Realizacja funkcji przełączających

Wielkość: px
Rozpocząć pokaz od strony:

Download "Realizacja funkcji przełączających"

Transkrypt

1 Realizacja funkcji przełączającch. Wprowadzenie teoretczne.. Podstawowe funkcje logiczne Funkcja logiczna NOT AND OR Zapis = x x = = x NAND NOR.2. Metoda minimalizacji funkcji metodą tablic Karnaugha Metoda tablic Karnaugha należ do grup najszbszch metod minimalizacji funkcji przełączającch małej liczb zmiennch, co wnika z dużej komplikacji samego zapisu następującej wraz ze wzrostem ilości zmiennch. Upraszczając funkcję przełączającą prz wkorzstaniu tablic Karnaugha, należ pamiętać o następującch problemach: a) wiersze i kolumn tablic Karnaugha opisane są w kodzie Grea, tzn. każd kolejn wiersz i kolumna różnią się od siebie o negację jednej zmiennej, b) zakreślając jednki (zera), tworz się grup liczące 2, 4, 8, 6... elementów, c) zawsze zakreśla się grup z największą możliwą ilością jednek (zer), prz czm należ pamiętać o możliwości sklejenia ze sobą krawędzi równoległch tablic, d) grup mogą posiadać części wspólne, e) liczba grup jednek (zer) odpowiada liczbie składników sum (ilocznu) poszukiwanej funkcji, f) w przpadku kied istnieje możliwość zakreślenia grup na kilka sposobów, arbitralnie wbiera się jeden z nich, g) dana grupa reprezentuje iloczn (sumę) tch zmiennch, które nie zmieniają swojej wartości, h) w przpadku gd funkcja przełączająca posiada element o wartości nieokreślonej element te wpisujem do tabeli wprowadzając dla nich specjalne oznaczenie np. a następnie wkorzstujem lub pomijam w zależności od potrzeb prz tworzeniu grup (patrz punkt b).

2 .3. Program LabVIEW LabVIEW (Laborator Virtual Instrument Engineering Workbench) umożliwia tworzenie programów za pomocą jęzka graficznego (tzw. jęzk G). Programowanie w LabVIEW polega na budowie schematu blokowego i korespondującego z nim panelu stanowiącego interfejs użtkownika. Budowa tego interfejsu jest możliwa dzięki dostępnm bibliotekom gotowch elementów takich, jak: wświetlacze cfrowe, mierniki, potencjometr, termometr, diod LED, tabele, wkres itp. Element te konfiguruje się w zależności od zastosowania. Panel użtkownika umożliwia zbudowanie wirtualnego przrządu obsługiwanego: z klawiatur, za pomocą msz lub innego urządzenia wejściowego służącego do komunikacji komputera z użtkownikiem. Następnie, prz pomoc graficznego jęzka konstruuje się odpowiedni schemat blokow, będąc równocześnie kodem źródłowm. Budowan schemat blokow można porównać z grafem przepłwu informacji, a jego element to funkcje zawarte w bibliotekach, np. algebraiczne, boolowskie, statstczne, związane z obsługą plików, przetwarzaniem sgnałów lub obsługą urządzeń we/w itp. Relacje międz blokami funkcjnmi reprezentowane są przez połączenia o różnch kolorach i grubościach. Rodzaj połączenia świadcz o tpie przekazwanch danch. Można łączć ze sobą tlko element tego samego tpu. Tworzone aplikacje nazwane są virtual instruments (VI), ponieważ ich wgląd i operacje imitują działanie rzeczwistch przrządów. Program zawiera wszstkie narzędzia niezbędne do akwizcji, analiz i prezentacji danch. Wszstkie aplikacje użwają struktur hierarchicznej i modularnej. Oznacza to, że można ich użwać również jako podprogram. Aplikacje użte w innej aplikacji nazwane są subvi. 2. Przebieg ćwiczenia Przkład. Zaprojektować układ o trzech wejściach x, x 2 i x 3, w którm sgnał wjściow = gd na wejściu pojawi się liczba w naturalnm kodzie binarnm podzielna przez trz lub nieparzsta. Wznaczć postać minimalną funkcji = f ( x,, ) oraz przedstawić schemat logiczn tego układu z zastosowaniem bramek NAND i NOR. Działanie układu opisuje poniższa tabela stanów: Liczba Wejścia Wjście wejściowa x x 2 x

