Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki"

Transkrypt

1 Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici

2 Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi spełniających oreślone waruni.

3 Prawa przeliczania Fat: Zbiory sończone A i B mają tyle samo elementów istnieje pomiędzy nimi bijecja. Twierdzenie: (Prawo mnożenia) Moc iloczynu artezjańsiego jest równa iloczynowi mocy jego sładniów: #(A 1 A n ) = (#A 1 ) (#A n )

4 Zasada włączania i wyłączania Moc sumy zbiorów wynosi: #(A B) = #A + #B #(A B) Można tę obserwację uogólnić na więszą liczbę zbiorów: Wzór Sylvester a #(A 1 A n ) = Np. Dla n = 4 n ( 1) i= X {1,...,n}:#X = # i X #(A 1 A 2 A 3 A 4 ) = #A 1 + #A 2 + #A 3 + #A 4 #(A 1 A 2 ) #(A 2 A 3 ) #(A 3 A 4 ) #(A 1 A 3 ) #(A 1 A 4 ) #(A 2 A 3 ) +#(A 2 A 3 A 4 ) + #(A 1 A 3 A 4 ) + #(A 1 A 2 A 4 ) +#(A 1 A 2 A 3 ) #(A 1 A 2 A 3 A 4 ) A i

5 Zasada włączania i wyłączania Przyład: Ile jest liczb naturalnych mniejszych niż 1000 podzielnych przez 2, 3 lub 5? 1000/2 = 500 = 499 liczb podzielnych przez /3 = 333.(3) = 333 liczby podzielne przez /5 = 200 = 199 liczb podzielnych przez /6 = 166.(6) = 166 liczb podzielnych przez /10 = 100 = 99 liczb podzielnych przez /15 = 66.(6) = 66 liczb podzielnych przez /30 = 33.(3) = 33 liczb podzielnych przez 30 #(A 2 A 3 A 5 ) = #A 2 + #A 3 + #A 5 #(A 2 A 3 ) #(A 3 A 5 ) #(A 5 A 2 ) + #(A 2 A 3 A 5 ) = = 733

6 Zasada włączania i wyłączania Zasadę włączania i wyłaczania stosuję się dla dowolnej miary oreślonej na podzbiorach jaiejś przestrzeni (liczba elementów podzbiorów sończonych jest szczególnym przypadiem). Wzór ten wyorzystuje się również w teorii miary i prawdopodobieństwa.

7 Zasada szufladowa Dirichleta Fat: Jeżeli rozmieścimy n przedmiotów w m szufladach, gdzie n > m, wtedy przynajmniej w jednej szufladce będzie więcej niż przedmiotów. Przyład: Człowie ma nie więcej niż włosów. W mieście liczącym 1 mln mieszańców przynajmniej 3 osoby mają tyle samo włosów. Przyład: W turnieju piłarsim ażda drużyna gra z ażdą. W ażdym momencie istnieją dwie drużyny, tóre zagrały tyle samo meczów.

8 Wariacje z powtórzeniami Definicja: Wariacją z powtórzeniami długości ze zbioru n-elementowego nazywamy ciąg długości o wyrazach w tym zbiorze. (Wariacja z powtórzeniami to dowolna funcja z {1,..., ) o wartościach w danym zbiorze) Fat: Ilość wszystich wariacji długości z powtórzeniami ze zbioru n-elementowego wynosi n. Dowód: (Z prawa mnożenia lub inducyjnie) Każdemu miejscu ciągu można przypisać jeden z n elementów zbioru A. Zbiór wszystich ciągów jest równy A A (-rotny iloczyn artezjańsi) i jao tai ma moc (#A) = n.

