Sterowanie rozmyte. mgr inż. Piotr Fiertek p. 544
|
|
- Jerzy Leszczyński
- 5 lat temu
- Przeglądów:
Transkrypt
1 Sterowanie rozmte mgr inż. Piotr iertek p. 544
2 Literatura do wkładu: D. Driankov H. Hellendoorn M. einfrank Wprowadzenie do sterowania ozmtego Wdawnictwo Naukowo-Techniczne Warszawa 996 Piegat A.: Modelowanie i sterowanie rozmte Akademicka Oficna Wdawnicza EIT Warszawa 999r. D. utkowska M. Piliński L. utkowski Sieci neuronowe algortm genetczne i sstem rozmte WN PWN 997 Yager onald.: Podstaw modelowania i sterowania rozmtego Warszawa: Wdawnictwo Naukowo-Techniczne 995
3 Co to jest logika rozmta? Ocenę stanów rzecz wkonuje się w pewnej skali stopniowania: mał duż wielki niski wsoki bardzo wsoki woln średnio woln szbki itd. Preczjne i istotne komunikat w rzeczwistm świecie
4 Logika klasczna kontra logika rozmta - Klasczna logika bazuje na dwóch wartościach reprezentowanch najczęściej przez i lub prawda i fałsz. ranica międz nimi jest jednoznacznie określona i niezmienna. Przkład: Krzsiek jest wsoki bo ma 85cm wzrostu. W pokoju jest ciepło bo temperatura wnosi 24 stopnie Celsjusza. - Logika rozmta stanowi rozszerzenie klascznego rozumowania na rozumowanie bliższe ludzkiemu rozumieniu pojęć. Tzn. Wprowadza ona wartości pomiędz standardowe i. rozmwa granice pomiędz nimi dając możliwość zaistnienia wartościom z pomiędz tego przedziału. wsokość wsokość nie wsoki. wsoki. raczej niezbt wsoki.2 raczej wsoki.75
5 Historia - Dwuwartościowa logika Arstotelesa: prawda fałsz. - Platon zauważł że istnieje coś pomiędz fałszem i prawdą. - Jan Łukasiewicz 93 r. pracował nad nieostrością stwierdzeń: wsoki star gorąc. Wprowadził zakres prawdziwości z przedziału od do. Wartości te prezentował prawdopodobieństwo prawdziwości danego stwierdzenia. Odkrł sstem logik wielowartościowch. - Ma Black 937 r. wprowadził pierwsz bardzo prost zbiór rozmt i zars wkonwanch na nich operacji. - Lotfi Zadeh 965 r. rozwinął teorie prawdopodobieństwa do informacji rozmtej w formaln sstem logiki matematcznej. Wprowadził zastosowanie dla terminów z jęzka naturalnego. Lotfi A. Zadeh 24
6 Definicje - relacje - elacja określona na zbiorze - elacja określona na zbiorach Y Y - elacja odwrotna na zbiorach i Y odwrotna do { } Y Y : - Złożenie relacji Y Z Y Złożenie relacji superpozcja z Z z Z Y : o
7 ozważm relację. elację nazwam: - relacja pusta - relacja totalna - relacja identczności - przekątna kwadratu { } : - relacja zwrotna - relacja smetrczna - relacja spójna
8 - relacja przechodnia tranztwna z z z o - relacja prawostronnie jednoznaczna z z z o - relacja lewostronnie jednoznaczna z z z o - relacja identtwna o
9 - Porządek liniow jest porządkiem liniowm jeśli jest relacją zwrotną identtwną przechodnią i spójną - relacja równoważności jest równoważnością jeśli jest relacją zwrotną smetrczną i przechodnią. elacja równoważności dzieli zbiór na klas Klasa jest to zbiór : Obraz Odwzorowanie zbioru w zbiór Y - dowolna relacja prawostronnie jednoznaczna Y Def. Obrazu niech A - odwzorowanie w Y A Y : A Przeciwobraz Def. Przeciwobrazu niech B Y - odwzorowanie w Y Y B : B