3 Na podstawie tabeli można napisać równanie funkcji w kanonicznej postaci alternatwnej = x x x x x lub w kanonicznej postaci koniunkcjnej ( x x x )( x x x )( x x ) = Minimalizacji funkcji dokonujem za pomocą tablic Karnaugha x x 2 x x Postać alternatwna Postać koniunkcjna Właściwą minimalizację przeprowadzam sklejając jednki (dla postaci alternatwnej) lub zera (dla postaci koniunkcjnej) otrzmując x = = ( x x )( x ) 3 Stosując prawa rozdzielności i pochłaniania, przekształcając ( x x )( x ) otrzmam =, 3 ( x )( x ) = xx x x = x ( x ) = x = Stąd wniosek, że postać koniunkcjna jest równoważna postaci alternatwnej. Schemat logiczn układu z zastosowaniem bramek NAND przedstawia rs.. = x = x = x x x 2 x 3 Rs.. Schemat logiczn z bramek NAND

4 Schemat logiczn układu z zastosowaniem bramek NOR przedstawia rs. 2. x x 2 x 3 ( x x )( x x ) = ( x x )( x x ) = ( x x ) ( x ) = Rs. 2. Schemat logiczn z bramek NOR Przkład 2. Zaprojektować układ sterowania dopłwem wod do dwóch zbiorników (rsunek 3). Poziom wod w zbiornikach kontrolowan jest czujnikami a, b, c (a = 0 gd poziom wod jest poniżej czujnika a, natomiast a = gd poziom wod jest powżej czujnika a, itp. dla pozostałch czujników). Dopłwem wod sterują zawor elektromagnetczne Z i Z 2. żarówka Program prac układu: zawór Z powinien bć U otwart (Z = ) stale, gd Z Z zbiornik jest niepełn (a = 0), Y zawór Z 2 powinien bć otwart, gd poziom wod w zbiorniku nie osiągnął poziomu czujnika c. Po jego przekroczeniu zawór zamka się i otwiera się dopiero a wted, gd poziom wod w drugim zbiorniku osiągnął poziom czujnika a, Rs. 3. Układ zbiorników z wodą zawór Z 2 powinien bć zamknięt, gd zbiornik napełni się (b = ), Napełnienie zbiorników powinno bć sgnalizowane mignięciem żarówki. Żarówka jest włączana w obwód przełącznikiem impulsowm Y. (chwilowe zamknięcie obwodu następuje, gd Y = ). Przedstawić schemat logiczn tego układu z zastosowaniem bramek logicznch NOR. Z 2 b c

5 3. Projekt do wkonania Projekt. Zaprojektować układ sterowania pracą podgrzewacza wod. Poziom wod kontrolowan jest czujnikami oraz ( X i =0, gd poziom wod jest poniżej X i, natomiast X i = gd poziom wod jest powżej X i, i=,2) a temperatura wod w podgrzewaczu czujnikiem X 3 (X 3 =0 gd T W <T G natomiast T W >T G, T W temp. wod, T G temp. grzałki ). Dopłw i odpłw wod uzależnione są od stanu zaworów elektromagnetcznch Z, Z 2. Zbiornik ogrzewan jest grzałką G włączaną do sieci za pomocą stcznika Z 3. Program prac podgrzewacza jest następując: ) zawór Z powinien bć otwart (Z =) stale, jeżeli zbiornik jest niepełn ( =0) 2) zawór Z 2 powinien bć otwart gd temperatura wod w podgrzewaczu T W >T G i poziom wod przekracza 3) grzałka G powinna bć załączona, gd temperatura wod T W <T G i poziom wod przekracza Przedstawić schemat logiczn tego układu z zastosowaniem dwuwejściowch bramek NOR. Z G x Z2 Z3

6 Projekt 2. Zaprojektować układ sterowania dopłwem wod do zbiornika. Poziom wod kontrolowan jest czujnikami a, b, c (a=0 gd poziom wod jest poniżej a, natomiast a= gd poziom wod jest powżej a, itp. dla pozostałch czujników). Dopłwem wod steruje zawór elektromagnetczn Z Określon poziom wod w zbiorniku jest sgnalizowan mignięciem żarówki. Program prac układu: ) zawór Z powinien bć otwart (Z=) stale, gd zbiornik jest niepełn (a=0) 2) osiągnięcie kolejnch poziomów c, b, a powinno bć sgnalizowane mignięciem żarówki. Żarówkę włącza w obwód przełącznik impulsow Y (chwilowe zamknięcie obwodu następuje, gd Y=) Przedstawić schemat logiczn tego układu z zastosowaniem dwuwejściowch bramek NAND. Z Uz a Y b c Projekt 3. Zaprojektować układ sterowania dopłwem wod do 3 jednakowch zbiorników. Trz czujniki (oznaczone odpowiednio a,b,c) podają informacje o poziomach ciecz w trzech zbiornikach. Dopłwem wod w zbiorniku steruje jeden zawór Z. Program prac układu jest następując: ) zawór Z powinien bć otwart stale jeżeli zbiorniki są niepełne 2) poszczególne zawor powinn bć otwarte stale jeżeli akurat poziom wod w danm zbiorniku (Z=) nie został osiągnięt (a,b,c=0) 3) osiągnięcie określonch poziomów we wszstkich zbiornikach powinno bć zasgnalizowane dźwiękiem generowanm przez dzwonek D

