ) Złożenie to realizowane jest następująco; T ' ( ) sup{ ' ( x)* ( x X x, )} gdzie * T oznacza pewna T-normę. Jeśli przładowo T-norma jest tpu min, otrzmuje się:
3 ' ( ' x X ) sup{min[ ( x), ( x, )]} Klasczn sterowni rozmt: Klasczn sterowni rozmt słada się z trzech części:. lou rozmwania (fuzfiacji). lou wniosowania (inferencji) wraz z baza reguł 3. lou wostrzania Schemat sterownia rozmtego przedstawiono na rsunu: lo rozmwania lo rozmwania ma za zadanie zamienić ostre wartości x, przeważnie otrzmane z pomiarów, na zbior rozmte. Jednm z popularnch sposobów rozmwania to operacja rozmwania tpu singleton. Dla onretnej wartości x _ funcji prznależności oreślonej wzorem ' ( x) _ δ ( x x) 0 x _ x _ x x lo wniosowania lo ten przeprowadza wniosowanie rozmte orzstając z baz reguł tpu: tworz ona zbiór rozmt o Jeśli x jest i x jest i... i xn jest n to jest... Jeśli x jest i x jest i... i xn jest n to jest Zadaniem tego blou jest sprawdzenie stopnia spełnienia przesłani ażdej z reguł i oreślić odpowiedzi ażdej z reguł, czli zbior rozmte i. Jeśli przesłana jest tpu prostego tzn. Jeśli xi jest i to... 3
4 i zastosowano operacje rozmwania tpu singleton, to stopień spełnienia przesłani łatwo oreślić wznaczając wartość ( x _ ). W przpadu przesłani złożonej tpu: i Jeśli x jest i x jest i... i xn jest n to jest czli Jeśli x(x, x,..., xn) jest to jest gdzie x x... n, jest ilocznem artezjańsim zbiorów rozmtch i, należ oreślić funcję prznależności ilocznu artezjańsiego zbiorów rozmtch i. Ja wiadomo funcję prznależności ilocznu artezjańsiego można oreślić jao: x, x,..., x ) min[ ( x ), ( x ),..., x x... xn ( n n ( xn lub jao iloczn x x... xn( x, x,..., xn) ( x) ( x)... n( xn W czasie wniosowania rozmtego worzstuje się złożenie zbioru rozmtego otrzmanego z operacji rozmwania z relacją rozmtą ilocznu artezjańsiego x x... n i zbioru, ja poazano to wcześniej. Dla ażdej -tej reguł otrzmujem zatem ) )] ' ' ( x x... x n ) Zatem otrzmane zbior zalezą od: - przjętej T-norm w definicji rozmtej impliacji - sposobu zdefiniowania ilocznu artezjańsiego zbiorów rozmtch - przjętego sposobu rozmwania (najczęściej singleton) Na wjściu blou wniosowania otrzmam zatem: - zbior rozmte, w liczbie równej liczbie reguł rozmtch - jeden zbiór rozmt, jeśli przjmiem uogólniona postać rozmtego wniosowania modus ponens, gdzie złożenie zbioru odbwa się nie z ażda z relacji (reguł) z osobna, lecz ze wszstimi razem: ' ' R ( ) Korzstając z definicji sum zbiorów rozmtch otrzmam: ' ( ) sup{ ( x)*max x X ' T ( x, )} 4