10 Zbior rozmte Zbiór rozmt jest uporządkowaną trójką [ ] gdzie: - dziedzina domena zbiór odniesienia zbiór rozważań - funkcja prznależności przepis funkcjn dla elementów z [ ] : [ ] - przedział od do domknięt przedział jednostkow w przkład Zbiór ludzi wsokich W [] W W przkład 2 Dla zbioru przeliczalnego N można zapisać i i nie jest to dodawanie artmetczne!!! jeśli nie dodaje się jej i i raczej niezbt wsoki.2 raczej wsoki.75 Przkład zbioru dobra ocena {23456} dobra ocena dobra ocena
11 Def. Wsokość zbioru rozmtego gdzie jest rodziną zbiorów rozmtch na. hgh sup kres górn dla skończonego zbioru hgh ma Def. Zbiór rozmt nazwam normalnm gd hgh Def. Def. jest pustm zbiorem rozmtm gd : Normalizacja niepustego zbioru N N hgh
12 - Nośnik zbioru rozmtego baza zbioru rozmtego suport { : } sup sup > - Jądro zbioru rozmtego core { : } core core - α -przekrój zbioru rozmtego α -cięcie α -cut { : α} α α α jądro core α -przekrój α baza sup
13 Def. Inkluzja zbiorów rozmtch jest podzbiorem co zapisujem są równe jeśli Tw. º χ χ 2º
14 Def. Przestrzeń jest niespójna jeśli jest sumą dwóch niespójnch rozłącznch zbiorów otwartch i 2 są otwarte w W przeciwnm wpadku jest przestrzenią spójną. Def. Zbioru wpukłego A jest zbiorem wpukłm : A [ ] A gdzie [ ] oznacza odcinek łącząc punkt i Tw. A : A jest wpukł A jests pójn sunki: wikipedia.org
15 Def. jest zbiorem wpukłm jeśli lub λ [ ] λ + λ min { } min { } 2 3 Tw. jest zbiorem wpukłm wszstkie α - przekroje są zbiorami wpukłmi w
16 Podstawowe działania na zbiorach rozmtch Def. działania dwuargumentowe g : skrót notacjn: g [ ] 2 [ ] : Def. Zbiorem identcznościowm danego działania g : nazwam taki zbiór rozmt A dla którego zachodzi g A g A Def. Działanie : [ ] [ ] [ ] g jest działaniem idempotentnm jeżeli a [ ] g a a a
17 Def. Odwzorowanie : [ ] [ ] [ ] T jest t-normą jeżeli posiada następujące własności: a [ ] T a a jest elementem jednostkowm T 2 [ ] a b c ; a b T a c T b c monotoniczność T 3 4 [ ] a b [ ] a b c T a b T b a T a T b c T T a b c przemienność T łączność T Dla dowolnego T zachodzi: T T T T
18 Def. Odwzorowanie : [ ] [ ] [ ] S jest s-normą t -konormą jeżeli posiada następujące własności: a [ ] S a a jest elementem jednostkowm S [ ] a b c ; a b a b [ ] a b c S a c S b c monotoniczność S S a b S b a przemienność S [ ] S a S b c S S a b c łączność S Dla dowolnego S zachodzi S T S S
19 Komentarz: Dowolna t-norma T oraz dowolna s-norma S są niemalejącmi monotonicznmi odwzorowaniami ze względu na argument: [ ] [ ] d b S c a S d b T c a T d c b a d c b a d c b a d c b a prz b a oraz d c zachodzi bowiem: d b S c b S c a S d b T c b T c a T Zbiorem identcznościowm dla t-norm jest zbiór rozmt χ χ zaś zbiorem identcznościowm dla s-norm jest zbiór rozmt χ χ.
