Technologie i systemy oparte na logice rozmytej
|
|
- Karol Owczarek
- 7 lat temu
- Przeglądów:
Transkrypt
1 Zagadnienia I
2 Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie takiego modelu jest nieopłacalne lub nawet niemożliwe. Technologie oparte na logice rozmytej znajdują zastosowanie m.in. w bazach danych, sterowaniu, modelowaniu i przetwarzaniu języka naturalnego.
3 Na czym polega różnica między logiką tradycyjną i logiką rozmytą? Paweł zarabia 5 tys. złotych. Paweł kupił kg jabłek. Paweł ma 5 lat. Paweł w ciągu wakacji 3 dni spędził nad morzem. Określenia precyzyjne. Przypisanie 0 lub jest jednoznaczne. Logika tradycyjna Paweł zarabia dużo. Paweł kupił trochę jabłek. Paweł jest młody. Paweł w ciągu wakacji był krótko nad morzem. Określenia nieprecyzyjne. Przypisanie 0 lub nie jest jednoznaczne. Logika rozmyta
4 Rozmyty świat Czy to jest pudełko zawierające niebieskie kulki? Czy to jest pudełko zawierające czerwone kulki? Czy to jest pudełko zawierające niebieskie/czerwone kulki?
5 Bez rozmycia Brak czerwonych kulek 0 Tylko czerwone kulki Między stanami 0 i możliwe są stany pośrednie.
6 Rozmycie Pudełko nie zawiera czerwonych kulek (0). Pudełko zawiera sporo czerwonych kulek. Pudełko zawiera znikomą ilość czerwonych kulek. Pudełko zawiera przeważnie czerwone kulki. Pudełko zawiera trochę czerwonych kulek. Tak, pudełko zawiera tylko czerwone kulki ().
7 Logika klasyczna 0 Logika rozmyta Tylko dwie wartości: prawda i fałsz 0 Wartości z przedziału [0,] Zanim poznamy logikę rozmytą musimy poznać teorię zbiorów rozmytych
8 Zbiory - powtórzenie Zbiór to kolekcja, wielość obiektów. Pojęcie zbioru jest podstawowe i niedefiniowalne. Określenie zbioru musi być jednoznaczne w tym sensie, że musi być jasne czy dany konkretny obiekt należy do tego zbioru. Obiekt który należy do zbioru jest nazywany elementem zbioru. Zbiór definiujemy przez podanie jego elementów.
9 Przykład = {0, 0, -5, 7} B = ø C = {{},,{{},{3}}} D = { R: >4} E = zbiór zielonych samochodów F = zbiór latających słoni W przypadku każdego z tych zbiorów łatwo określić czy dany obiekt należy do zbioru czy nie należy. 7 3 D
10 Zbiory rozmyte Istnieją zbiory w przypadku których określenie przynależności danego konkretnego obiektu nie jest jednoznaczne. Przykład = zbiór młodych ludzi B = zbiór szybkich samochodów C = zbiór wysokich drzew W przypadku takich zbiorów możemy mówić o stopniu przynależności. Przykład Można powiedzieć, że osoba w wieku 35 lat należy do zbioru w większym stopniu niż osoba w wieku 80 lat.
11 Dla ustalenia uwagi określmy tzw. obszar rozważań (ang. the universe of the discourse). Nazywać go będziemy przestrzenią lub zbiorem i oznaczymy przez X. Definicja Zbiorem rozmytym w pewnej (niepustej) przestrzeni X, co zapisujemy jako X nazywamy zbiór par ={(, ()): X} gdzie : X [0,] jest funkcją przynależności zbioru rozmytego. Funkcja ta każdemu elementowi X przypisuje jego stopień przynależności do zbioru rozmytego.