9 Permutacje Definicja: Permutacją nazywamy dowolną różnowartościową funcję odwzorowującą zbiór n-elementowy w siebie. Przyład: Wszystie permutacje zbioru {,, } to: {,, }, {,, }, {,, }, {,, }, {,, }, {,, } Fat: Permutacje tworzą grupę przeształceń zbioru n-elementowego: Złożenie permutacji jest permutacją, sładanie jest łączne (ale nie przemienne!) Istnieje permutacja identycznościowa Każda permutacja posiada permutację odwrotną

10 Permutacje Fat: Ilość wszystich permutacji zbioru n-elementowego wynosi n!. Dowód: (Przez inducję) (P) Zbiór 1-elementowy ma doładnie 1 permutację. (I) Załóżmy że wszystich permutacji zbioru {a 1,..., a n } jest n!. Do ażdego ciągu reprezentującego wyni działania permutacji można wstawić element a n+1 na n + 1 sposobów, zatem można uzysać n! (n + 1) permutacji zbioru {a 1,..., a n+1 }.

11 Wariacje bez powtórzeń Definicja: Wariacją bez powtórzeń zbioru n-elementowego długości Nazywamy dowolny ciąg długości o elementach ze zbioru, w tórym ażdy element nie występuje więcej niż raz. (Wariacja bez powtórzeń to dowolna funcja różnowartościowa z {1,..., } o wartościach w danym zbiorze) Fat: Ilość -elementowych wariacji bez powtórzeń zbioru n-elementowego wynosi n! (n )! Dowód: Pierwszy element wariacji możemy wybrać na n sposobów, drugi na n 1 sposobów, -ty na n + 1 sposobów. Ilość wszystich możliwych wariacji wynosi zatem n (n 1) (n + 1) = n! (n )!

12 Kombinacje Definicja: -elementową ombinacją ze zbioru n-elementowego nazywamy dowolny podzbiór mocy tego zbioru. Fat: Ilość -elementowych ombinacji ze zbioru n-elementowego wynosi ( ) n df = n! (n )!! Dowód: Permutując wyrazy w ombinacji można otrzymać! wariacji bez powtórzeń z wyjściowego zbioru, zatem liczba ombinacji jest to liczba wariacji bez powtórzeń podzielona przez!

13 Kombinacje Wzór dwumianowy: (a + b) n = n =0 ( ) n a b n Trójąt Pascala:

14 Kombinacje Przyład: Na ile sposobów można wybrać 13 art z 52 (olejność na ręce nie jest istotna)? Odpowiedź ( 52) 13 Przyład: Na ile sposobów można wybrać 13 art z 52, by dostać tylo czarne arty (olejność na ręce nie jest istotna)? Odpowiedź ) ( Przyład: Ile jest prostoątów na racie {1,..., n} {1,..., m} o boach leżących na liniach raty? Położenie dwóch poziomych boów można wybrać na ( n) 2 sposobów, a pionowych na ( m) 2. Zatem liczba wszystich taich prostoątów wynosi ( n m ) 2)( 2.

15 Kombinacje Przyład: Na ile sposobów można włożyć nierozróżnialnych ule do n omóre ta, by w ażdej omórce była co najwyżej jedna ula? Każde taie włożenie zadane jest jednoznacznie przez podzbiór zajętych omóre, zatem jest ich tyle ile -elementowych podzbiorów zbioru n-elementowego, czyli ( n ). Na tyle sposobów fermionów może obsadzić pasmo energetyczne złożone z n stanów.

16 Kombinacje z powtórzeniami Definicja: Kombinacja -elementowa z powtórzeniami ze zbioru n-elementowego, to wariacja z powtórzeniami, w tórej nie jest istotna olejność. Przyład: Kombinacje trzyelementowe ze zbioru {1, 2} to: {1, 1, 1}, {1, 1, 2}, {1, 2, 2}, {2, 2, 2} Każda taa ombinacja jest równoważna ciągowi typu, gdzie ściane między olejnymi wartościami jest n 1, a wyrazów ombinacji. Tai ciąg jest jednoznacznie wyznaczony przez podzbiór miejsc w tórych stoi. Liczba taich ciągów jest równa ( ) + n 1

17 Kombinacje z powtórzeniami Przyład: Na ile sposobów bozonów może obsadzić pasmo złożone z n stanów energetycznych? Na ( +n 1) sposobów - ażdemu bozonowi przypisujemy stan energetyczny, przy czym ilu bozonom można przypisać ten sam stan. Ponieważ bozony są nierozróżnialne, olejność w otrzymanym ciągu nie gra roli. Każde przypisanie jest zatem -elementową ombinacją z powtórzeniami ze zbioru n-elementowego Zadanie: Ile jest obsadzeń, dla tórych ażdy stan jest obsadzony?