20 t-normę T : [ ] [ ] [ ] interpretować można jako uogólnienie działania ilocznu przekroju - smbol t-norm T a b a b przekrój zbiorów rozmtch smbole: A { a b} T a b min min { } B min A B A B A B algebraiczn iloczn zbiorów rozmtch oznaczenie: ~ A T prod a b a b B A B A B A B ograniczon iloczn Łukasiewicza oznaczenie: T a b ma{ a b -} A B Łuk + { + } ma A B s-normę S : [ ] [ ] [ ] interpretować można jako uogólnienie działania sum unii - smbol s-norm S a b a b unia zbiorów rozmtch smbole: + A { a b} S a b ma ma { } B ma A B A B A B algebraiczna suma zbiorów rozmtch oznaczenie: + ~ S sum a b a + b ab + A B A B A ograniczona suma suma Łukasiewicza oznaczenie: + S a b min Łuk + A B { a b} { } min A + B B
21 Podstawowe działania na zbiorach rozmtch - kontnuacja Def. Negacją uzupełnieniem g : [ ] [ ] : nazwam odwzorowanie które posiada następujące własności: 2 3 a b[ a b a[ ] a b ] a a a Uzupełnienie nazwam ścisłm gd [ ] [ ] silnie monotonicznm oraz ciągłm. : jest odwzorowaniem Def. Uzupełnieniem zbioru rozmtego jest taki zbiór rozmt dla którego zachodzi Def. Uzupełnieniem naturalnm zbioru rozmtego jest zbiór rozmt dla którego zachodzi
22 Prawa De Morgana dla zbiorów rozmtch Def. t-norma T oraz s-norma S stanowią parę dualną sprzężoną T S względem uzupełnienia : [ ] [ ] jeżeli a b 2 [ ] S a b T a b S a b T a b Tw. Dla par dualnej T S zachodzą prawa De Morgana dla zbiorów rozmtch T 2 2 Tw. Niech [ ] [ ] S 2 S T 2 2 : będzie naturalnm uzupełnieniem zdefiniowanm jako a a a[ ] Jeżeli T : [ ] [ ] [ ] jest t-normą to działanie S : [ ] [ ] [ ] zdefiniowane jako S a b T a b a b[ ] jest s-normą dualną wobec T względem naturalnego. 2 Jeżeli S : [ ] [ ] [ ] jest s-normą to działanie T : [ ] [ ] [ ] zdefiniowane jako T a b S a b a b[ ] jest t-normą dualną wobec S względem naturalnego.
23 Przegląd różnch par dualnch Def. Sparametrzowaną rodziną działań T W S W λ λ λ zdefiniowanch dla a b [ ] [ ] w następując sposób T W λ S W λ a + b -+ λab a b ma + λ λab a b min a + b + λ nazwam rodziną t-norm Webera dla parametru λ. Para operatorów Webera T W S W W T λ oraz s-norm W S λ λ λ jest parą operatorów dualnch ze względu na naturalne uzupełnienie. Jest to uogólnienie operatorów Łukasiewicza zauważm że: - dla λ otrzmujem W W S T S + T Łuk Łuk - dla λ otrzmujem - dla W W T S T S ~ ~ + prod sum T λ otrzmujem parę W S W oznaczaną także jako ˆ + ˆ drastic ilocznu ˆ : [ ] [ ] [ ] a a ˆ b b gd gd gd ˆ złożonego z ostrego b a a < b < oraz ostrej sum + : [ ] [ ] [ ] a a + ˆ b b gd gd gd b a a > b >
24 Def. odzina operatorów Hamachera Sparametrzowaną rodzinę działań dwuargumentowch T H S H γ γ γ > zdefiniowanm dla a b [ ] [ ] w następując sposób T H γ S H γ ab a b γ + γ a + b ab a + b ab γ ab a b γ ab nazwam rodziną t-norm H T γ oraz s-norm H S γ Hamachera dla parametru γ. Def. odzina operatorów Yagera Y Y Sparametrzowaną rodzinę działań dwuargumentowch S T p p p > zdefiniowanm dla a b [ ] [ ] w następując sposób T S Y p Y p a b min a b min p p P {[ a + b ] } p p p a + b { } nazwam rodziną t-norm Komentarz: Dla H T γ oraz s-norm Y Y W W p S T S ˆ + ˆ Tp p p H S γ Hamachera dla parametru γ.
25 Def. odzina operatorów Sugeno Sparametrzowaną rodzinę działań dwuargumentowch T S S S λ λ λ > zdefiniowanm dla a b [ ] [ ] w następując sposób T S S λ S λ a b a b ma min { a + b + λ λab } { a + b + λab } nazwam rodziną t-norm S T λ oraz s-norm S S λ Sugeno dla parametru λ. Komentarz: Dla S S λ S T S + T prod sum ~ ~ Tw. Niech T : [ ] [ ] [ ] oznacza t-normę zaś S : [ ] [ ] [ ] oznacza s-normę wówczas dla a b [ ] [ ] zachodzi T S W ma a b T a b T min a b S a b S W a b a b
26 Def. t-norma T nazwana jest archimedesową t-normą jeżeli: : [ ] [ ] [ ] T jest odwzorowaniem ciągłm 2 T a a < a a Tw. O reprezentacji część Odwzorowanie : [ ] [ ] [ ] T jest archimedesową t-normą wted i tlko wted gd istnieje taka ściśle malejąca funkcja ciągła f : [ ] [ ] dla której zachodzi: prz czm a b [ ] 2 f T a b f f f a + f b f oznacza następująco zdefiniowaną funkcję pseudoodwrotną do f [ ] : f dla dla [ f ] [ f ] [ f ] f Jeśli f wówczas T a b jest ściśle malejącm odwzorowaniem dla obu argumentów. [ f ]
27 Def. s-norma S nazwana jest archimedesową s-normą jeżeli: : [ ] [ ] [ ] S jest odwzorowaniem ciągłm 2 T a a > a a Tw. O reprezentacji część 2 Odwzorowanie : [ ] [ ] [ ] S jest archimedesową s-normą wted i tlko wted gd istnieje taka ściśle malejąca funkcja ciągła g : [ ] [ ] dla której zachodzi: prz czm g a b [ ] 2 g S a b g g a + g b g oznacza następująco zdefiniowaną funkcję pseudoodwrotną do g [ ] : g dla dla [ g ] [ g ] g Jeśli g wówczas S a b jest ściśle rosnącm odwzorowaniem dla obu argumentów.