5 Wbierana jest zatem reguła, tóra najlepiej odpowiada danej stuacji, zgodnie z przjętmi definicjami ilocznu artezjańsiego, rozmtej impliacji oraz sum zbiorów rozmtch (w tm przpadu operacji max). lo wostrzania Na wjściu blou wniosowania otrzmam jeden lub wiele zbiorów rozmtch. Do sterowania onretnm obietem potrzebne są jedna onretne ostre wartości. To ta, ja gdb człowie wiedząc ze musi jechać wolno, zwolnił w ońcu do onretnej wartości 5 m/h. W lascznm sterowniu rozmtm za ten ostatni etap odpowiada blo wostrzania. oże on bć zrealizowan również na wiele sposobów. Jednm z możliwch rozwiązań jest metoda center avarage defuzzification0, stosowana, gd na wjściu blou wniosowania otrzmuje się zbiór zbiorów rozmtch. Konretna ostra wartość wznaczana jest ze wzoru ( ) _ ' ( ) ' gdzie jest puntem w tórm funcja () (z -tej reguł) przjmuje wartość masmalną, a to liczba reguł rozmtch. (Uwaga: W sumie wstępują zbior rozmte a nie ) Rodzaje modeli rozmtch Najbardziej popularnmi rodzajami modeli rozmtch są:. odel amdaniego, gdzie reguł rozmte maja postać Jeśli x jest to jest, gdzie i to zbior rozmte. odel Taagi Sugeno, gdzie reguł rozmte maja postać: Jeśli x jest to f(x), gdzie tlo jest zbiorem rozmtm, natomiast jest oreślan za pomocą pewnej funcji. Przład. odel Taagi-Sugeno z dwoma regułami rozmtmi odel posiada dwie reguł rozmte postaci Jeśli (x jest DUŻE I x jest ŚREDNIE) TO + 7x - 3x Jeśli (x jest ŁE I x jest ŁE) TO -x +5x Wznaczm sgnał wjściow sterownia dla sgnałów wejściowch równch x oraz x 3. Korzstając z rsunu odcztujem wartości ażdego ze zbiorów rozmtch reguł dla danch wejściowch sterownia (w domśle stosujem rozmwanie tpu singleton): 5
6 () 0.3 (3) 0. 7 () 0.75 (3) 0. Stopień spełnienia przesłani złożonej ażdej z reguł obliczam orzstając z operacji min: w w min(0.3,0.7) 0.3 min(0.75,0.) 0. Dodatowo w modelu Taagi Sugeno odpowiedzi ażdej reguł wnoszą odpowiednio: f(,3) 7 f (,3) Końcowa odpowiedź całego sterownia wnosi: w + w w + w 8.6 Zalecana letura Rutowsa D., Pilińsi., Rutowsi L., Sieci neuronowe, algortm genetczne i sstem rozmte Piegat., odelowanie i sterowanie rozmte 6
Definicja. Złożenie zbioru rozmytego i relacji rozmytej. Rozważmy. zbiór rozmyty A X z funkcją przynależności
Zagadnienia I Złożenie zbioru rozmtego i relacji rozmtej Rozważm zbiór rozmt X z funcją prznależności relację rozmtą RX Y z funcją prznależności Definicja R Złożenie zbioru rozmtego i relacji rozmtej R
Logika klasyczna i rozmyta. Rozmyte złożenie relacji (ang. fuzzy composition) Złożenie relacji (ang. composition)
Złożenie relacji ang. compoition) Niech X Y, Y Z. Ptanie: X Z? Cz można znaleźć taą relację, tóra wiąże te ame element z X, tóre zawiera z tmi ammi elementami z Z, tóre zawiera? Czli cz zuam X Z. Przład
ELEMENTY TEORII ZBIORÓW ROZMYTYCH
ELEMENTY TEORII ZBIORÓW ROZMYTYCH OPRACOWAŁ: M. KWIESIELEWICZ POJĘCIA NIEPRECYZYJNE ODDZIAŁYWANIA CZŁOWIEK-OBIEKT TECHNICZNY OTOCZENIE (Hoang 990: człowieka na otoczenie, np.: ergonomiczna konstrukcja
Modelowanie niepewności
Modelowanie niepewności rzetwarzanie numerczne informacji niepewnej niepełnej nej i niepreczjnej lan władu Źródła a niepewności informacji odejście probabilistczne do modelowania niepewności - twierdzenie
Rysunek 1-1. Przykładowy zbiór klasyczny (nierozmyty) oraz jego funkcja przynale żności.
