ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE
|
|
- Aleksander Tomczyk
- 7 lat temu
- Przeglądów:
Transkrypt
1 SYSTEMY ROZMYTE
2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2
3 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna dla systemów komputerowych. Jest dość ciepło informacja opisowa - naturalna dla człowieka. Klasyczna teoria zbiorów: dowolny element należy lub nie należy do danego zbioru. Teoria zbiorów rozmytych: element może częściowo należeć do pewnego zbioru. 3
4 Zamiast dwóch wartości logicznych (prawda i fałsz) nieskończenie wiele wartości [,]. Np.: młody człowiek : A= młody µ.8 A= młody 3 klasycznie [lata] 3 sposób rozmyty [lata] Umożliwiają formalne określenie pojęć nieprecyzyjnych i wieloznacznych: - wysoki hałas, - małe zarobki, - niskie zużycie paliwa. 4
5 Obszar rozważań X (theuniverseofdiscourse) - zbiór nierozmyty (np. płaca w Niemczech i w Polsce). Zbiór rozmyty w pewnej przestrzeni (niepustej) X - zbiór par : {(, ( )); } A= µ X A µ A () funkcja przynależności zbioru rozmytego A. Funkcja przynależności przypisuje każdemu elementowi X stopień jego przynależności do zbioru rozmytego A 5
6 µ A () = pełna przynależność elementu do zbioru rozmytego A; µ A () = brak przynależności do zbioru rozmytego A; µ A () częściowa przynależność do zbioru rozmytego A. Symboliczny zapis zbioru rozmytego o skończonej liczbie elementów: A µ n A( ) µ A( 2) µ A( n) µ A( i) = = 2 n i= i suma mnogościowa przyporządkowanie 6
7 Np. Ciepła woda na basenie : Obszar rozważań: X = [2, 2,..., 29] Zbiór rozmyty A (subiektywnie!): A = Jeśli X -przestrzeń o nieskończonej liczbie elementów, to zapis symboliczny: A = µ A ( ) 7
8 Np. Zbiór liczb bliskich liczbie 7 : 2 µ ( A ) = + ( -7) - A + ( 7) = a) 2 µ ( )
9 Np. Zbiór liczb bliskich liczbie 7 : -7 jeżeli 4 µ A( )= 3 w przeciwnym razie µ ( ) 7 4 9
10 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI
11 F. PRZYNALEŻNOŚCI KLASY s sabc ( ;,, ) dla a 2 - a 2 dla b a c- a = 2 - c 2 dla b c c- a dla c µ ( ).5 a b c
12 F. PRZYNALEŻNOŚCI KLASY π (zdef. poprzez klasę s) sc ( ; - bc, - b/2, c) dla a π ( bc ;, ) = - scc ( ;, + b/2, c+ b) dla c µ ( ).5 c-b c-b/2 c c+b/2 c+b 6 2
13 F. PRZYNALEŻNOŚCI KLASY γ (alternatywa dla s) dla µ ( ).5 a b c a a γ ( ab ;, ) = dla a b b a dla b µ ( ) a b 3
14 F. PRZYNALEŻNOŚCI KLASY t (alternatywa dla π) µ ( ).5 c-b c-b/2 c c+b/2 c+b 6 µ ( ) dla a a dla a b b a tabc ( ;,, ) = c dla b c c b dla c a b c 4
15 F. PRZYNALEŻNOŚCI KLASY L dla a b- L( ab ;, )= dla a b b- a dla b µ ( ) a b 5
16 F. PRZYNALEŻNOŚCI KLASY singleton ( ) ( - )= jeżeli µ A = δ jeżeli = µ ( ).5 ' Singleton charakteryzuje jednoelementowy zbiór r rozmyty. Funkcja ta jest wykorzystywana głównie g do operacji rozmywania w systemach wnioskujących. 6