18 Permutacje z powtórzeniami Problem: Mamy zbiór n elementów, tóre są podzielone na las po n elementów. Ile rozróżnialnych ciągów można uzysać permutując te elementy? Elementy z tej samej lasy tratujemy jao nierozróżnialne. n! ozn Odpowiedź: n 1!...n! = ( n ) n 1,...,n rozróżnialnych ciągów. Uogólnienie wzoru dwumianowego: (x x ) n = n 1,..., n 0 n n = n ( n n 1,..., n ) x n 1 1 x n

19 Przestawienia Definicja: Przestawieniem nazywamy permutację bez puntów stałych Twierdzenie: Ilość przestawień zbioru n-elementowego wynosi: n! n ( 1) i i=0 i! Dowód: (Zasada włączania i wyłączania) Niech A i1,...,i oznacza zbiór permutacji zbioru {1,... n} o puntach stałych i 1,..., i. Ilość permutacji posiadających punty stałe jest równa:

20 Przestawienia #(A 1 A n ) = #A i1 #A i1,i 2 + #A i1,i 2,i 3 ( 1) n #A 1,...,n (1) i 1,i 2 i 1,i 2,i 3 i 1 Zasadę włączeń/wyłączeń stosujemy, ponieważ zbiory A i i A j nie są rozłączne (ich część wspólna to A ij ) i podobnie dla więszej liczby indesów. Zbiór A i1,...,i ma (n )! elementów (bo permutujemy tylo pozostałe elementy). Liczba taich zbiorów wynosi ( n ), bo na tyle sposobów można wybrać elementy i 1,..., i ze zbioru {1,... n}. Wstawmy te liczby do wzoru (1):

21 Przestawienia n (n 1)! = n i=1 ( 1) i n! i! ( ) n (n 2)! + 2 ( ) ( ) n n (n 3)! ( 1) n (n n)! 3 n Natomiast permutacji bez puntów stałych będzie n! minus ta liczba, czyli n n! + ( 1) i n! i! i=1 n! n = ( 1)0 0! + ( 1) i n! n i! = ( 1) i n! i! i=1 i=0

22 Liczba surjecji Twierdzenie: Liczba surjecji ze zbioru n-elementowego na m-elementowy jest równa ( ) m ( 1) i (m ) n =0 Dowód: Szuamy liczbę funcji ze zbioru {1,... n} w zbiór {1,... m}, tóre nie są surjecjami. Oznaczmy przez A i1,...i zbiór funcji nie przyjmujących wartości i 1,..., i {1,... m}. Moc zbioru A i1,...i jest równa (m ) n, natomiast dla ustalonego zbiorów tych jest ( m). Ilość funcji nie będących surjecjami obliczamy z zasady włączeń/wyłączeń:

23 Liczba surjecji #(A 1 A n ) = #A i1 #A i1,i 2 + #A i1,i 2,i 3 ( 1) n #A 1,...,n i 1 i 1,i 2 i 1,i 2,i 3 ( ) ( ) m m = (m 1) n ( 1) m 1 1 n 1 m 1 ) = m 1 =1 ( 1) ( m (m ) n Żeby dostać liczbę surjecji, od liczby wszystich funcji m n trzeba odjąć powyższy wyni. Liczba surjecji jest równa: ( ) ( ) m 1 m m m ( 1) (m ) n = ( 1) (m ) n =0 =0

24 Rozbicia na podzbiory Definicja: Liczbę rozbić zbioru n-elementowego na sumę rozłącznych niepustych podzbiorów oznaczamy symbolem: { } n Problem: Na ile sposobów można rozbić zbiór n-elementowy na sumę rozłącznych niepustych podzbiorów? { } n 1 Jeżeli zbiór n 1 elementowy można rozbić na { } n 2 niepustych podzbiorów, a n 2 elementowy na, to