7 Z Z2 Z3 a c b

Realizacja funkcji przełączających z wykorzystaniem programu LabView

Realizacja funkcji przełączających z wykorzystaniem programu LabView Laboratorium Podstaw Automatki. Cele ćwizenia Laboratorium nr 6 Realizaja funkji przełązająh z wkorzstaniem programu LabView zapoznanie się z metodą minimalizaji funkji przełązająh metodą tabli Karnaugh

Bardziej szczegółowo

Synteza układów kombinacyjnych metodą tablic Karnaugha - ćwiczenie 7

Synteza układów kombinacyjnych metodą tablic Karnaugha - ćwiczenie 7 Synteza układów kombinacyjnych metodą tablic Karnaugha - ćwiczenie 7. Cel ćwiczenia: Celem ćwiczenia jest praktyczna realizacja układu kombinacyjnego na podstawie funkcji boolowskich wyznaczonych na zajęciach.

Bardziej szczegółowo

Synteza układów kombinacyjnych metodą tablic Karnaugha - ćwiczenie 10

Synteza układów kombinacyjnych metodą tablic Karnaugha - ćwiczenie 10 Synteza układów kombinacyjnych metodą tablic Karnaugha - ćwiczenie 10 1. Cel ćwiczenia: Celem ćwiczenia jest praktyczna realizacja układu kombinacyjnego na podstawie funkcji boolowskich wyznaczonych na

Bardziej szczegółowo

Cykl III ćwiczenie 3. Temat: Badanie układów logicznych

Cykl III ćwiczenie 3. Temat: Badanie układów logicznych Ckl III ćwiczenie Temat: Badanie układów logicznch Ćwiczenie składa się z dwóch podtematów: Poziom TTL układów logicznch oraz Snteza układów kombinacjnch Podtemat: Poziom TTL układów logicznch. Wprowadzenie

Bardziej szczegółowo

Elementy cyfrowe i układy logiczne

Elementy cyfrowe i układy logiczne Element cfrowe i układ logiczne Wkład 6 Legenda Technika cfrowa. Metod programowania układów PLD Pamięć ROM Struktura PLA Struktura PAL Przkład realizacji 3 4 5 6 7 8 Programowanie PLD po co? ustanowić

Bardziej szczegółowo

Podstawy Automatyki. Wykład 12 - synteza i minimalizacja funkcji logicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 12 - synteza i minimalizacja funkcji logicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 12 - synteza i minimalizacja funkcji logicznych Instytut Automatyki i Robotyki Warszawa, 2017 Synteza funkcji logicznych Terminy - na bazie funkcji trójargumenowej y = (x 1, x 2, x 3 ) (1) Elementarny

Bardziej szczegółowo

Minimalizacja form boolowskich

Minimalizacja form boolowskich Sławomir Kulesza Technika cyfrowa Minimalizacja form boolowskich Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Minimalizacja form boolowskich Minimalizacja proces przekształcania form

Bardziej szczegółowo

Podstawy Automatyki. Człowiek- najlepsza inwestycja. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Podstawy Automatyki. Człowiek- najlepsza inwestycja. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Podstaw Automatki Człowiek- najlepsza inwestcja Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Politechnika Warszawska Insttut Automatki i Robotki Dr inż. Wieńczsław

Bardziej szczegółowo

dr inż. Małgorzata Langer Architektura komputerów

dr inż. Małgorzata Langer Architektura komputerów Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna dydaktyka bez ograniczeń zintegrowany rozwój Politechniki Łódzkiej zarządzanie Uczelnią,

Bardziej szczegółowo

b) bc a Rys. 1. Tablice Karnaugha dla funkcji o: a) n=2, b) n=3 i c) n=4 zmiennych.

b) bc a Rys. 1. Tablice Karnaugha dla funkcji o: a) n=2, b) n=3 i c) n=4 zmiennych. DODATEK: FUNKCJE LOGICZNE CD. 1 FUNKCJE LOGICZNE 1. Tablice Karnaugha Do reprezentacji funkcji boolowskiej n-zmiennych można wykorzystać tablicę prawdy o 2 n wierszach lub np. tablice Karnaugha. Tablica

Bardziej szczegółowo

Architektura komputerów ćwiczenia Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna.

Architektura komputerów ćwiczenia Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna. Architektura komputerów ćwiczenia Zbiór zadań IV Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna. Wprowadzenie 1 1 fragmenty książki "Organizacja i architektura systemu

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych (I)

Technika cyfrowa Synteza układów kombinacyjnych (I) Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych (I) Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1

Bardziej szczegółowo

Podstawowe układy cyfrowe

Podstawowe układy cyfrowe ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,

Bardziej szczegółowo

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Temat lekcji: Minimalizacja funkcji logicznych Etapy lekcji: 1. Podanie tematu i określenie celu lekcji SOSOBY MINIMALIZACJI

Bardziej szczegółowo

Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów.

Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z funktorami realizującymi podstawowe funkcje logiczne poprzez zaprojektowanie, wykonanie i przetestowanie kombinacyjnego układu logicznego realizującego

Bardziej szczegółowo

Laboratorium podstaw elektroniki

Laboratorium podstaw elektroniki 150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki

Bardziej szczegółowo

Wykład nr 1 Techniki Mikroprocesorowe. dr inż. Artur Cichowski

Wykład nr 1 Techniki Mikroprocesorowe. dr inż. Artur Cichowski Wykład nr 1 Techniki Mikroprocesorowe dr inż. Artur Cichowski ix jy i j {0,1} {0,1} Dla układów kombinacyjnych stan dowolnego wyjścia y i w danej chwili czasu zależy wyłącznie od aktualnej kombinacji stanów

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych

Technika cyfrowa Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1

Bardziej szczegółowo

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład)

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład) Wstęp doinformatyki Układy logiczne komputerów kombinacyjne sekwencyjne Układy logiczne Układy kombinacyjne Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 synchroniczne asynchroniczne Wstęp

Bardziej szczegółowo

Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TECHNIKA CYFROWA 2 TS1C300 020

Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TECHNIKA CYFROWA 2 TS1C300 020 Politechnika Białostocka Wdział lektrczn Katedra Automatki i lektroniki Instrukcja do ćwiczeń laboratorjnch z przedmiotu TCHNIKA CFROWA TSC Ćwiczenie Nr CFROW UKŁAD KOMUTACJN Opracował dr inż. Walent Owieczko

Bardziej szczegółowo

ELEMENTY TEORII ZBIORÓW ROZMYTYCH

ELEMENTY TEORII ZBIORÓW ROZMYTYCH ELEMENTY TEORII ZBIORÓW ROZMYTYCH OPRACOWAŁ: M. KWIESIELEWICZ POJĘCIA NIEPRECYZYJNE ODDZIAŁYWANIA CZŁOWIEK-OBIEKT TECHNICZNY OTOCZENIE (Hoang 990: człowieka na otoczenie, np.: ergonomiczna konstrukcja

Bardziej szczegółowo

Systemy wbudowane. Wprowadzenie. Nazwa. Oznaczenia. Zygmunt Kubiak. Sterowniki PLC - Wprowadzenie do programowania (1)

Systemy wbudowane. Wprowadzenie. Nazwa. Oznaczenia. Zygmunt Kubiak. Sterowniki PLC - Wprowadzenie do programowania (1) ybrane funkcje logiczne prowadzenie L L2 Y Nazwa Oznaczenia Y Sterowniki PLC - prowadzenie do programowania () Proste przykłady Załączenie jednego z dwóch (lub obu) przełączników lub powoduje zapalenie

Bardziej szczegółowo

dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle" POKL

dr inż. Rafał Klaus Zajęcia finansowane z projektu Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle POKL Technika cyfrowa w architekturze komputerów materiał do wykładu 2/3 dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Minimalizacja funkcji boolowskich - wykład 2

Minimalizacja funkcji boolowskich - wykład 2 SWB - Minimalizacja funkcji boolowskich - wykład 2 asz 1 Minimalizacja funkcji boolowskich - wykład 2 Adam Szmigielski aszmigie@pjwstk.edu.pl Laboratorium robotyki s09 SWB - Minimalizacja funkcji boolowskich

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Modelowanie kombinacyjnych układów przełączających z wykorzystaniem elementów pneumatycznych i elektrycznych Podstawy Automatyki i Automatyzacji

Bardziej szczegółowo

WOJSKOWA AKADEMIA T E CHNI CZNA im. Jarosława Dą brow ski ego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO

WOJSKOWA AKADEMIA T E CHNI CZNA im. Jarosława Dą brow ski ego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO WOJSKOWA AKADEMIA T E CHNI CZNA im. Jarosława Dą brow ski ego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO Przedmiot: PODSTAWY AUTOMATYKI I AUTOMATYZACJI (studia I stopnia) ĆWICZENIE RACHUNKOWE PROJEKT PROSTEGO

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

Funkcja Boolowska. f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest matematycznym modelem układu kombinacyjnego.

Funkcja Boolowska. f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest matematycznym modelem układu kombinacyjnego. SWB - Minimalizacja funkcji boolowskich - wykład 2 asz 1 Funkcja Boolowska Funkcja boolowskanargumentową nazywamy odwzorowanie f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Modelowanie kombinacyjnych układów przełączających z wykorzystaniem elementów Podstawy Automatyki i Automatyzacji - Ćwiczenia Laboratoryjne mgr inż.