28 Przkładowe działania na zbiorach rozmtch Działania jednoargumentowe na zbiorze opisanm funkcją prznależności : - k-ta potęga k zbioru rozmtego k k.8 - koncentracja zbioru rozmtego con con 2 - rozcieńczenie zbioru rozmtego dil dil 2 / 2 / 2 Wnik wkonania operacji koncentracji zbiorów rozmtch unkcje prznależności przkładowch zbiorów rozmtch Wnik wkonania operacji rozcieńczenia zbiorów rozmtch dil con
29 - intensfikacja kontrastu zbioru rozmtego int int 2 / 2 dla dla [ ] [ ] : < 5 : lub int dla dla [ ] [ ] : < 5 : A. Piegat Modelowanie i sterowanie rozmte
30 - zmniejszenie kontrastu zbioru rozmtego blr blr / 2 2 dla dla [ ] [ ] : : < 5 5 lub blr / 2 / 2 / 2 / 2 dla dla [ ] [ ] : < 5 : 5 A. Piegat Modelowanie i sterowanie rozmte
31 - unia + zbiorów rozmtch ma { } przekrój zbiorów rozmtch min { }
32 - algebraiczna suma ~ + zbiorów rozmtch + ~ algebraiczn iloczn ~ zbiorów rozmtch ~
33 - ograniczona suma + zbiorów rozmtch + min + + { } ograniczon iloczn zbiorów rozmtch + ma { }
34 - rozłączna suma zbiorów rozmtch + ma + [ ] [ ] { min{ } min{ } różnica zbiorów rozmtch min { }
35 - smetrczna różnica zbiorów rozmtch ograniczona różnica ˆ zbiorów rozmtch ma { } ˆ
ELEMENTY TEORII ZBIORÓW ROZMYTYCH
ELEMENTY TEORII ZBIORÓW ROZMYTYCH OPRACOWAŁ: M. KWIESIELEWICZ POJĘCIA NIEPRECYZYJNE ODDZIAŁYWANIA CZŁOWIEK-OBIEKT TECHNICZNY OTOCZENIE (Hoang 990: człowieka na otoczenie, np.: ergonomiczna konstrukcja
Bardziej szczegółowo5. Relacja prawostronnie jednoznaczna (jednoznaczna, inaczej: jest funkcją), jeżeli
ELJE EF. elacją w produkcie podzbiór n. n (relacją n-argumentową) zwam dowoln EF. elację zbioru. EF. elację zwam relacją międz elementami zbioru a elementami 2 zwam relacją w () zbiorze. EF. la dowolnej
Bardziej szczegółowo1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Bardziej szczegółowoJest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.
Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"
Bardziej szczegółowoWarsztat pracy matematyka
Warsztat prac matematka Izabela Bondecka-Krzkowska Marcin Borkowski Jęzk matematki Teoria Jednm z podstawowch pojęc matematki jest pojęcie zbioru. Teorię opisującą zbior nazwa sie teorią mnogości. Definicja
Bardziej szczegółowoMatematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
Bardziej szczegółowoPodstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 9 Relacje 9.1 Podstawowe pojęcia 9.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu
Bardziej szczegółowo14. Grupy, pierścienie i ciała.
4. Grup, pierścienie i ciała. Definicja : Zbiór A nazwam grupą jeśli jest wposaŝon w działanie wewnętrzne łączne, jeśli to działanie posiada element neutraln i kaŝd element zbioru A posiada element odwrotn.