25 Rozbicia na podzbiory { n } = { n 1 } + { n 1 1 } (Jeżeli w n 1 pierwszych elementów było podzielonych na 1 podzbiorów, to z n-tego elementu robimy braujący podzbiór. Natomiast jeżeli już n 1 pierwszych elementów było podzielonych na podzbiorów, to doładamy następny element do jednego z podzbiorów) Liczby zdefiniowane taą zależnością reurencyjną nazywają się liczbami Stirlinga II rodzaju. Tworzą one trójąt podobny do trójąta Pascala.

26 Rozbicia na podzbiory n \ Suma liczb w wierszu odpowiada liczbie wszystich rozbić na niepuste podzbiory zbioru n-elementowego. Liczba ta nazywa się n-tą liczbą Bella: { } n n B n = =1

27 Rozbicia na podzbiory Liczby Bella spełniają zależność reurencyjną: ( ) n 1 n 1 B n = =0 B

Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy:

Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy: Matematya dysretna - wyład 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produtu artezjańsiego X Y, tórego elementami są pary uporządowane (x, y), taie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

P k k (n k) = k {O O O} = ; {O O R} =

P k k (n k) = k {O O O} = ; {O O R} = Definicja.5 (Kombinacje bez powtórzeń). Każdy -elementowy podzbiór zbioru A wybrany (w dowolnej olejności) bez zwracania nazywamy ombinacją bez powtórzeń. Twierdzenie.5 (Kombinacje bez powtórzeń). Liczba

Bardziej szczegółowo

Matematyka Dyskretna - zagadnienia

Matematyka Dyskretna - zagadnienia Matematya Dysretna - zagadnienia dr hab. Szymon Żebersi opracował: Miołaj Pietre Semestr letni 206/207 - strona internetowa Zasada inducji matematycznej. Zbiory sończone, podstawowe tożsamości 2. Zasada

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

Podstawowe techniki zliczania obiektów kombinatorycznych. Szufladkowa zasada Dirichleta, Zasada włączeń i wyłączeń.

Podstawowe techniki zliczania obiektów kombinatorycznych. Szufladkowa zasada Dirichleta, Zasada włączeń i wyłączeń. Materiały dydatyczne Mateatya Dysretna (Wyład 5 Podstawowe technii zliczania obietów obinatorycznych. Szufladowa zasada Dirichleta, Zasada włączeń i wyłączeń. Szufladowa Zasada Dirichleta. Jest rzeczą

Bardziej szczegółowo

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy 3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 17 marca 2003 roku

Matematyka Dyskretna. Andrzej Szepietowski. 17 marca 2003 roku Matematya Dysretna Andrzej Szepietowsi 17 marca 2003 rou Rozdział 1 Kombinatorya 1.1 Zasada podwójnego zliczania Zasada podwójnego zliczania jest bardzo prosta. Oto ona: Jeżeli elementy jaiegoś zbioru

Bardziej szczegółowo

Matematyka Dyskretna Zadania

Matematyka Dyskretna Zadania Matematya Dysretna Zadania Jace Cichoń Politechnia Wrocławsa, WPPT Wrocław 015 1 Wstęp 11 Oznaczenia [n] = {1,, n} [] = {X P ( : X = } (x = 1 j=0 (x j, (x = 1 (x + j Zadanie 1 j=0 Poaż za pomocą inducji

Bardziej szczegółowo

KOMBINATORYKA OBIEKTY KOMBINATORYCZNE MATEMATYKA DYSKRETNA (2014/2015)

KOMBINATORYKA OBIEKTY KOMBINATORYCZNE MATEMATYKA DYSKRETNA (2014/2015) MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna malgorzata.sterna@cs.put.poznan.pl www.cs.put.poznan.pl/msterna/ KOMBINATORYKA OBIEKTY KOMBINATORYCZNE TEORIA ZLICZANIA Teoria zliczania

Bardziej szczegółowo

Podstawy rachunku prawdopodobieństwa (przypomnienie)