17 Np.: prędkość samochodu: X: [, ma ] Mała prędkość samochodu (A) typ L Średnia prędkość samochodu (B) typ t Duża prędkość samochodu (C) typ γ µ A () µ B () µ C () ma =5 µ A () = µ B ()=.5, µ C ()= 7
18 µ() Baza Nośnik (baza) zbioru rozmytego A: zbiór elementów ZR, dla których µ () > { } supp A= X; µ ( ) > A 8
19 µ() Jądro Baza Jądro zbioru rozmytego A: zbiór elementów ZR, dla których µ () = core( A) = { X : µ ( ) = } A 9
20 µ() α Jądro α - przekrój Baza α -przekrój zbioru rozmytego A: zbiór nierozmyty taki, że: { } A = X : ( ) ( [,] µ α α α A 2
21 Np.: A = X={,..., } A = X = {,..., }, A = {2, 4, 5, 8, },. A = {4, 5, 8, },.3 A = {5, 8},.6 A = {5}..7 2
22 Wysokość zbioru rozmytego A: ha ( ) = sup µ ( ) A A Zbiór normalny: ha= ( ) Normalizacja zbioru: µ A N ( ) µ A( ) = ha ( ) X Np.: - przed normalizacją: A = po normalizacji:.4..8 A N =
23 Inkluzja (zawieranie sie ZR A w ZR B): µ () µ B () µ A () ZR wypukły: µ () ZR wklęsły: µ () 23
24 OPERACJE NA ZBIORACH ROZMYTYCH Suma µ A B ()=min{, µ A ()+µ B ()} : µ () µ A () µ B () µ A () µ B () lub µ A B ()=ma{µ A (),µ B ()} : µ () µ A () µ B () µ A () µ B () 24
25 Iloczyn µ A B ()=min{µ A (),µ B ()} : µ () µ A () µ B () µ A () µ B () lub µ A B ()=µ A () µ B () : µ () µ A () µ B () µ A () µ B () 25
26 Dopełnienie zbioru rozmytego: µ () µ A () µ Â () Równość dwu ZR A i B: µ ( ) = µ ( ) X A B 26
27 LICZBY ROZMYTE: Zbiory rozmyte, zdefiniowane na osi liczb rzeczywistych. Wymagania: zbiór normalny: h(a)=; zbiór wypukły; funkcja przynależności przedziałami ciągła. np.: µ () 27
28 LICZBY ROZMYTE: dodatnie ujemne; ani dodatnie ani ujemne µ () 28
29 Dodawanie liczb rozmytych: { } µ A ( ) ma µ A( y B ), µ B( z ) y z + = = + µ µ A (y) µ B (z) µ A+B () 29
30 Mnożenie liczb rozmytych: { } µ A ( ) min µ A( y B ), µ B( z ) y z = = µ µ A (y) µ B (z) µ A B () 3
31 PRZYBLIŻONE WNIOSKOWANIE 3
32 REGUŁY WNIOSKOWANIA W LOGICE ROZMYTEJ Reguły, których przesłanki lub wnioski wyrażone są w języku zbiorów rozmytych. Reguły pochodzące od ekspertów zwykle wyrażone są w języku nieprecyzyjnym. Zbiory rozmyte pozwalają przełożyć ten język na konkretne wartości liczbowe. Praca systemu decyzyjnego opartego na logice rozmytej zależy od definicji reguł rozmytych w bazie reguł. 32
33 Reguły mają postać IF...AND...THEN. np.: IF a is A AND b is B THEN c is C IF a is A2 AND b is NOT B2 THEN c is C2 gdzie: a, b, c zmienne lingwistyczne, A,..., C2 zbiory rozmyte. Zmienne lingwistyczne: zmienne, które przyjmują jako wartości słowa lub zdania wypowiedziane w języku naturalnym. (również wartości liczbowe). 33
34 STEROWNIKI ROZMYTE 34
35 Nie wymagają tworzenia modelu rozważanego procesu (co często jest trudne); Należy jedynie sformułować zasady postępowania w postaci rozmytych reguł (IF..THEN). Np.: Schemat układu klimatyzacji: STEROWNIK ROZMYTY pomieszczenie czujnik temperatury czujnik wilgotności KLIMATYZATOR 35