Bardziej szczegółowo

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna.

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna. Układy kombinacyjne. Czas trwania: 6h. Cele ćwiczenia Przypomnienie podstawowych praw Algebry Boole a. Zaprojektowanie, montaż i sprawdzenie działania zadanych układów kombinacyjnych.. Wymagana znajomość

Bardziej szczegółowo

Wykład 1 Podstawy projektowania układów logicznych i komputerów Synteza i optymalizacja układów cyfrowych Układy logiczne

Wykład 1 Podstawy projektowania układów logicznych i komputerów Synteza i optymalizacja układów cyfrowych Układy logiczne Element cfrowe i układ logicne Wkład Literatura M. Morris Mano, Charles R. Kime Podstaw projektowania układów logicnch i komputerów, Wdawnictwa Naukowo- Technicne Giovanni De Micheli - Sntea i optmaliacja

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Układy kombinacyjne i sekwencyjne. Podczas ćwiczenia poruszane będą następujące zagadnienia:

Układy kombinacyjne i sekwencyjne. Podczas ćwiczenia poruszane będą następujące zagadnienia: Warszawa 207 Cel ćwiczenia rachunkowego Podczas ćwiczenia poruszane będą następujące zagadnienia: modelowanie i synteza kombinacyjnych układów przełączających; minimalizacja funkcji przełączającej; projektowanie

Bardziej szczegółowo

nie jest jednoznaczny i wymaga dodatkowego wyjaśnienia. Układ z sygnałem wyjściowym y

nie jest jednoznaczny i wymaga dodatkowego wyjaśnienia. Układ z sygnałem wyjściowym y 5. Wprowadzenie do sterowania procesami dskretnmi Ciągłmi nazwam proces, do opisu którch niezbędne są zmienne przjmujące nieskończenie wiele wartości np. proces regulacji temperatur, ciśnienia, napięcia,

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Równania różniczkowe

Równania różniczkowe Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz

Bardziej szczegółowo

Część 2. Funkcje logiczne układy kombinacyjne

Część 2. Funkcje logiczne układy kombinacyjne Część 2 Funkcje logiczne układy kombinacyjne Zapis funkcji logicznych układ funkcjonalnie pełny Arytmetyka Bool a najważniejsze aksjomaty i tożsamości Minimalizacja funkcji logicznych Układy kombinacyjne

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

2019/09/16 07:46 1/2 Laboratorium AITUC

2019/09/16 07:46 1/2 Laboratorium AITUC 2019/09/16 07:46 1/2 Laboratorium AITUC Table of Contents Laboratorium AITUC... 1 Uwagi praktyczne przed rozpoczęciem zajęć... 1 Lab 1: Układy kombinacyjne małej i średniej skali integracji... 1 Lab 2:

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej 1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm

Bardziej szczegółowo

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Historia teorii mnogości Teoria mnogości to inaczej nauka o zbiorach i ich własnościach; Zapoczątkowana przez greckich matematyków i filozofów w

Bardziej szczegółowo

Wydział Fizyki UW CC=5V 4A 4B 4Y 3A 3B 3Y

Wydział Fizyki UW CC=5V 4A 4B 4Y 3A 3B 3Y Wydział Fizyki UW Pracownia fizyczna i elektroniczna (w tym komputerowa) dla Inżynierii Nanostruktur (00-INZ7) oraz Energetyki i hemii Jądrowej (00-ENPRFIZELEK) Ćwiczenie D Projekt układu cyfrowego Streszczenie

Bardziej szczegółowo

Tranzystor JFET i MOSFET zas. działania

Tranzystor JFET i MOSFET zas. działania Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej

Bardziej szczegółowo

Warsztat pracy matematyka

Warsztat pracy matematyka Warsztat prac matematka Izabela Bondecka-Krzkowska Marcin Borkowski Jęzk matematki Teoria Jednm z podstawowch pojęc matematki jest pojęcie zbioru. Teorię opisującą zbior nazwa sie teorią mnogości. Definicja

Bardziej szczegółowo

Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.

Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów. Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób

Bardziej szczegółowo

Elektronika cyfrowa i optoelektronika - laboratorium

Elektronika cyfrowa i optoelektronika - laboratorium Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Instytut Techniczny Elektronika cyfrowa i optoelektronika - laboratorium Temat: Minimalizacja funkcji logicznych multiplekser demultiplekser. Koder i dekodedr.

Bardziej szczegółowo

Willard Van Quine. teaching mathematical logic.