Podstawy rachunku prawdopodobieństwa (przypomnienie) . Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń

Bardziej szczegółowo

i = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) =

i = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) = Druga zasada inducji matematycznej Niech m będzie liczbą całowitą, niech p(n) będzie ciągiem zdań zdefiniowanych na zbiorze {n Z: n m} oraz niech l będzie nieujemną liczbą całowitą. Jeśli (P) wszystie

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 9A/14 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną

Algebra liniowa z geometrią analityczną WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór

Bardziej szczegółowo

Matematyka Dyskretna, informatyka, 2008/2009, W. Broniowski

Matematyka Dyskretna, informatyka, 2008/2009, W. Broniowski Matematya Dysretna, informatya, 2008/2009, W. Broniowsi Zestaw 2 z częściowymi odpowiedziami (ja toś nie chce, niech nie patrzy! Kombinatorya i rachune prawdopodobieństwa. Z pomocą wzoru Stirlinga dla

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15 Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 10A/15 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi

Bardziej szczegółowo

Analiza B. Paweł Głowacki

Analiza B. Paweł Głowacki Analiza B Paweł Głowaci Pojęcie liczby rzeczywistej uważać będziemy za intuicyjnie oczywiste. Tym niemniej celowe wydaje się przypomnienie i ugruntowanie nietórych fundamentalnych własności liczb rzeczywistych.

Bardziej szczegółowo

Wojciech Kordecki. Matematyka dyskretna. dla informatyków

Wojciech Kordecki. Matematyka dyskretna. dla informatyków Wojciech Kordeci Matematya dysretna dla informatyów Wrocław 2005 Spis treści 1. Relacje, funcje i rozmieszczenia 1 1.1. Zbiory częściowo uporządowane 1 1.2. Funcje i rozmieszczenia 2 1.3. Zadania 4 2.

Bardziej szczegółowo

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś

Bardziej szczegółowo

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady Materiały dydatyczne Matematya Semestr III Wyłady Aademia Morsa w Szczecinie ul. Wały Chrobrego - 70-500 Szczecin WIII RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE PIERWSZEGO RZĘDU. Pojęcia wstępne. Równania różniczowe

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 7/10 Generowanie podzbiorów Weźmy n-elementowy zbiór X={x 1, x 2 x n }. Każdemu podzbiorowi YX przyporządkujemy ciąg binarny b 0 b

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

Wstęp. Kurs w skrócie

Wstęp. Kurs w skrócie Mariola Zalewska Zakład Metod Matematycznych i Statystycznych Zarządzania Wydział Zarządzania Uniwersystet Warszawski I rok DSM Rachunek Prawdopodobieństwa Wstęp Kombinatoryka Niezależność zdarzeń, Twierdzenie

Bardziej szczegółowo

Podstawy metod probabilistycznych. dr Adam Kiersztyn

Podstawy metod probabilistycznych. dr Adam Kiersztyn Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa

Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Spotkanie olimpijskie nr 5 16 lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka Jadwiga Słowik Reguła mnożenia Jeśli wybór polega na podjęciu k decyzji, przy czym pierwszą decyzję możemy

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Informacje

Bardziej szczegółowo

2 Podstawowe obiekty kombinatoryczne

2 Podstawowe obiekty kombinatoryczne 2 Podstawowe obiety ombinatoryczne Oznaczenia: N {0, 1, 2,... } zbiór liczb naturalnych. Dla n N przyjmujemy [n] {1, 2,..., n}. W szczególno±ci [0] jest zbiorem pustym. Je±li A jest zbiorem so«czonym,

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

Elementy kombinatoryki

Elementy kombinatoryki Elementy kombinatoryki Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 04 (Wykłady z matematyki dyskretnej) Elementy kombinatoryki 04 1 / 59 Permutacje Definicja. Permutacja

Bardziej szczegółowo

KOMBINATORYKA. Problem przydziału prac

KOMBINATORYKA. Problem przydziału prac KOMBINATORYKA Dział matematyki zajmujący się badaniem różnych możliwych zestawień i ugrupowań, jakie można tworzyć z dowolnego zbioru skończonego. Zbiory skończone, najczęściej wraz z pewną relacją obiekty