36 pomieszczenie czujnik temperatury y STEROWNIK ROZMYTY 2 czujnik wilgotności KLIMATYZATOR, 2 y zmierzone wartości wejściowe; sygnał sterujący (intensywność chłodzenia). 36
37 Zastosowania praktyczne: sprzęt AGD (pralki, lodówki, odkurzacze); kamery (autofokus); nadzór wentylacji w tunelach; sterowanie światłami na wjeździe na autostradę; klimatyzacja; automatyka przemysłowa; sterowanie robotów;... 37
38 STEROWNIK ROZMYTY: BAZA REGUŁ BLOK ROZMYWANIA A' X BLOK WNIOSKOWANIA B' BLOK WYOSTRZANIA y Baza reguł (model lingwistyczny): zbiór rozmytych reguł w postaci: R ( k ) : IF ( is A AND is A AND is A ) k k k 2 2 n n k THEN ( y is B AND y is B AND y is B ) k k 2 2 m m 38
39 Np. Sterowanie ogrzewaniem: Cena ogrzewania mróz Temperatura zimno chłodno tanio średnio drogo 39
40 Np. Sterowanie ogrzewaniem: Cena ogrzewania mróz Temperatura zimno chłodno tanio mocno mocno średnio średnio mocno średnio słabo drogo średnio słabo wcale () R : IF ( is AND is Temperatura mróz Cena _ ogrz tanio) THEN ( Grzać is mocno) R (2) : IF ( Temperatura is chłodno AND Cena _ ogrz is drogo) THEN ( Grzać is wcale) 4
41 ROZMYWANIE (fuzzyfikacja) Przejście od pomiarów (konkretna wartość ) do funkcji przynależności przez określenie stopni przynależności zmiennych lingwistycznych do każdego ze zbiorów rozmytych. Temperatura: T =5 C Np.: Cena_ogrz: p =48zł/MBTU (3) R : IF ( Temperatura is chłodno AND Cena _ ogrz is tanio) THEN ( Grzać is średnio) µ chłodno (T)=.5 µ tanio (p)= C T 48zł/MBtu p 4
42 µ chłodno (T)=.5 µ tanio (p)= C T 48zł/MBtu p Stopień spełnienia reguły dla wszystkich przesłanek: µ ( ) = min{ µ ( T), µ ( p)} całe chłodno tanio = min{.5,.3} = 3. poziom zapłonu reguły 42
43 WNIOSKOWANIE Obliczanie stopnia prawdziwości wniosku: Wnioskowanie MIN: µ = wniosku min{ µ, µ } całe średnio µ średnio (h) µ całe =.3 µ wniosku (h) h 43
44 Wnioskowanie : µ = i µ µ wniosku całe średnio µ średnio (h) µ całe =.3 µ wniosku (h) h 44
45 AGREGACJA Jeżeli więcej niż jedna reguła ma niezerowy poziom zapłonu, wyniki (zbiory rozmyte) sumuje się. THEN THEN Grzać Grzać THENGrzać is słabo is średnio is mocno µ wniosku słabo średnio mocno h 45
46 WYOSTRZANIE (defuzzyfikacja) Jeżeli na wyjściu wymagana jest wartość liczbowa, stosuje się jedną z metod wyostrzania: Metoda pierwszego maksimum: 46
47 WYOSTRZANIE (defuzzyfikacja) Jeżeli na wyjściu wymagana jest wartość liczbowa, stosuje się jedną z metod wyostrzania: Metoda środka maksimum: 47
48 WYOSTRZANIE (defuzzyfikacja) Jeżeli na wyjściu wymagana jest wartość liczbowa, stosuje się jedną z metod wyostrzania: Metoda środka ciężkości (COG): 48
49 Tu: µ wniosku słabo COG średnio mocno 57 h COG dla zbiorów ciągłych: µ iac i i i h = A A i powierzchnia zbioru i µ i stopień przynależności do zbioru i c i środek ciężkości zbioru i. i µ i i 49