Podstaw logiki rozmtej i regulatorów rozmtch. Zbiór rozmt Pojęcie zbioru rozmtego zostało wprowadzone przez L. A. Zadeha w 965. Celem wprowadzenia tego pojęcia bła chęć modelowania procesów złożonch, w
A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy
3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Sterowanie rozmyte. mgr inż. Piotr Fiertek p. 544
Sterowanie rozmte mgr inż. Piotr iertek p. 544 Literatura do wkładu: D. Driankov H. Hellendoorn M. einfrank Wprowadzenie do sterowania ozmtego Wdawnictwo Naukowo-Techniczne Warszawa 996 Piegat A.: Modelowanie
Wektory. P. F. Góra. rok akademicki
Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.
Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym
Zior rozmte Teori i zstosowni we wniosowniu prosmcjnm PODSTWOWE POJĘCI Motwcje Potrze opisni zjwis i pojęć wielozncznch i niepreczjnch użwnch swoodnie w jęzu nturlnm np. wso tempertur młod człowie średni
Zagadnienia AI wykład 3
Zagadnienia I wyład 3 Rozmyte systemy wniosujące by móc sterować pewnym procesem technologicznym lub tez pracą urządzeń onieczne jest zbudowanie modelu, na podstawie tórego można będzie podejmować decyzje
Teoria zbiorów w rozmytych
8 Teori ziorów w rozmtch Teori ziorów w rozmtch ng. fuzz set tpu 8 Oprcown przez L.. Zdeh w 965 Powstł w celu reprezentcji niepreczj ci jęz j nturlnego ng. vgueness i jego pojęć Nie m związu zu z Ŝdnmi
Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość
Zmienna losowa. M. Przybycień Rachunek prawdopodobieństwa i statystyka
Zmienna losowa ozszerzenie znaczenia funcji zmiennej rzeczwistej na przpadi, ied zmienna niezależna nie jest liczbą rzeczwistą: odległość to funcja par puntów, obwód trójąta, to funcja oreślona na zbiorze
Metoda podziału zbioru obiektów na wielokryterialne klastry jakościowe
BIULET ISTTUTU SSTEMÓW IFOMATCZCH (03) Metoda podziału zbioru obietów na wielorterialne lastr jaościowe A. AMELJAŃCZK aameljancz@wat.edu.pl Insttut Sstemów Informatcznch Wdział Cberneti WAT ul. S. Kalisiego,
MODYFIKACJE ALGORYTMU UŚREDNIANIA WYKŁADNICZEGO DO USUWANIA ZAKŁÓCENIA ADDYTYWNEGO
POZA UIVE RSITY OF TE COLOGY ACADE MIC JOURALS o 80 Electrical Engineering 04 Grzegorz MIKOŁAJCZAK* Jaub PĘKSIŃSKI* Janusz KOWALSKI** MODYFIKACJE ALGORYTMU UŚREDIAIA WYKŁADICZEGO DO USUWAIA ZAKŁÓCEIA ADDYTYWEGO
Całkowanie przez podstawianie i dwa zadania
Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,
STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.
METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykład 12, str. 1 C 1 C 2 C 3 1. * x 2. x 2. or max then (min)
Politechnika Poznańska, Katedra Sterowania i Inżnierii Sstemów Wkład, str. Implikacja rozmta A B A, B µ A (x, µ B ( x A, B µ A B (x, µ A B (x, = min(µ A (x, µ B ( lub µ A B (x, = µ A (x µ B ( 38. Wnioskowanie
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma
Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.
Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0
25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx
5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.
Technologie i systemy oparte na logice rozmytej
Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie
ROZWIĄZANIA I ODPOWIEDZI
Zastosowania matematki w analitce medcznej zestaw do kol. semestr. - rozwiązania i odpowiedzi (część I). ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. a) Rozważając dwa przpadki ze względu na moduł mam: skąd ostatecznie,3>.