Bardziej szczegółowo

Ciągi Podzbiory Symbol Newtona Zasada szufladkowa Dirichleta Zasada włączania i wyłączania. Ilość najkrótszych dróg. Kombinatoryka. Magdalena Lemańska

Ciągi Podzbiory Symbol Newtona Zasada szufladkowa Dirichleta Zasada włączania i wyłączania. Ilość najkrótszych dróg. Kombinatoryka. Magdalena Lemańska Kombinatoryka Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Aspekty kombinatoryki Victor Bryant

Bardziej szczegółowo

Równania rekurencyjne 1 RÓWNANIA REKURENCYJNE

Równania rekurencyjne 1 RÓWNANIA REKURENCYJNE Równania reurencyjne 1 RÓWNANIA REKURENCYJNE 1 Ciągi arytmetyczne i geometryczne Z najprostszymi równaniami reurencyjnymi zetnęliśmy się już w szole Zacznijmy od przypomnienia definicji ciągu arytmetycznego

Bardziej szczegółowo

KOLOKWIUM Z ALGEBRY I R

KOLOKWIUM Z ALGEBRY I R Instrucje: Każde zadanie jest za 4 puntów. Rozwi azanie ażdego zadania musi znajdować siȩ na osobnej artce oraz być napisane starannie i czytelnie. W nag lówu ażdego rozwi azania musz a znajdować siȩ dane

Bardziej szczegółowo

Metody probabilistyczne Rozwiązania zadań

Metody probabilistyczne Rozwiązania zadań Metody robabilistyczne Rozwiązania zadań 6. Momenty zmiennych losowych 8.11.2018 Zadanie 1. Poaż, że jeśli X Bn, to EX n. Odowiedź: X rzyjmuje wartości w zbiorze {0, 1,..., n} z rawdoodobieństwami zadanymi

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Inducja matematyczna Inducja jest taą metodą rozumowania, za pomocą tórej od tezy szczegółowej dochodzimy do tezy ogólnej. Przyład 1 (o zanurzaniu ciał w wodzie) 1. Kawałe żelaza, tóry zanurzyłem w wodzie,

Bardziej szczegółowo

Colloquium 3, Grupa A

Colloquium 3, Grupa A Colloquium 3, Grupa A 1. Z zasobów obliczeniowych pewnego serwera orzysta dwóch użytowniów. Każdy z nich wysyła do serwera zawsze trzy programy naraz. Użytowni czea, aż serwer wyona obliczenia dotyczące

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe

Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe Kombinatoryka Jerzy Rutkowski 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru A nazywamy dowolną funkcję różnowartościową f : {1,..., n} A. Innymi słowy:

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 10/15 WARIACJE Liczba wariacji, czyli różnych ciągów k-elementowych o wyrazach ze zbioru n-elementowego, wynosi n k. Ciąg k-elementowy,

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

3 k a 2k + 3 k b 2k = φ((a k ) k=1 ) + φ((b k) k=1 ). a 2k p 3 q (1 3 q ) 1 (a k ) k=1 p,

3 k a 2k + 3 k b 2k = φ((a k ) k=1 ) + φ((b k) k=1 ). a 2k p 3 q (1 3 q ) 1 (a k ) k=1 p, Zadanie 1. Sprawdzić, czy formuła φa ) ) = 3 a 2 zadaje funcjonał liniowy na l p dla p [1, ] i na c, jeśli ta, to czy zadaje funcjonał ciągły, i jeśli ta, policzyć normę. Dowód. Sprawdzam liniowość: φλa

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 6/10 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery Reprezentacje grup puntowych związi pomiędzy h i n a jednoznacznie wyznaczają wymiary wszystich reprezentacji grup puntowych, a związi ortogonalności jednoznacznie wyznaczają ich charatery oznaczenia:

Bardziej szczegółowo

Kody Huffmana oraz entropia przestrzeni produktowej. Zuzanna Kalicińska. 1 maja 2004