50 STEROWNIK ROZMYTY TAKAGI-SUGENO Baza reguł sterownika ma charakter rozmyty tylko w części IF. W części THEN występują zależności funkcyjne. Reguły Mamdaniego: wynikiem jest zbiór rozmyty B: IF =A AND 2 =A 2 n =A n THEN y = B Reguły Takagi-Sugeno: wynikiem jest funkcja f ( i ): IF =A AND 2 =A 2 n =A n THEN y = f (, 2,.. n ) Zwykle są to funkcje liniowe : f ( i ) = y = a +a +a n n 5
51 Np.: R () : IF prędkość is niska THEN hamowanie = prędkość R (2) : IF prędkość is średnia THEN hamowanie = 4 prędkość R (3) : IF prędkość is wysoka THEN hamowanie = 8 prędkość µ niska średnia wysoka Prędkość R () : w =.3; r = 2 R (2) : w 2 =.8; r 2 = 4 2 R (3) : w 3 =.; r 3 = 8 2 w r Hamowanie = 7.2 i w i i = 5
52 PROJEKTOWANIE BAZ REGUŁ Informacja niezbędna do zaprojektowania sterownika: numeryczna (ilościowa) z czujników pomiarowych; lingwistyczna (jakościowa) od eksperta. Stworzenie bazy wiedzy dla układu rozmytego zadanie nietrywialne... Siatka Indywidualne funkcje 52
53 Siatki: proste i skuteczne; łączenie danych numerycznych i nienumerycznych poprzez uzupełnianie istniejącej bazy reguł o nowe reguły (na podstawie danych uczących); N k obszarów dla k wymiarów i N funkcji; -często słaba aproksymacja. Funkcje indywidualne: dokładniejsze, lepsza aproksymacja, mniej funkcji; trudniejsze w implementacji. 53
54 Zadanie: Ustalenie reguł rozmytych tak, by sterownik generował właściwe sygnały wyjściowe.. Określ. zakresu zmienności danych WE i WY [ i-, i+ ] µ( ) µ( 2 ) µ(y) y - y + y 54
55 2. Podział zakresów na podobszary, np.: n = 2N+ M N,..., M, S, D,..., D N i przyjęcie funkcji przynależności (np. trójkątnej) dla każdego z podobszarów. µ( ) M µ( 2 ) 2 M S D D 2 M 3 M 2 M S D D 2 D µ(y) M 2 M S D D 2 y - y + yd 55
56 3. Określenie stopnia przynależności każdego z sygnałów WE i WY do każdego z podobszarów. µ( ) M 2 M S D D 2 µ( 2 ) M 3 M 2 M S D D 2 D (2) () 2 () 2 (2) 2 2 µ(y) M 2 M S D D 2 y - y() y(2) y + y 56
57 tu: - StPrzyn do D =.8, do D 2 =.2, do innych = ; - ma największy StPrzyn do D, 2 do M -Dla każdej pary danych uczących można napisać jedną regułę. µ( ) M 2 M S D D 2 µ( 2 ) M 3 M 2 M S D D 2 D (2) () 2 () 2 (2) 2 2 µ(y) M 2 M S D D 2 y - y() y(2) y + y 57
58 4. Przyporządkowanie stopni prawdziwości (SP) do każdej reguły. µ( ) M 2 M S D D 2 µ( 2 ) M 3 M 2 M S D D 2 D (2) () 2 () 2 (2) 2 2 µ(y) M 2 M S D D 2 y - y() y(2) y + y 58
59 Np. dla reguły: IF ( is A AND 2 is A 2 ) THEN y is B ( () ) SP R = µ ( ) µ ( ) µ ( y) = =.432 D M 2 S ( (2)) µ µ µ S S 2 D SP R = ( ) ( ) ( y) =.7.7 =.49 µ( ) M 2 M S D D 2 µ( 2 ) M 3 M 2 M S D D 2 D (2) () 2 () 2 (2) 2 2 µ(y) M 2 M S D D 2 y - y() y(2) y + y 59
60 Jeśli pewne reguły okazują się sprzeczne wybiera się regułę o największym stopniu prawdziwości. 5. Utworzenie bazy reguł rozmytych na podstawie tablicy: D 3 D 2 D 2 S M S M 2 M 3 M 2 M S D D 2 R () : IF ( is D AND is M ) THEN y is S 2 6
STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.
METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 965 Lotfi A. Zadeh: : Fuzzy sets In almost every case you can build the same product without fuzzy logic, but fuzzy
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Jeśli X jest przestrzenią o nieskończonej liczbie elementów:
Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów
Wnioskowanie rozmyte. Krzysztof Patan
Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonych przypadkach daje się opisać tylko w sposób nieprecyzyjny, np.
ZBIORY ROZMYTE Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonyc przypadkac daje się opisać tylko w sposób nieprecyzyjny, np. W dużym mieście, powinien istnieć regionalny port
6. Zagadnienie parkowania ciężarówki.
6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte)
WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) Motywacje:! przezwyciężenie wad tradycyjnych algorytmów komputerowych, które zawodzą zwłaszcza w sytuacjach, w których człowiek
7. Zagadnienie parkowania ciężarówki.
7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość
SID Wykład 7 Zbiory rozmyte
SID Wykład 7 Zbiory rozmyte Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Wstęp Language Ontological Commitment Epistemological Commitment (What exists in the world) (What an agent
ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO
Szybkobieżne Pojazdy Gąsienicowe (2) Nr 2, 24 Mirosław ADAMSKI Norbert GRZESIK ALGORYTM PROJEKTOWANIA CH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO. WSTĘP
INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Sztuczna inteligencja : Zbiory rozmyte cz. III
Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,
Podstawy sztucznej inteligencji
wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru
Układy logiki rozmytej. Co to jest?
PUAV Wykład 14 Co to jest? Co to jest? Logika rozmyta (fuzzy logic) jest to dział matematyki precyzyjnie formalizujący nieprecyzyjne, nieformalne ludzkie rozumowanie. Co to jest? Logika rozmyta (fuzzy
Rozmyte systemy doradcze
Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu
Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo
Piotr Sobolewski Krzysztof Skorupski
Plan prezentacji Logika rodzaje Logika klasyczna Logika wielowartościowa Logika rozmyta Historia powstania Definicje Zbiory rozmyte Relacje rozmyte Systemy rozmyte Modele Zastosowanie w optymalizacji przykłady
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Temat: Model SUGENO. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model SUGENO Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.
Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0
Technologie i systemy oparte na logice rozmytej
Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie
Inteligencja obliczeniowa
Ćwiczenie nr 3 Zbiory rozmyte logika rozmyta Sterowniki wielowejściowe i wielowyjściowe, relacje rozmyte, sposoby zapisu reguł, aproksymacja funkcji przy użyciu reguł rozmytych, charakterystyki przejściowe
Cel projektu: Wymogi dotyczące sprawozdania:
W ramach zajęć proszę wykonać sprawozdanie z logiki rozmytej. Sprawozdanie powinno realizować zadanie wnioskowania rozmytego. Cel projektu: Student projektuje bazę wiedzy wnioskowania rozmytego (kilka,
Sztuczna inteligencja: zbiory rozmyte
Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element
Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie System
Logika rozmyta. Agnieszka Nowak - Brzezińska
Logika rozmyta Agnieszka Nowak - Brzezińska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information
Sztuczna inteligencja : Zbiory rozmyte cz. 2
Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:
Temat: Model TS + ANFIS. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model TS + ANFIS Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Zadanie 0 gdy nie mamy logiki rozmytej
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Inteligencja obliczeniowa
Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie
Logika Stosowana Ćwiczenia
Logika Stosowana Ćwiczenia Systemy sterowania wykorzystujące zbiory rozmyte Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Semestr letni 2014/15 Marcin Szczuka (MIMUW) Logika Stosowana 2014/15
Logika rozmyta. Agnieszka Nowak - Brzezińska
Logika rozmyta Agnieszka Nowak - Brzezińska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information
Metody sterowania sterowanie rozmyte System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym
System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym Sterowanie rozmyte jest sterowaniem za pomocą reguł Sterowanie rozmyte można sklasyfikować jako: -
Reprezentacja rozmyta - zastosowania logiki rozmytej
17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych
KOMPUTERY W STEROWANIU. Ćwiczenie 6 Projektowanie układu regulacji rozmytej
Wydział Elektryczny Zespół Automatyki (ZTMAiPC) KOMPUTERY W STEROWANIU Ćwiczenie 6 Projektowanie układu regulacji rozmytej 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z procedurą projektowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I IDENTYFIKACJA Logika rozmyta podstawy wnioskowania w GUI Fuzzy. Materiały pomocnicze do laboratorium
W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco.