12 Możemy wyróżnić 3 przypadki: ) ()= oznacza pełną przynależność elementu do zbioru rozmytego, tzn.. ) ()=0 oznacza brak przynależność elementu do zbioru rozmytego, tzn.. 3) 0< ()<0 oznacza częściową przynależność elementu do zbioru rozmytego. Jeżeli X jest przestrzenią o skończonej liczbie elementów X={,,, 3 } To zbiór rozmyty oznaczamy następująco ( ) ( ) ( n n )
13 Jeżeli X zawiera nieskończoną liczbę elementów to zbiór rozmyty X symbolicznie zapisujemy jako X ( ) Przykład Niech X=N (zbiór liczb naturalnych) Zbiór liczb naturalnych bliskich liczbie określamy następująco: 0, 9 0,4 0 0,7 0,7 3 0,4 4 0, 5
14 Przykład Niech X=R (zbiór liczb rzeczywistych) Zbiór liczb rzeczywistych bliskich liczbie (oznaczmy go przez ) określamy wykorzystując następującą funkcję przynależności: ( ) ( ) Zatem 0,5 X [ ( ) ]
15 Przykład Niech X=R (zbiór liczb rzeczywistych) Zbiory rozmyte liczb rzeczywistych bliskich liczbie można też określić inaczej wykorzystując inną funkcję przynależności: ( ) 0,, w przeciwnym razie 0,
16 Przykład Sformalizujmy teraz określenie temperatura wody odpowiednia do kąpieli. Zbiór rozważań: Zbiór rozmyty: X=[5, 6,, 4, 5] 0, 6 0,3 7 0,5 8 0,8 9 0,95 0 0,9 0,8 3 0,75 4 0,7 5 Inna możliwość: 0, 5 0, 6 0,4 7 0,7 8 0, ,9 0,85 0,8 3 0,75 4 0,7 5
17 Przykłady funkcji przynależności Funkcja Gaussowska ( ) ep gdzie jest środkiem, a określa szerokość krzywej Funkcja typu dzwonowego ( ; a, b, c) b c a gdzie parametr a określa szerokość, b określa nachylenie, natomiast c określa środek.
18 Przykłady funkcji przynależności Funkcja klasy t t( ; a, b, c) 0 a b a c c b 0 a b a c b c Funkcja klasy L L( ; a, b) b b a 0 a a b b
19 Przykłady funkcji przynależności Funkcja klasy s s( ; a, b, c) 0 a c a c c a a b a c b c Funkcja radialna ( ) ep
20 Przykłady funkcji przynależności Funkcja klasy ( ; a, b) 0 a b a a a b b Funkcja singleton ( ) 0 Do zbioru rozmytego należy tylko.
21 Przykład Niech X= [0, zł] Funkcję przynależności zbioru rozmytego dużo pieniędzy określamy jako funkcję klasy s. 0,
22 Definicja Zbiór elementów przestrzeni X których ()>0 nazywamy nośnikiem zbioru rozmytego. Wprowadzamy oznaczenie: supp :={ X: ()>0 } Przykład Jeżeli X={,,3,4,5,6,7,8} oraz wówczas 0, 0,4 0,6 5 0,3 7 supp ={,, 5, 7}
23 Definicja Wysokość zbioru rozmytego oznaczamy przez h() i określamy jako: Przykład h( ) sup ( ) Jeżeli X={,,3,4,5,6,7,8,9,0} oraz X wówczas 0, 0,4 0,6 5 0,3 7 h() = 0,6
24 Definicja Mówimy, że zbiór rozmyty jest pusty (ozn. =ø) wtedy i tylko wtedy supp := ø Definicja Mówimy, że zbiór rozmyty zawiera się w zbiorze B (ozn. B) wtedy i tylko wtedy każdego X ( ) ( ) B Przykład 0,5 B
25 Operacje na zbiorach rozmytych Definicja Przecięciem zbiorów rozmytych,b X jest zbiór rozmyty funkcji przynależności B ( ) min{ ( ), ( )} B B o W przypadku wielu zbiorów,,, n przecięcie określone jest następującą funkcją przynależności ( ) min{ ( ),..., ( )}... n n B 0,5 B