Kody Huffmana oraz entropia przestrzeni produktowej. Zuzanna Kalicińska. 1 maja 2004 Kody uffmana oraz entroia rzestrzeni rodutowej Zuzanna Kalicińsa maja 4 Otymalny od bezrefisowy Definicja. Kod nad alfabetem { 0, }, w tórym rerezentacja żadnego znau nie jest refisem rerezentacji innego

Bardziej szczegółowo

POZIOMY WYMAGAŃ EDUKACYJNYCH: K ocena dopuszczająca (2) P ocena dostateczna (3) R ocena dobra (4) D ocena bardzo dobra (5) W ocena celująca (6)

POZIOMY WYMAGAŃ EDUKACYJNYCH: K ocena dopuszczająca (2) P ocena dostateczna (3) R ocena dobra (4) D ocena bardzo dobra (5) W ocena celująca (6) YMAGANIA EDUACYJNE MATEMATYA LASA 3LO ZARES ROZSZERZONY OZIOMY YMAGAŃ EDUACYJNYCH: ocena dopuszczająca (2) ocena dostateczna (3) R ocena dobra (4) D ocena bardzo dobra (5) ocena celująca (6) Temat lekcji

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych i ich charakterystyki

Wybrane rozkłady zmiennych losowych i ich charakterystyki Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15 Ćwiczenia 0.10.014 Powtórka przed sprawdzianem nr 1. Wzory skróconego mnożenia dwumian Newtona procenty. Postęp arytmetyczny i geometryczny. Ćwiczenia 138.10.014 Sprawdzian nr 1: 1.10.014 godz. 8:15-8:40

Bardziej szczegółowo

Grupowanie sekwencji czasowych

Grupowanie sekwencji czasowych BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 3, 006 Grupowanie sewencji czasowych Tomasz PAŁYS Załad Automatyi, Instytut Teleinformatyi i Automatyi WAT, ul. Kalisiego, 00-908 Warszawa STRESZCZENIE: W artyule

Bardziej szczegółowo

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 8 Funkcje 8.1 Pojęcie relacji 8.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu kartezjańskiego

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a) ZADANIA - ZESTAW 1 Zadanie 11 Rzucamy trzy razy monetą A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie Oreślić zbiór zdarzeń elementarnych Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

Matematyczne Podstawy Kognitywistyki

Matematyczne Podstawy Kognitywistyki Matematyczne Podstawy Kognitywistyki Dorota Leszczyńska-Jasion Kombinatoryka, ci agi liczbowe, skończone przestrzenie probabilistyczne Przykłady zagadnień kombinatorycznych Rozważmy układ n miast o bardzo

Bardziej szczegółowo

Grupy, pierścienie i ciała

Grupy, pierścienie i ciała Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3 Wymagania egzaminacyjne z matematyki. lasa 3C. MATeMATyka. Nowa Era. y są ze sobą ściśle powiązane ( + P + R + D + W), stanowiąc ocenę szkolną, i tak: ocenę dopuszczającą (2) otrzymuje uczeń, który spełnił

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,

Bardziej szczegółowo

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz Temat: Programowanie wieloryterialne. Ujęcie dysretne.. Problem programowania wieloryterialnego. Z programowaniem wieloryterialnym mamy do czynienia, gdy w problemie decyzyjnym występuje więcej niż jedno

Bardziej szczegółowo

Sygnały stochastyczne

Sygnały stochastyczne Sygnały stochastyczne Zmienne losowe E zbiór zdarzeń elementarnych (zbiór możliwych wyniów esperymentu) e E zdarzenie elementarne (wyni esperymentu) B zbiór wybranych podzbiorów zbioru E β B zdarzenie

Bardziej szczegółowo

Plan wynikowy klasa 3. Zakres podstawowy

Plan wynikowy klasa 3. Zakres podstawowy Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa

Wstęp do rachunku prawdopodobieństwa wykład : Wstęp do rachunku prawdopodobieństwa STTYSTYK OPISOW Wanda Olech Katedra Genetyki i Ochrony Zwierząt Statystyka zajmuje się Zjawiskami losowymi - które bada przez doświadczenie U podstaw współczesnej