Wykorzystanie logiki rozmytej w badaniach petrofizycznych
NAFTA-GAZ, ROK LXXII, Nr / DOI: 1.1/NG...1 Barbara Darła, Małgorzata Kowalsa-Włodarczy Instytut Nafty i Gazu Państwowy Instytut Badawczy Wyorzystanie logii rozmytej w badaniach petrofizycznych Praca ta
Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy:
Matematya dysretna - wyład 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produtu artezjańsiego X Y, tórego elementami są pary uporządowane (x, y), taie, że x X i y Y. Uwaga 1.1 Jeśli
Ekstrema funkcji dwóch zmiennych
Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu
Rozwiązywanie układu równań metodą przeciwnych współczynników
Rozwiązwanie układu równań metodą przeciwnch współcznników Sposob postępowania krok po kroku: I. przgotowanie równań. pozbwam się ułamków mnoŝąc kaŝd jednomian równania równań przez najmniejszą wspólną
Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.
Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób
Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki
Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi
Wstęp. Przygotowanie materiału doświadczalnego do badań. Zastosowanie logiki rozmytej do obliczeń
Przedstawiona praca jest ontynuacją próby wprowadzenia metody logii rozmytej do rutynowych modelowań geologicznych. Wyorzystując dane laboratoryjne i otworowe uzupełniano z jej pomocą braujące fragmenty
ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE
SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna
12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej
1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA PRZYKŁADOWEGO ZESTAWU ZADAŃ PAŹDZIERNIK 2011 Zadania
STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI
INTELIGENTNE TECHNIKI KOMPUTEROWE wkłd STNDRDOWE FUNKCJE PRZYNLEŻNOŚCI GUSSOWSK F. PRZYNLEŻNOŚCI ' μ ( ; ', ) ep μ().5 ' środek; określ szerokość krzwej.5 3 F. PRZYNLEŻNOŚCI KLSY s dl - dl c- sc ( ;,,
SKRYPT Z MATEMATYKI. Wstęp do matematyki. Rafał Filipów Piotr Szuca
Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego SKRYPT Z MATEMATYKI Wstęp do matematki Rafał Filipów Piotr Szuca Publikacja współfinansowana przez Unię Europejską
FINAŁ 10 marca 2007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut. x +
FINAŁ 0 marca 007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut ZADANIE Największ wspóln dzielnik dwóch liczb naturalnch wnosi 6, a ich najmniejsza wspólna wielokrotność tch liczb równa jest
Równania różniczkowe
Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz
Pierwiastki kwadratowe z liczby zespolonej
Pierwiastki kwadratowe z liczb zespolonej Pierwiastkiem kwadratowm z liczb w C nazwam każdą liczbę zespoloną z C, dla której z = w. Zbiór wszstkich pierwiastków oznaczam smbolem w. Innmi słow w = {z C
Programowanie nieliniowe optymalizacja funkcji wielu zmiennych
Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu
Z funkcji zdaniowej x + 3 = 7 można otrzymać zdania w dwojaki sposób:
Z funkcji zdaniowej + 3 = 7 można otrzmać zdania w dwojaki sposób: podstawiając w tej funkcji zdaniowej za stałe będące nazwami liczb np. 4 2 itp. poprzedzając tę funkcję zdaniową zwrotami: dla każdego
i = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) =
Druga zasada inducji matematycznej Niech m będzie liczbą całowitą, niech p(n) będzie ciągiem zdań zdefiniowanych na zbiorze {n Z: n m} oraz niech l będzie nieujemną liczbą całowitą. Jeśli (P) wszystie
Np.:
INTELIGENTNE TECHNIKI KOMPUTEROWE wkład STEROWNIKI ROZMYTE TAKAGISUGENO aza reguł sterownika ma charakter rozmt tlko w części IF. W części THEN wstępują zależności funkcjne. Np.: R () : IF prędkość is
Zadania do rozdziału 10.