26 Definicja Sumą zbiorów rozmytych,b X jest zbiór rozmyty przynależności ( ) ma{ ( ), ( )} B B B o funkcji W przypadku wielu zbiorów,,, n przecięcie określone jest następującą funkcją przynależności ( ) ma{ ( ),..., ( )}... n n 0,5 B B
27 Definicja Dopełnieniem zbioru rozmytego X jest zbiór rozmyty przynależności gdzie X. ( ) ( ) o funkcji Przykład 0,5 Jeżeli X={,,3,4} oraz wówczas ,8 0,6 0, 0, ,4 0,6 4
28 Można łatwo pokazać (ćwiczenia!), że przypadku zbiorów rozmytych nie są spełnione prawa dopełnienia tzn: X Zachodzą natomiast prawa de Morgana oraz absorbcji (ćwiczenia!). Ponadto w przypadku operacji na zbiorach rozmytych zachodzą własności przemienności, łączności oraz rozdzielności. Przykład Jeżeli X={,,3} oraz wówczas 0,8 0, 0, 0,6 0,4 0,4 3 X 0,8 0,6 3
29 Definicja Iloczynem kartezjańskim zbiorów rozmytych X i B Y nazywamy zbiór rozmyty B funkcji przynależności gdzie X i y Y. B (, y) min{ ( ), ( y)} B Przykład Jeżeli X={,,3,4,5} oraz wówczas B 0, 0, (,) 0,4 0, (,) 0,6 5 0,4 (,) B 0,3 (,) 0,4 0,4 (5,) 0,3 0,3 (5,)
30 t -normy Przecięcie zbiorów rozmytych,b X określiliśmy jako zbiór rozmyty B o funkcji przynależności B ( ) min{ ( ), ( )} B Zamiast funkcji min możemy użyć dowolnej t-normy, tzn. funkcji T takiej, że: T(T(a, b), c) = T(a, T(b, c)) (łączność) T(a, b) = T(b, a) (przemienność) T(a, b) T(d, c) a d, b c (monotoniczność) T(a, ) = a (warunek brzegowy) Wprowadźmy oznaczenie T( a, b) a T b
31 Operatory t -normy
32 s -normy Sumę zbiorów rozmytych,b X określiliśmy jako zbiór rozmyty B o funkcji przynależności B ( ) ma{ ( ), ( )} B Zamiast funkcji ma można wziąć dowolna s-normę, tzn. dowolna funkcje spełniająca warunki: S(S(a, b), c) = S(a, S(b, c)) (łaczność) S(a, b) = S(b, a) (przemienność) S(a, b) S(d, c) a d, b c (monotoniczność) S(a, 0) = a (warunek brzegowy) Wprowadźmy oznaczenie S( a, b) a S b
33 Operatory s -normy
34 Relacje rozmyte Zbiory rozmyte pozwalają nam operować nieprecyzyjnym sformułowaniami temperatura wody odpowiednia do kąpieli szybki samochód Zajmiemy się teraz relacjami rozmytymi. Relacje takie pozwalają sprecyzować nieprecyzyjne sformułowania np. jest znacznie mniejsze od y zdarzenie miało miejsce dużo wcześniej niż zdarzenie y
35 Definicja Relacją rozmytą R między dwoma niepustymi zbiorami (nierozmytymi) X i Y nazywamy zbiór rozmyty określony na iloczynie kartezjańskim X Y tzn: R, y, R (, y) X y Y gdzie R : X Y [0,] jest funkcją przynależności. Oznaczenia R X Y R(, y ) (, y ) R X Y R(, y ) (, y )
36 Przykład Niech X={3,4,5} i Y={4,5}. Zdefiniujmy następującą relację R 0,8 (3,4) 0,3 (3,5) (4,4) 0,8 (4,5) 0,8 (5,4) (5,5) Relację tą możemy interpretować jako reprezentację zdania jest mniej więcej równe y. Funkcja przynależności tej relacji y R (, y) 0,8 0,3 y y
37 Przykład (cd) Relację R 0,8 (3,4) 0,3 (3,5) (4,4) 0,8 (4,5) 0,8 (5,4) (5,5) możemy zapisać za pomocą macierzy y y 3 0,8 0,8 0,3 0,8 gdzie =3, =4, 3 =5 oraz y =4, y =5.