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające;

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław OŁOŃSI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA ZBIORY Z POWTÓRZENIAMI W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie. Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze X = { x,..., x n } - zbiór k,..., k n - krotności

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Kombinatoryka. Reguła dodawania. Reguła dodawania

Kombinatoryka. Reguła dodawania. Reguła dodawania Kombinatoryka Dział matematyki, który zajmuje się obliczaniem liczebności zbiorów bądź długości ciągów, które łączą w określony sposób elementy należące do skończonego zbioru (teoria zliczania). W jakich

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej. Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Algebra. Jakub Maksymiuk. lato 2018/19

Algebra. Jakub Maksymiuk. lato 2018/19 Algebra Jakub Maksymiuk lato 2018/19 Algebra W1/0 Zbiory z działaniami Podstawowe własności Potęgi Tabelka działania Przykłady Grupa symetryczna Algebra W1/1 Podstawowe własności Definicja: Działaniem

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe

Bardziej szczegółowo

ĆWICZENIA nr 1 - KOMBINATORYKA - czyli sztuka liczenia autor: mgr inż. Agnieszka Herczak

ĆWICZENIA nr 1 - KOMBINATORYKA - czyli sztuka liczenia autor: mgr inż. Agnieszka Herczak ĆWCZENA nr 1 - KOMBNATORYKA - czyli sztuka liczenia autor: mgr inż. Agnieszka Herczak. Reguła mnożenia Jeżeli pewien wybór zależy od skończenie wielu decyzji, przy czym podejmując pierwszą mamy k 1 możliwości

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005 RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM. DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:

Bardziej szczegółowo

FUNKCJE. (odwzorowania) Funkcje 1

FUNKCJE. (odwzorowania) Funkcje 1 FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru

Bardziej szczegółowo

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski WYKŁAD 1 Witold Bednorz, Paweł Wolff Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Wprowadzenie Gry hazardowe Wprowadzenie Gry hazardowe Klasyczna definicja prawdopodobieństwa.

Bardziej szczegółowo

Zofia MIECHOWICZ, Zielona Góra. v 1. v 2

Zofia MIECHOWICZ, Zielona Góra. v 1. v 2 Jest to zapis odczytu wygłoszonego na XLVIII Szole atematyi Poglądowej, Sojarzenia i analogie, Otwoc Śródborów, styczeń 22. W przestrzeni Zofia IECHOWICZ, Zielona Góra Naturalna analogia? Nie mylił się,

Bardziej szczegółowo

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Sławomir Jemielity Zasada inducji matematycznej Są różne sformułowania tej zasady, mniej lub bardziej abstracyjne My będziemy się posługiwać taą: Niech T(n) oznacza twierdzenie dotyczące liczby naturalnej

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl 9/14 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa

Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa 25 marca 209 Zadanie. W urnie jest b kul białych i c kul czarnych. Losujemy n kul bez zwracania. Jakie jest prawdopodobieństwo, że pierwsza kula

Bardziej szczegółowo

7. Klasyfikacja skończenie generowanych grup przemiennych

7. Klasyfikacja skończenie generowanych grup przemiennych 32 7 Klasyfiacja sończenie generowanych grup przemiennych W tym rozdziale zajmiemy sie sończenie generowanymi grupami przemiennymi Zgodnie z tradycja be dziemy sie pos lugiwać zapisem addytywnym Dzia lanie

Bardziej szczegółowo

Wykład 4. Zmienne losowe i ich rozkłady

Wykład 4. Zmienne losowe i ich rozkłady Wstęp do probabilistyi i statystyi Wyład. Zmienne losowe i ich rozłady dr hab.inż. Katarzyna Zarzewsa, prof.agh, Katedra Eletronii, WIET AGH Wstęp do probabilistyi i statystyi. wyład Plan: Pojęcie zmiennej

Bardziej szczegółowo

020 Liczby rzeczywiste

020 Liczby rzeczywiste 020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie

Bardziej szczegółowo