Zadania do rozdziału 0. Zad.0.. Jaką wsokość musi mieć pionowe zwierciadło ab osoba o wzroście.80 m mogła się w nim zobaczć cała. Załóżm, że ocz znajdują się 0 cm poniżej czubka głow. Ab prawidłowo rozwiązać
Metody numeryczne. Wykład nr 2. dr hab. Piotr Fronczak
Metod numerczne Wład nr dr hab. Piotr Froncza Przbliżone rozwiązwanie równań nieliniowch Jedno równanie z jedną niewiadomą Szuam pierwiastów rzeczwistch równania =. zwle jest uncją nieliniową zatem orzstam
σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;
Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia
Automatyka. Treść wykładów: Układ sekwencyjny synchroniczny. Układ kombinacyjny AND. Układ sekwencyjny asynchroniczny. Układ sekwencyjny synchroniczny
Automatka dr inż. Szmon Surma szmon.surma@polsl.pl zawt.polsl.pl/studia pok. 202, tel. +48 32 603 4136 Treść wkładów: 1. Podstaw automatki 2. Układ kombinacjne, 3. Układ sekwencjne snchronicze, 4. Układ
x 1 x 2 x 3 x n w 1 w 2 Σ w 3 w n x 1 x 2 x 1 XOR x (x A, y A ) y A x A
Sieci neuronowe model konekcjonistczn Plan wkładu Perceptron - przpomnienie Uczenie nienadzorowane Sieci Hopfielda Perceptron w 3 Σ w n A Liniowo separowaln problem klasfikacji ( A, A ) Problem XOR 0 0
Metody probabilistyczne Rozwiązania zadań
Metody robabilistyczne Rozwiązania zadań 6. Momenty zmiennych losowych 8.11.2018 Zadanie 1. Poaż, że jeśli X Bn, to EX n. Odowiedź: X rzyjmuje wartości w zbiorze {0, 1,..., n} z rawdoodobieństwami zadanymi
Automatyka. Treść wykładów: Układ kombinacyjny AND. Układ sekwencyjny synchroniczny. Układ sekwencyjny asynchroniczny. Układ sekwencyjny synchroniczny
Treść wkładów: Automatka dr inż. Szmon Surma szmon.surma@polsl.pl zawt.polsl.pl pok. 202, tel. +48 32 603 4136 1. Podstaw automatki 2. Układ kombinacjne, 3. Układ sekwencjne snchronicze, 4. Układ sekwencjne
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji
SZEREG CZASOWY Y zjawisko badane w różnch okresach lub momentach czasu. Dnamika zjawiska to zmiana zjawiska w czasie. Przkład. Y średni kurs akcji firm OPTMUS na giełdzie Okres: notowania od 1.03.2010
11. CZWÓRNIKI KLASYFIKACJA, RÓWNANIA
OBWODY SYGNAŁY Wkład : Czwórniki klasfikacja, równania. CZWÓRNK KLASYFKACJA, RÓWNANA.. WELOBEGNNK A WELOWROTNK CZWÓRNK Definicja. Jeśli: wielobiegunnik posiada parzstą liczbę zacisków (tzn. mn) zgrupowanch
f x f y f, jest 4, mianowicie f = f xx f xy f yx
Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją
Zasada indukcji matematycznej
Sławomir Jemielity Zasada inducji matematycznej Są różne sformułowania tej zasady, mniej lub bardziej abstracyjne My będziemy się posługiwać taą: Niech T(n) oznacza twierdzenie dotyczące liczby naturalnej
4. Schematy blokowe; algebra schematów blokowych
57. Schemat bloowe; algebra chematów bloowch W ażdm złożonm ładzie atomati można wodrębnić wpółpracjące ze obą element protze, tórch właściwości ą znane i formłowane np. w potaci tranmitancji operatorowej.
Macierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A)
Macierze normalne Twierdzenie: Macierz można zdiagonalizować za pomocą unitarnej transformacji podobieństwa wted i tlko wted gd jest normalna (AA A A). ( ) D : Dowolną macierz kwadratową można zapisać
Jeśli X jest przestrzenią o nieskończonej liczbie elementów:
Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów
Rozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 965 Lotfi A. Zadeh: : Fuzzy sets In almost every case you can build the same product without fuzzy logic, but fuzzy
Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo
Realizacja funkcji przełączających
Realizacja funkcji przełączającch. Wprowadzenie teoretczne.. Podstawowe funkcje logiczne Funkcja logiczna NOT AND OR Zapis = x x = = x NAND NOR.2. Metoda minimalizacji funkcji metodą tablic Karnaugha Metoda
Przenoszenie niepewności
Przenoszenie niepewności Uwaga wstępna: pojęcia niepewność pomiarowa i błąd pomiarow są stosowane wmiennie. Załóżm, że wielkość jest funkcją wielkości,,, dla którch niepewności (,, ) są znane (wnikają
Inteligencja obliczeniowa
Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie
Reprezentacja rozmyta - zastosowania logiki rozmytej
17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych
Cykl III ćwiczenie 3. Temat: Badanie układów logicznych
Ckl III ćwiczenie Temat: Badanie układów logicznch Ćwiczenie składa się z dwóch podtematów: Poziom TTL układów logicznch oraz Snteza układów kombinacjnch Podtemat: Poziom TTL układów logicznch. Wprowadzenie
Systemy przetwarzania sygnałów
Sstem przetwarzania sgnałów x(t) (t)? x(t) Sstem przetwarzania sgnałów (t) Sstem przetwarzania sgnałów sgnał ciągł x(t) (t)=h(x(t)) Sstem czasu ciągłego (t) np. megafon - wzmacniacz analogow sgnał dskretn
Warsztat pracy matematyka
Warsztat prac matematka Izabela Bondecka-Krzkowska Marcin Borkowski Jęzk matematki Teoria Jednm z podstawowch pojęc matematki jest pojęcie zbioru. Teorię opisującą zbior nazwa sie teorią mnogości. Definicja
Plan wyk y ł k adu Mózg ludzki a komputer Komputer Mózg Jednostki obliczeniowe Jednostki pami Czas operacji Czas transmisji Liczba aktywacji/s
Sieci neuronowe model konekcjonistczn Plan wkładu Mózg ludzki a komputer Modele konekcjonistcze Sieć neuronowa Sieci Hopfielda Mózg ludzki a komputer Twój mózg to komórek, 3 2 kilometrów przewodów i (biliard)
Model Solow-Swan. Y = f(k, L) Funkcja produkcji moŝe zakładać stałe przychody skali, a więc: zy = f(zk, zl) dla z > 0
Barte Roici Ćwiczenia z Maroeonomii II Model Solow-Swan W modelu lascznm mieliśm do cznienia ze stałą wielością cznniów producji, a zatem bł to model statczn, tór nie poazwał nam dlaczego dan raj rozwija
Indukcja matematyczna
Inducja matematyczna Inducja jest taą metodą rozumowania, za pomocą tórej od tezy szczegółowej dochodzimy do tezy ogólnej. Przyład 1 (o zanurzaniu ciał w wodzie) 1. Kawałe żelaza, tóry zanurzyłem w wodzie,
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Elementy logiki matematycznej
Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w
Wykład 1 Podstawy projektowania układów logicznych i komputerów Synteza i optymalizacja układów cyfrowych Układy logiczne
Element cfrowe i układ logicne Wkład Literatura M. Morris Mano, Charles R. Kime Podstaw projektowania układów logicnch i komputerów, Wdawnictwa Naukowo- Technicne Giovanni De Micheli - Sntea i optmaliacja
MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH
MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa
Automatyka i Robotyka Analiza Wykład 14 dr Adam Ćmiel
Własośi zbiorów otwarth i domięth Tw. a) Suma dowolej ilośi zbiorów otwarth jest zbiorem otwartm. b) Iloz sońzoej ilośi zbiorów otwarth jest zbiorem otwartm. Dow. a) Mam rodzię zbiorów otwarth: U A s {
19. Wybrane układy regulacji Korekcja nieliniowa układów. Przykład K s 2. Rys Schemat blokowy układu oryginalnego
19. Wbrane układ regulacji Przkład 19.1 19.1. Korekcja nieliniowa układów w K s 2 Rs. 19.1. Schemat blokow układu orginalnego 1 Zbadać możliwość stabilizacji układu za pomocą nieliniowego prędkościowego
Wnioskowanie rozmyte. Krzysztof Patan
Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne
Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne
Literatura: podstawowa: C. Radhakrishna Rao, Statystyka i prawda, 1994. G. Wieczorkowska-Wierzbińska, J. Wierzbiński, Statystyka. Od teorii do praktyki, 2013. A. Aczel, Statystyka w zarządzaniu, 2002.
REGUŁOWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE
REGUŁOWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE Część 3: Systemy elementarne i rozwinięte z ocenami Antoni Niederliński Uniwersytet Ekonomiczny w Katowicach antoni.niederlinski@ue.katowice. pl Koniec pewnego
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4
ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?
XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne
XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom
Paweł Strawiński Ćwiczenia
Zadanie 1 Na podstawie wników badań PGSS starano się zidentfikować zmienne, które wpłwają na poziom szczęścia. Na podstawie odpowiedzi stworzono zmienną hapunhap, która przjmuje wartość 1 dla osób, które
Podejmowanie decyzji w warunkach niepełnej informacji. Tadeusz Trzaskalik
Podejmowanie deczji w warunkach niepełnej informacji Tadeusz Trzaskalik 5.. Wprowadzenie Słowa kluczowe Niepełna informacja Stan natur Macierz wpłat Podejmowanie deczji w warunkach rzka Podejmowanie deczji
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje
Podstawy rachunku prawdopodobieństwa (przypomnienie)
. Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń
Przestrzenie liniowe w zadaniach
Przestrzenie linioe zadaniach Zadanie 1. Cz ektor [3, 4, 4 jest kombinacja linioa ektoró [1, 1, 1, [1, 0, 1, [1, 3, 5 przestrzeni R 3? Roziazanie. Szukam x,, z R takich, że [3, 4, 4 x [1, 1, 1 + [1, 0,
UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU. Miary podobieństwa i zawierania zbiorów rozmytych
UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Wdział Matematki i Informatki Miar podobieństwa i zawierania zbiorów rozmtch Similarit and subsethood measures of fuzz sets Patrk Żwica Numer albumu: 329575
Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III)
Zmienne losowe tpu ciągłego. Parametr zmiennch losowch. Izolda Gorgol wciąg z prezentacji (wkład III) Zmienna losowa tpu ciągłego Zmienna losowa X o ciągłej dstrbuancie F nazwa się zmienną losową tpu ciągłego,
RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego
NIELINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego ma postać:
lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów
9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt
OWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE
REGUŁOWO OWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE Część 3: Systemy elementarne i rozwinięte z ocenami Antoni Niederliński Uniwersytet Ekonomiczny w Katowicach antoni.niederlinski@ue.katowice. pl Koniec
Pochodna funkcji wykład 5
Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren
Analiza Matematyczna II.1, kolokwium rozwiazania 9 stycznia 2015, godz. 16:15 19:15
Analiza Matematczna II., kolokwium rozwiazania 9 stcznia 05, godz. 6:5 9:5 0. Podać definicj e zbioru miar 0. Udowodnić, że jeśli A = {(x,, z) : (x )(x + + z ) = 0}, to l (A) = 0. Zbiorem miar zero jest
IV. RÓWNANIA RÓŻNICOWE
V. RÓWNANA RÓŻNCOWE 4.. Wstęp Prz frowm przetwarzaiu sgałów dooujem ih dsretzaji zli próbowaia, tz. zamia sgału iągłego a iąg sgałów dsreth. Sgał iągł (t) przedstawiam jao iąg rzędh wzazah dla dsreth wartośi
Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA
Młodzieżowe Uniwerstet Matematczne Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu połecznego REGUŁA GULDINA dr Bronisław Pabich Rzeszów marca 1 Projekt realizowan przez Uniwerstet
NAPĘD I STEROWANIE PNEUMATYCZNE PODSTAWY
Zachodniopomorski Uniwerstet Technologiczn w Szczecinie Wdział Inżnierii Mechanicznej i Mechatroniki PIOTR PWEŁKO NPĘD I STEROWNIE PNEUMTYCZNE PODSTWY ĆWICZENI LBORTORYJNE Funkcje logiczne realizowane