38 Przykład Przyjmijmy, że X=Y=[40,300] będzie przedziałem prędkości osiąganych przez samochody. Rozważmy relację R o następującej funkcji przynależności R (, y) 0 y 70 0 y y y Relację tą możemy interpretować jako reprezentację zdania samochód osiągający prędkość maksymalną jest dużo szybszy od samochodu osiągającego prędkość maksymalną y.
39 Złożenie relacji Niech X, Y i Z będą zbiorami nierozmytymi. Rozważmy dwie relacje rozmyte R X Y S Y Z z funkcją przynależności z funkcją przynależności R S (, y) ( y, z) Definicja Złożeniem typu sup-t relacji rozmytych R i S nazywamy relację rozmytą R S X Z określoną następującą funkcją przynależności R S (, z) sup{ (, y) ( y, z)} gdzie T jest operatorem t normy. y Y R T S
40 Przykład Jeżeli T(a, b)=min{a, b} wówczas otrzymujemy R S (, z) sup{min{ (, y), ( y, z)}} (tzw. złożenie typu sup-min) y Y R S Jeżeli zbiór Y ma skończoną liczbę elementów wówczas R S (, z) ma{min{ (, y ), ( y, z)}} (tzw. złożenie typu ma-min) y Y R S
41 Przykład Rozważmy dwie relacje rozmyte R 0,3 0,6 0,7 S 0,4 0,3 0,8 0,4 gdzie X={, }, Y={y, y }, Z={z, z, z 3 } Złożenie typu ma-min relacji R i S ma postać R S 0,3 0,6 0,7 0,4 0,3 0,8 0,4 a a a a a a 3 3
42 Przykład (cd) Korzystając ze wzoru R S Znajdujemy wartości a ij (, z) ma{min{ (, y ), ( y, z)}} y Y R S a a a 3 a a a 3 ma{min{ 0,3;0,4};min{;0,3}} 0,3 ma{min{ 0,3;};min{;0,8}} 0,8 ma{min{ 0,3;0,4};min{;}} ma{min{ 0,6;0,4};min{0,7;0,3}} 0,4 ma{min{ 0,6;};min{0,7;0,8}} 0,7 ma{min{ 0,6;0,4};min{0,7;}} 0,7
43 Przykład (cd) Ostatecznie R S 0,3 0,4 0,8 0,7 0,7
Zagadnienia AI wykład 1
Zagadnienia AI wykład Podręcznik do wykładu: Leszek Rutkowski Metody i techniki sztucznej inteligencji Wydawnictwo Naukowe PWN Prezentacje do wykładu będą sukcesywnie umieszczane na stronie: http://merlin.fic.uni.lodz.pl/mskulimowski/
Bardziej szczegółowo1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Bardziej szczegółowoLOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Bardziej szczegółowoJest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.
Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"
Bardziej szczegółowoInteligencja obliczeniowa
Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Bardziej szczegółowoZasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.
Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0
Bardziej szczegółowoReprezentacja rozmyta - zastosowania logiki rozmytej
17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Bardziej szczegółowoLogika dla socjologów Część 3: Elementy teorii zbiorów i relacji
Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zbiory 2 Pary uporządkowane 3 Relacje Zbiory dystrybutywne
Bardziej szczegółowoMatematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J.
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Szmański: Matematyka dyskretna dla informatyków, UAM, 2008 Uzupełniająca:
Bardziej szczegółowoZbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
Bardziej szczegółowoProblemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonych przypadkach daje się opisać tylko w sposób nieprecyzyjny, np.