Bardziej szczegółowoWstęp do Sztucznej Inteligencji: Laboratorium Sterownik rozmyty
Wstęp do Sztucznej Inteligencji: Laboratorium Sterowni rozmt Zbior rozmte pozwalają w sposób usstematzowan modelować pojęcia niepreczjne, jaimi ludzie posługują się na co dzień. Przładem może bć wrażenie
Bardziej szczegółowo1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Bardziej szczegółowo3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.
WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja
Bardziej szczegółowoElementy logiki matematycznej
Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w
Bardziej szczegółowoDEFINICJA. Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B.
RELACJE Relacje 1 DEFINICJA Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B. Relacje 2 Przykład 1 Wróćmy do przykładu rozważanego
Bardziej szczegółowoTechnologie i systemy oparte na logice rozmytej
Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie
Bardziej szczegółowoZasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.
Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0
Bardziej szczegółowoZbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
Bardziej szczegółowoRELACJE I ODWZOROWANIA
RELACJE I ODWZOROWANIA Definicja. Dwuargumentową relacją określoną w iloczynie kartezjańskim X Y, X Y nazywamy uporządkowaną trójkę R = ( X, grr, Y ), gdzie grr X Y. Zbiór X nazywamy naddziedziną relacji.
Bardziej szczegółowoWektory. P. F. Góra. rok akademicki
Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.
Bardziej szczegółowoV JURAJSKI TURNIEJ MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM FINAŁ 14 maja 2005 r.
V JURAJSKI TURNIEJ MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM FINAŁ 4 maja 005 r. Przecztaj uważnie poniższą instrukcję: Test składa się z dwóch części. Pierwsza część zawiera 0 zadań wielokrotnego wboru. Tlko
Bardziej szczegółowodomykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Bardziej szczegółowoI. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne
Bardziej szczegółowoRelacje. opracował Maciej Grzesiak. 17 października 2011
Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla
Bardziej szczegółowoMetalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM
Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie
Bardziej szczegółowoF t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Bardziej szczegółowoProblemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonych przypadkach daje się opisać tylko w sposób nieprecyzyjny, np.
ZBIORY ROZMYTE Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonyc przypadkac daje się opisać tylko w sposób nieprecyzyjny, np. W dużym mieście, powinien istnieć regionalny port
Bardziej szczegółowo020 Liczby rzeczywiste
020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie
Bardziej szczegółowoPodstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 8 Funkcje 8.1 Pojęcie relacji 8.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu kartezjańskiego
Bardziej szczegółowoRekurencyjna przeliczalność
Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne
Bardziej szczegółowo1. Funkcje monotoniczne, wahanie funkcji.
1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.
Bardziej szczegółowo2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
Bardziej szczegółowoTeoria ciała stałego Cz. I
Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3
Bardziej szczegółowo1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.
Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze
Bardziej szczegółowoW pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się
1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania
Bardziej szczegółowoFUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
Bardziej szczegółowo- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S.
1 Zbiór potęgowy - Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. - Dowolny podzbiór R zbioru 2 S nazywa się rodziną zbiorów względem S. - Jeśli S jest n-elementowym zbiorem,
Bardziej szczegółowoUzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Bardziej szczegółowoZ funkcji zdaniowej x + 3 = 7 można otrzymać zdania w dwojaki sposób:
Z funkcji zdaniowej + 3 = 7 można otrzmać zdania w dwojaki sposób: podstawiając w tej funkcji zdaniowej za stałe będące nazwami liczb np. 4 2 itp. poprzedzając tę funkcję zdaniową zwrotami: dla każdego
Bardziej szczegółowoUwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.
Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność
Bardziej szczegółowo1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14
Wstęp do matematyki Matematyka, I rok. Tomasz Połacik Spis treści 1 Logika................................. 1 2 Zbiory................................. 7 3 Pewnik wyboru............................ 10
Bardziej szczegółowolim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów
9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt
Bardziej szczegółowoSIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Bardziej szczegółowoWstęp do Techniki Cyfrowej... Algebra Boole a
Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w
Bardziej szczegółowoZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE
SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna
Bardziej szczegółowoRachunek różniczkowy funkcji jednej zmiennej
Rachunek różniczkow funkcji jednej zmiennej wkład z MATEMATYKI Budownictwo, studia niestacjonarne sem. I, rok ak. 2008/2009 Katedra Matematki Wdział Informatki Politechnika Białostocka 1 Iloraz różnicow
Bardziej szczegółowo1. Elementy (abstrakcyjnej) teorii grup
1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1
Bardziej szczegółowoPochodna funkcji wykład 5
Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren
Bardziej szczegółowoSTANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.
METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI
Bardziej szczegółowo5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
Bardziej szczegółowoRównoliczność zbiorów
Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność
Bardziej szczegółowoLogika Stosowana. Wykład 5 - Zbiory i logiki rozmyte Część 1. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 5 - Zbiory i logiki rozmyte Część 1 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 36 Plan
Bardziej szczegółowoReprezentacja rozmyta - zastosowania logiki rozmytej
17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych
Bardziej szczegółowoWYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte)
WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) Motywacje:! przezwyciężenie wad tradycyjnych algorytmów komputerowych, które zawodzą zwłaszcza w sytuacjach, w których człowiek
Bardziej szczegółowoLogika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S.
Logika binarna Logika binarna zajmuje się zmiennymi mogącymi przyjmować dwie wartości dyskretne oraz operacjami mającymi znaczenie logiczne. Dwie wartości jakie mogą te zmienne przyjmować noszą przy tym
Bardziej szczegółowoLogika klasyczna i rozmyta. Rozmyte złożenie relacji (ang. fuzzy composition) Złożenie relacji (ang. composition)
Złożenie relacji ang. compoition) Niech X Y, Y Z. Ptanie: X Z? Cz można znaleźć taą relację, tóra wiąże te ame element z X, tóre zawiera z tmi ammi elementami z Z, tóre zawiera? Czli cz zuam X Z. Przład
Bardziej szczegółowoA i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
Bardziej szczegółowoWykłady z Matematyki Dyskretnej
Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Informacje
Bardziej szczegółowoBOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH
BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH WSTĘP Zbiór liczb całkowitych można definiować na różne sposoby. Jednym ze sposobów określania zbioru liczb całkowitych jest
Bardziej szczegółowoRACHUNEK ZBIORÓW 5 RELACJE
RELACJE Niech X i Y są dowolnymi zbiorami. Układ ich elementów, oznaczony symbolem x,y (lub też (x,y) ), gdzie x X i y Y, nazywamy parą uporządkowaną o poprzedniku x i następniku y. a,b b,a b,a b,a,a (o
Bardziej szczegółowoCiągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
Bardziej szczegółowoKurs logiki rozmytej. Wojciech Szybisty
Kurs logiki rozmytej Wojciech Szybisty 2009 Spis treści 1 Co to jest logika rozmyta 3 1.1 Podstawy teorii zbiorów rozmytych........................ 3 1.2 Historia.......................................
Bardziej szczegółowoRodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
Bardziej szczegółowoZasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
Bardziej szczegółowoWykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.
Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób
Bardziej szczegółowoZadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
Bardziej szczegółowoRysunek 1-1. Przykładowy zbiór klasyczny (nierozmyty) oraz jego funkcja przynale żności.
Podstaw logiki rozmtej i regulatorów rozmtch. Zbiór rozmt Pojęcie zbioru rozmtego zostało wprowadzone przez L. A. Zadeha w 965. Celem wprowadzenia tego pojęcia bła chęć modelowania procesów złożonch, w
Bardziej szczegółowoLogika dla socjologów Część 3: Elementy teorii zbiorów i relacji
Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zbiory 2 Pary uporządkowane 3 Relacje Zbiory dystrybutywne
Bardziej szczegółowo1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
Bardziej szczegółowoG. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie
Bardziej szczegółowoCzęść wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B:
Zbiory 1 Rozważmy dowolne dwa zbiory A i B. Suma A B składa się z wszystkich elementów, które należą do zbioru A lub do zbioru B: (x A B) (x A x B). Część wspólna (przekrój) A B składa się z wszystkich
Bardziej szczegółowoWykład ze Wstępu do Logiki i Teorii Mnogości
Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje
Bardziej szczegółowoSystemy algebraiczne. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak
Systemy algebraiczne Materiały pomocnicze do wykładu uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Struktury danych struktury algebraiczne Przykład Rozważmy następujący
Bardziej szczegółowoRACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH
RACHUNEK CAŁKOWY FUNKCJI WÓCH ZMIENNYCH einicja całki podwójnej po prostokącie einicja Podziałem prostokąta R ={ : a b c d} inaczej: R = [a b] [c d] nazwam zbiór Pn złożon z prostokątów R R... Rn które
Bardziej szczegółowoAnaliza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
Bardziej szczegółowo1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Bardziej szczegółowoElementy teorii mnogości. Część I. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.