Willard Van Quine. teaching mathematical logic. Willard Van Quine Born: 5 June 98 in Akron, Ohio, USA Died: 5 Dec in Boston, Massachusetts, USA Amerkański filozof i logik., prof.. Uniwerstetu Harvarda w Cambridge, twórca orginalnego ujęcia logiki i

Bardziej szczegółowo

Laboratorium podstaw elektroniki

Laboratorium podstaw elektroniki 150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki

Bardziej szczegółowo

NAPĘD I STEROWANIE PNEUMATYCZNE PODSTAWY

NAPĘD I STEROWANIE PNEUMATYCZNE PODSTAWY Zachodniopomorski Uniwerstet Technologiczn w Szczecinie Wdział Inżnierii Mechanicznej i Mechatroniki PIOTR PWEŁKO NPĘD I STEROWNIE PNEUMTYCZNE PODSTWY ĆWICZENI LBORTORYJNE Funkcje logiczne realizowane

Bardziej szczegółowo

Automatyka. Treść wykładów: Układ sekwencyjny synchroniczny. Układ kombinacyjny AND. Układ sekwencyjny asynchroniczny. Układ sekwencyjny synchroniczny

Automatyka. Treść wykładów: Układ sekwencyjny synchroniczny. Układ kombinacyjny AND. Układ sekwencyjny asynchroniczny. Układ sekwencyjny synchroniczny Automatka dr inż. Szmon Surma szmon.surma@polsl.pl zawt.polsl.pl/studia pok. 202, tel. +48 32 603 4136 Treść wkładów: 1. Podstaw automatki 2. Układ kombinacjne, 3. Układ sekwencjne snchronicze, 4. Układ

Bardziej szczegółowo

W jakim celu to robimy? Tablica Karnaugh. Minimalizacja

W jakim celu to robimy? Tablica Karnaugh. Minimalizacja W jakim celu to robimy? W projektowaniu układów cyfrowych istotne jest aby budować je jak najmniejszym kosztem. To znaczy wykorzystanie dwóch bramek jest tańsze niż konieczność wykorzystania trzech dla

Bardziej szczegółowo

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Cyfrowe Elementy Automatyki Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów,

Bardziej szczegółowo

14. Grupy, pierścienie i ciała.

14. Grupy, pierścienie i ciała. 4. Grup, pierścienie i ciała. Definicja : Zbiór A nazwam grupą jeśli jest wposaŝon w działanie wewnętrzne łączne, jeśli to działanie posiada element neutraln i kaŝd element zbioru A posiada element odwrotn.

Bardziej szczegółowo

Automatyka. Treść wykładów: Układ kombinacyjny AND. Układ sekwencyjny synchroniczny. Układ sekwencyjny asynchroniczny. Układ sekwencyjny synchroniczny

Automatyka. Treść wykładów: Układ kombinacyjny AND. Układ sekwencyjny synchroniczny. Układ sekwencyjny asynchroniczny. Układ sekwencyjny synchroniczny Treść wkładów: Automatka dr inż. Szmon Surma szmon.surma@polsl.pl zawt.polsl.pl pok. 202, tel. +48 32 603 4136 1. Podstaw automatki 2. Układ kombinacjne, 3. Układ sekwencjne snchronicze, 4. Układ sekwencjne

Bardziej szczegółowo

Ćwiczenie 1 Program Electronics Workbench

Ćwiczenie 1 Program Electronics Workbench Systemy teleinformatyczne Ćwiczenie Program Electronics Workbench Symulacja układów logicznych Program Electronics Workbench służy do symulacji działania prostych i bardziej złożonych układów elektrycznych

Bardziej szczegółowo

Z funkcji zdaniowej x + 3 = 7 można otrzymać zdania w dwojaki sposób:

Z funkcji zdaniowej x + 3 = 7 można otrzymać zdania w dwojaki sposób: Z funkcji zdaniowej + 3 = 7 można otrzmać zdania w dwojaki sposób: podstawiając w tej funkcji zdaniowej za stałe będące nazwami liczb np. 4 2 itp. poprzedzając tę funkcję zdaniową zwrotami: dla każdego

Bardziej szczegółowo

Scenariusz lekcji matematyki z wykorzystaniem komputera

Scenariusz lekcji matematyki z wykorzystaniem komputera Scenariusz lekcji matematki z wkorzstaniem komputera Temat: Wpłw współcznników a i b na położenie wkresu funkcji liniowej. (Rsowanie wkresów prz użciu arkusza kalkulacjnego EXCEL.) Czas zajęć: 9 min Cele:

Bardziej szczegółowo

Metoda Karnaugh. B A BC A

Metoda Karnaugh. B A BC A Metoda Karnaugh. Powszechnie uważa się, iż układ o mniejszej liczbie elementów jest tańszy i bardziej niezawodny, a spośród dwóch układów o takiej samej liczbie elementów logicznych lepszy jest ten, który

Bardziej szczegółowo

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości:

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości: Treść wykładów: Automatyka dr inż. Szymon Surma szymon.surma@polsl.pl pok. 202, tel. +48 32 603 4136 1. Podstawy automatyki 1. Wstęp, 2. Różnice między sygnałem analogowym a cyfrowym, 3. Podstawowe elementy