ZBIORY ROZMYTE Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonyc przypadkac daje się opisać tylko w sposób nieprecyzyjny, np. W dużym mieście, powinien istnieć regionalny port
Bardziej szczegółowoElementy logiki matematycznej
Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w
Bardziej szczegółowo1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Bardziej szczegółowoZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE
SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna
Bardziej szczegółowoAlgebra zbiorów. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak
Algebra zbiorów Materiały pomocnicze do wykładu uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Teoria mnogości Teoria mnogości jest działem matematyki zajmującym się
Bardziej szczegółowoIndukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Bardziej szczegółowoCiała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
Bardziej szczegółowoElementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
Bardziej szczegółowoJeśli X jest przestrzenią o nieskończonej liczbie elementów:
Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów
Bardziej szczegółowoINŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Bardziej szczegółowoWnioskowanie rozmyte. Krzysztof Patan
Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne
Bardziej szczegółowo1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Bardziej szczegółowoPrzestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
Bardziej szczegółowoLogika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW
Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika
Bardziej szczegółowoSTANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.
METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI
Bardziej szczegółowodomykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Bardziej szczegółowoPrzestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Bardziej szczegółowoZasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
Bardziej szczegółowoPodstawowe struktury algebraiczne
Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak
Bardziej szczegółowoChcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
Bardziej szczegółowo020 Liczby rzeczywiste
020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie
Bardziej szczegółowocx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
Bardziej szczegółowo1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.
Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze
Bardziej szczegółowo14. Przestrzenie liniowe
14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest
Bardziej szczegółowoSIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Bardziej szczegółowoInterwałowe zbiory rozmyte
Interwałowe zbiory rozmyte 1. Wprowadzenie. Od momentu przedstawienia koncepcji klasycznych zbiorów rozmytych (typu 1), były one krytykowane za postać jaką przybiera funkcja przynależności. W przypadku
Bardziej szczegółowoDEFINICJA. Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B.
RELACJE Relacje 1 DEFINICJA Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B. Relacje 2 Przykład 1 Wróćmy do przykładu rozważanego
Bardziej szczegółowoLogika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S.
Logika binarna Logika binarna zajmuje się zmiennymi mogącymi przyjmować dwie wartości dyskretne oraz operacjami mającymi znaczenie logiczne. Dwie wartości jakie mogą te zmienne przyjmować noszą przy tym
Bardziej szczegółowoAnaliza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
Bardziej szczegółowoWstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń
Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna 1 Plan:
Bardziej szczegółowoMatematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
Bardziej szczegółowoRACHUNEK ZBIORÓW 5 RELACJE
RELACJE Niech X i Y są dowolnymi zbiorami. Układ ich elementów, oznaczony symbolem x,y (lub też (x,y) ), gdzie x X i y Y, nazywamy parą uporządkowaną o poprzedniku x i następniku y. a,b b,a b,a b,a,a (o
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6a: Model danych oparty na zbiorach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na zbiorach
Bardziej szczegółowoW naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Bardziej szczegółowoMetody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
Bardziej szczegółowoW pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się
1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania
Bardziej szczegółowoInżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość
Bardziej szczegółowoRównoliczność zbiorów
Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność
Bardziej szczegółowoZdarzenia losowe i prawdopodobieństwo
Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne
Bardziej szczegółowoI. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne
Bardziej szczegółowoO funkcjach : mówimy również, że są określone na zbiorze o wartościach w zbiorze.
1. Definicja funkcji f:x->y. Definicja dziedziny, przeciwdziedziny, zbioru wartości. Przykłady. I definicja: Funkcją nazywamy relację, jeśli spełnia następujące warunki: 1) 2) 1,2 [(1 2)=> 1=2] Inaczej
Bardziej szczegółowoUwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.
Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność
Bardziej szczegółowoLogika Stosowana. Wykład 5 - Zbiory i logiki rozmyte Część 1. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 5 - Zbiory i logiki rozmyte Część 1 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 36 Plan
Bardziej szczegółowoMatematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 1
Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 1 Zasady współpracy https://mat.ug.edu.pl/~matpz/ wykłady nie są obowiązkowe, ale nieobecności będą odnotowywane nieobecności nie należy usprawiedliwiać,
Bardziej szczegółowoWstęp do Matematyki (2)
Wstęp do Matematyki (2) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Wstęp do Matematyki (2) Własności relacji 1 / 24 Wprowadzenie
Bardziej szczegółowoRozmyte systemy doradcze
Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu
Bardziej szczegółowoFinanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)
dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród
Bardziej szczegółowoMETODY INTELIGENCJI OBLICZENIOWEJ wykład 6
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 965 Lotfi A. Zadeh: : Fuzzy sets In almost every case you can build the same product without fuzzy logic, but fuzzy
Bardziej szczegółowo1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
Bardziej szczegółowoLiczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Bardziej szczegółowoFUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
Bardziej szczegółowoAlgebra abstrakcyjna
Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą
Bardziej szczegółowoDystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
Bardziej szczegółowoWykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.
Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo
Bardziej szczegółowoRozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Bardziej szczegółowoZajęcia nr. 3 notatki
Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty
Bardziej szczegółowo2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
Bardziej szczegółowoA i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
Bardziej szczegółowoRodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
Bardziej szczegółowoWykłady z Matematyki Dyskretnej
Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Informacje
Bardziej szczegółowoZALICZENIE WYKŁADU: 30.I.2019
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 30.I.2019 KOGNITYWISTYKA UAM, 2018 2019 Imię i nazwisko:.......... POGROMCY PTAKÓW STYMFALIJSKICH 1. [2 punkty] Podaj definicję warunku łączności
Bardziej szczegółowo15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Bardziej szczegółowoNp. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0
ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru
Bardziej szczegółowo1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
Bardziej szczegółowo. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Bardziej szczegółowoGrupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
Bardziej szczegółowoZbiory wypukłe i stożki
Katedra Matematyki i Ekonomii Matematycznej 28 kwietnia 2016 Hiperpłaszczyzna i półprzestrzeń Definicja Niech a R n, a 0, b R. Zbiór H(a, b) = {x R n : (a x) = b} nazywamy hiperpłaszczyzną, zbiory {x R
Bardziej szczegółowoUniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Bardziej szczegółowo1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
Bardziej szczegółowoZad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013
Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)
Bardziej szczegółowoAlgebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Bardziej szczegółowozdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.
Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie
Bardziej szczegółowoMacierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Bardziej szczegółowo1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Bardziej szczegółowoPo uruchomieniu programu nasza litera zostanie wyświetlona na ekranie
Część X C++ Typ znakowy służy do reprezentacji pojedynczych znaków ASCII, czyli liter, cyfr, znaków przestankowych i innych specjalnych znaków widocznych na naszej klawiaturze (oraz wielu innych, których
Bardziej szczegółowoRekurencyjna przeliczalność
Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne
Bardziej szczegółowoDlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
Bardziej szczegółowoDziałania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.
Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Przykłady działań wewnętrznych 1. Dodawanie i mnożenie są działaniami wewnętrznymi
Bardziej szczegółowoRoger Bacon Def. Def. Def Funktory zdaniotwórcze
Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym
Bardziej szczegółowoPokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Bardziej szczegółowoCałki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej
Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,
Bardziej szczegółowoWstęp do Techniki Cyfrowej... Algebra Boole a
Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w
Bardziej szczegółowoRozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Bardziej szczegółowoBOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH
BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH WSTĘP Zbiór liczb całkowitych można definiować na różne sposoby. Jednym ze sposobów określania zbioru liczb całkowitych jest
Bardziej szczegółowoTreści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka
Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA
Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,
Bardziej szczegółowoPrawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018
Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy
Bardziej szczegółowo1. ZBIORY PORÓWNYWANIE ZBIORÓW. WYKŁAD 1
WYKŁAD 1 1 1. ZBIORY. Pojęcie ZBIORU i NALEŻENIA do niego są pojęciami pierwotnymi(niedefiniowalnymi) w matematyce, reszta matematyki jest zdefiniowana lub opisana za pomocą tych pojęć. Można by, opierając
Bardziej szczegółowo