Elementy teorii mnogości 1 Elementy teorii mnogości Część I Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy teorii mnogości 2 1. Pojęcia
Bardziej szczegółowoDziałania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.
Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Przykłady działań wewnętrznych 1. Dodawanie i mnożenie są działaniami wewnętrznymi
Bardziej szczegółowoWykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.
Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo
Bardziej szczegółowoMatematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J.
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Szmański: Matematyka dyskretna dla informatyków, UAM, 2008 Uzupełniająca:
Bardziej szczegółowoChcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
Bardziej szczegółowo0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.
Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek
Bardziej szczegółowoTeoria miary. Matematyka, rok II. Wykład 1
Teoria miary Matematyka, rok II Wykład 1 NAJBLIŻSZY CEL: Nauczyć się mierzyć wielkość zbiorów. Pierwsze przymiarki: - liczność (moc) zbioru - słabo działa dla zbiorów nieskończonych: czy [0, 1] powinien
Bardziej szczegółowoSztuczna inteligencja: zbiory rozmyte
Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element
Bardziej szczegółowoO funkcjach : mówimy również, że są określone na zbiorze o wartościach w zbiorze.
1. Definicja funkcji f:x->y. Definicja dziedziny, przeciwdziedziny, zbioru wartości. Przykłady. I definicja: Funkcją nazywamy relację, jeśli spełnia następujące warunki: 1) 2) 1,2 [(1 2)=> 1=2] Inaczej
Bardziej szczegółowoRozwiązywanie układu równań metodą przeciwnych współczynników
Rozwiązwanie układu równań metodą przeciwnch współcznników Sposob postępowania krok po kroku: I. przgotowanie równań. pozbwam się ułamków mnoŝąc kaŝd jednomian równania równań przez najmniejszą wspólną
Bardziej szczegółowoNotatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),
Bardziej szczegółowoRodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
Bardziej szczegółowoAlgebra zbiorów. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak
Algebra zbiorów Materiały pomocnicze do wykładu uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Teoria mnogości Teoria mnogości jest działem matematyki zajmującym się
Bardziej szczegółowoTopologia I Wykład 4.
Topologia I Wykład 4. Stefan Jackowski 24 października 2012 Przeciąganie topologii przez rodzinę przekształceń X zbiór. f = {f i : X Y i } i I rodziną przekształceń o wartościach w przestrzeniach topologicznych
Bardziej szczegółowoWYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Bardziej szczegółowoZadania z algebry liniowej - sem. I Struktury algebraiczne
Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,
Bardziej szczegółowoLogika I. Wykład 3. Relacje i funkcje
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 3. Relacje i funkcje 1 Już było... Definicja 2.6. (para uporządkowana) Parą uporządkowaną nazywamy zbiór {{x},
Bardziej szczegółowoWstęp do Matematyki (2)
Wstęp do Matematyki (2) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Wstęp do Matematyki (2) Własności relacji 1 / 24 Wprowadzenie
Bardziej szczegółowoProgramowanie nieliniowe optymalizacja funkcji wielu zmiennych
Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu
Bardziej szczegółowoTeoria automatów i języków formalnych. Określenie relacji
Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego
Bardziej szczegółowoMETODY INTELIGENCJI OBLICZENIOWEJ wykład 6
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 965 Lotfi A. Zadeh: : Fuzzy sets In almost every case you can build the same product without fuzzy logic, but fuzzy
Bardziej szczegółowoWartości i wektory własne
Rozdział 7 Wartości i wektor własne Niech X będzie skończenie wmiarową przestrzenią liniową nad ciałem F = R lub F = C. Niech f : X X będzie endomorfizmem, tj. odwzorowaniem liniowm przekształającm przestrzeń
Bardziej szczegółowo1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Bardziej szczegółowoLista zadań - Relacje
MATEMATYKA DYSKRETNA Lista zadań - Relacje Zadania obliczeniowe Zad. 1. Która z poniższych relacji jest funkcją? a) Relacja składająca się ze wszystkich par uporządkowanych, których poprzednikami są studenci,
Bardziej szczegółowo1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)
Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla
Bardziej szczegółowo