Bardziej szczegółowo

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Bramki logiczne Podstawowe składniki wszystkich układów logicznych Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10 Zadania do wykładu 1,. 1. Zapisz liczby binarne w kodzie dziesiętnym: (1011011) =( ) 10, (11001100) =( ) 10, (101001, 10110) =( ) 10. Zapisz liczby dziesiętne w naturalnym kodzie binarnym: (5) 10 =( ),

Bardziej szczegółowo

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Zapoznanie się z techniką połączenia za pośrednictwem interfejsu. Zbudowanie

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 1-2

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 1-2 Stanisław Cichocki Natalia Nehreecka Zajęcia - . Model liniow Postać modelu liniowego Zapis macierzow modelu liniowego. Estmacja modelu Przkład Wartość teoretczna (dopasowana) Reszt 3. MNK - przpadek wielu

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

x x

x x DODTEK II - Inne sposoby realizacji funkcji logicznych W kolejnych podpunktach zaprezentowano sposoby realizacji przykładowej funkcji (tej samej co w instrukcji do ćwiczenia "Synteza układów kombinacyjnych")

Bardziej szczegółowo

Ć w i c z e n i e K 2 b

Ć w i c z e n i e K 2 b Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:

Bardziej szczegółowo

3. SYNTEZA UKŁADÓW KOMBINACYJNYCH

3. SYNTEZA UKŁADÓW KOMBINACYJNYCH 3. SYNTEZA UKŁADÓW KOMBINACYJNYCH 3.. ZASADY OGÓLNE 3... ZAPIS FUNKCJI Synteza układów przełączających to zespól czynności, które n-i podstawie założeń dotyczących działania układów doprowadza ją do schematu

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

SKRYPT Z MATEMATYKI. Wstęp do matematyki. Rafał Filipów Piotr Szuca

SKRYPT Z MATEMATYKI. Wstęp do matematyki. Rafał Filipów Piotr Szuca Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego SKRYPT Z MATEMATYKI Wstęp do matematki Rafał Filipów Piotr Szuca Publikacja współfinansowana przez Unię Europejską

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba

Bardziej szczegółowo

Wektory. P. F. Góra. rok akademicki

Wektory. P. F. Góra. rok akademicki Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.

Bardziej szczegółowo

Technika cyfrowa i mikroprocesorowa. Zaliczenie na ocenę. Zaliczenie na ocenę

Technika cyfrowa i mikroprocesorowa. Zaliczenie na ocenę. Zaliczenie na ocenę I. KARTA PRZEDMIOTU Nazwa przedmiotu/modułu: Nazwa angielska: Kierunek studiów: Poziom studiów: Profil studiów: Jednostka prowadząca: Technika cyfrowa i mikroprocesorowa Edukacja techniczno-informatyczna

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY MARCA 0 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Stężenie roztworu poczatkowo wzrosło

Bardziej szczegółowo

Minimalizacja funkcji boolowskich

Minimalizacja funkcji boolowskich Minimalizacja funkcji boolowskich Zagadnienie intensywnych prac badawczych od początku lat pięćdziesiątych 2 wieku. Ogromny wzrost zainteresowania minimalizacją f.b. powstał ponownie w latach 8. rzyczyna:

Bardziej szczegółowo

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia Opracował: dr inż. Jarosław Mierzwa KTER INFORMTKI TEHNIZNEJ Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 202 Temat: Układy kombinacyjne 1. el ćwiczenia Ćwiczenie ma na celu praktyczne zapoznanie

Bardziej szczegółowo

TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH

TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Praca laboratoryjna 2 TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Cel pracy poznanie zasad funkcjonowania przerzutników różnych typów w oparciu o różne rozwiązania układowe. Poznanie sposobów

Bardziej szczegółowo

Bramki logiczne Instrukcja do ćwiczeń laboratoryjnych

Bramki logiczne Instrukcja do ćwiczeń laboratoryjnych Bramki logiczne Instrukcja do ćwiczeń laboratoryjnych. WSTĘP Celem ćwiczenia jest zapoznanie się z podstawowymi sposobami projektowania układów cyfrowych o zadanej funkcji logicznej, na przykładzie budowy

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era

Bardziej szczegółowo

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały:

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały: Dr inż Jan Chudzikiewicz Pokój 7/65 Tel 683-77-67 E-mail: jchudzikiewicz@watedupl Materiały: http://wwwitawatedupl/~jchudzikiewicz/ Warunki zaliczenie: Otrzymanie pozytywnej oceny z kolokwium zaliczeniowego

Bardziej szczegółowo

Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych

Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych Elementy logiki: Algebra Boole a i układy logiczne 1 Elementy logiki dla informatyków Wykład III Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych Elementy logiki: Algebra Boole a

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 4 BADANIE BRAMEK LOGICZNYCH A. Cel ćwiczenia. - Poznanie zasad logiki binarnej. Prawa algebry Boole

Bardziej szczegółowo

Automatyzacja i robotyzacja procesów produkcyjnych

Automatyzacja i robotyzacja procesów produkcyjnych Automatyzacja i robotyzacja procesów produkcyjnych Instrukcja laboratoryjna Technika cyfrowa Opracował: mgr inż. Krzysztof Bodzek Cel ćwiczenia. Celem ćwiczenia jest zapoznanie studenta z zapisem liczb

Bardziej szczegółowo

Wirtualne przyrządy kontrolno-pomiarowe

Wirtualne przyrządy kontrolno-pomiarowe Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Wirtualne przyrządy kontrolno-pomiarowe dr inż.. Roland PAWLICZEK Laboratorium komputerowe Mechatroniki Cel zajęć ęć: Przyrząd pomiarowy:

Bardziej szczegółowo

Koszt literału (literal cost) jest określony liczbą wystąpień literału w wyrażeniu boolowskim realizowanym przez układ.

Koszt literału (literal cost) jest określony liczbą wystąpień literału w wyrażeniu boolowskim realizowanym przez układ. Elementy cyfrowe i układy logiczne Wykład Legenda Kryterium kosztu realizacji Minimalizacja i optymalizacja Optymalizacja układów dwupoziomowych Tablica (mapa) Karnaugh a Metoda Quine a-mccluskey a Złożoność

Bardziej szczegółowo

19. Wybrane układy regulacji Korekcja nieliniowa układów. Przykład K s 2. Rys Schemat blokowy układu oryginalnego

19. Wybrane układy regulacji Korekcja nieliniowa układów. Przykład K s 2. Rys Schemat blokowy układu oryginalnego 19. Wbrane układ regulacji Przkład 19.1 19.1. Korekcja nieliniowa układów w K s 2 Rs. 19.1. Schemat blokow układu orginalnego 1 Zbadać możliwość stabilizacji układu za pomocą nieliniowego prędkościowego

Bardziej szczegółowo

3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.

3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5. WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja

Bardziej szczegółowo

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder Treść wykładów: utomatyka dr inż. Szymon Surma szymon.surma@polsl.pl http://zawt.polsl.pl/studia pok., tel. +48 6 46. Podstawy automatyki. Układy kombinacyjne,. Charakterystyka,. Multiplekser, demultiplekser,.

Bardziej szczegółowo

Rozwiązywanie układu równań metodą przeciwnych współczynników

Rozwiązywanie układu równań metodą przeciwnych współczynników Rozwiązwanie układu równań metodą przeciwnch współcznników Sposob postępowania krok po kroku: I. przgotowanie równań. pozbwam się ułamków mnoŝąc kaŝd jednomian równania równań przez najmniejszą wspólną

Bardziej szczegółowo

Algebra Boole a i jej zastosowania

Algebra Boole a i jej zastosowania lgebra oole a i jej zastosowania Wprowadzenie Niech dany będzie zbiór dwuelementowy, którego elementy oznaczymy symbolami 0 oraz 1, tj. {0, 1}. W zbiorze tym określamy działania sumy :, iloczynu : _ oraz

Bardziej szczegółowo

Laboratorium elektroniki. Ćwiczenie E52IS. Realizacja logicznych układów kombinacyjnych z bramek NOR. Wersja 1.0 (24 marca 2016)

Laboratorium elektroniki. Ćwiczenie E52IS. Realizacja logicznych układów kombinacyjnych z bramek NOR. Wersja 1.0 (24 marca 2016) Laboratorium elektroniki Ćwiczenie E52IS Realizacja logicznych układów kombinacyjnych z bramek NOR Wersja 1.0 (24 marca 2016) Spis treści: 1. Cel ćwiczenia... 3 2. Zagrożenia... 3 3. Wprowadzenie teoretyczne...

Bardziej szczegółowo

Automatyka Lab 1 Teoria mnogości i algebra logiki. Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyka Lab 1 Teoria mnogości i algebra logiki. Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyka Lab 1 Teoria mnogości i algebra logiki Harmonogram zajęć Układy przełączające: 1. Algebra logiki - Wprowadzenie 2. Funkcje logiczne - minimalizacja funkcji 3. Bramki logiczne - rysowanie układów

Bardziej szczegółowo

Cyfrowe bramki logiczne 2012

Cyfrowe bramki logiczne 2012 LORTORIUM ELEKTRONIKI yfrowe bramki logiczne 2012 ndrzej Malinowski 1. yfrowe bramki logiczne 3 1.1 el ćwiczenia 3 1.2 Elementy algebry oole`a 3 1.3 Sposoby zapisu funkcji logicznych 4 1.4 Minimalizacja

Bardziej szczegółowo