Zadanie 0 Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad wartośd funkcji przynależności
Tworzenie rozmytego systemu wnioskowania
Tworzenie rozmytego systemu wnioskowania Wstęp W odróżnieniu od klasycznych systemów regałowych modele rozmyte pozwalają budowad modele wnioskujące oparte o język naturalny, dzieki czemu inżynierom wiedzy
Systemy rozmyte i ich zastosowania. Krzysztof Rykaczewski
Systemy rozmyte i ich zastosowania Krzysztof Rykaczewski 21 czerwca 2006 SPIS TREŚCI Spis treści 1 Wstęp 1 2 Podstawowe pojęcia i definicje logiki rozmytej 1 2.1 Przykłady funkcji przynależności..................
Jeśli przeszkoda jest blisko to przyhamuj
Rozmyte systemy regułowe Informacja, którą przetwarzają ludzie często (prawie zawsze) jest nieprecyzyjna, a mimo to potrafimy poprawnie wnioskować i podejmować decyzję, czego klasyczne komputery nie potrafią.
Implementacja rozmytych systemów wnioskujących w zdaniach regulacji
Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 5 Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika
Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
Piegat A.: Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999 r.
Metody prognozowania: Podstawy logiki rozmytej Literatura do wykładu: Piegat A.: Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999 r. D. Rutkowska, M. Pilinski, L. Rutkowski,
WPŁYW OPÓŹNIENIA NA DYNAMIKĘ UKŁADÓW Z REGULACJĄ KLASYCZNĄ I ROZMYTĄ
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 65 Politechniki Wrocławskiej Nr 65 Studia i Materiały Nr 31 2011 Kinga GÓRNIAK* układy z opóźnieniem, regulacja rozmyta, model Mamdaniego,
Sterowanie z wykorzystaniem logiki rozmytej
Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte
Sieci Neuronowe Wykład 11 Algorytmy genetyczne; Systemy rozmyte wykład przygotowany na podstawie. S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 4, PWNT, Warszawa 1996. W. Duch, J. Korbicz,
ELEMENTY SZTUCZNEJ INTELIGENCJI. Wstęp do logiki rozmytej
ELEMENTY SZTUCZNEJ INTELIGENCJI 1 Wstęp do logiki rozmytej PLN 1. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte: 1. typu
Logika Stosowana. Wykład 5 - Zbiory i logiki rozmyte Część 1. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 5 - Zbiory i logiki rozmyte Część 1 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 36 Plan
THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS
Journal of KONES Internal Combustion Engines 2005, vol. 12, 3-4 THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS Mariusz Topolski Politechnika Wrocławska,
Temat: Sterowanie mobilnością robota z wykorzystaniem algorytmu logiki rozmytej
Wrocław, 13.01.2016 Metody sztucznej inteligencji Prowadzący: Dr hab. inż. Ireneusz Jabłoński Temat: Sterowanie mobilnością robota z wykorzystaniem algorytmu logiki rozmytej Wykonał: Jakub Uliarczyk, 195639
Sreszczenie. Słowa kluczowe: sterowanie, poziom cieczy, regulator rozmyty
Ewa Wachowicz Katedra Systemów Sterowania Politechnika Koszalińska STEROWANIE POZIOMEM CIECZY W ZBIORNIKU Z WYKORZYSTANIEM REGULATORA ROZMYTEGO Sreszczenie W pracy omówiono układ regulacji poziomu cieczy,
Metoda zaburz-obserwuj oraz metoda wspinania
Metoda zaburz-obserwuj oraz metoda wspinania Algorytm zaburz-obserwuj mierzy się moc (zwykle modułu) przed i po zmianie na tej podstawie podejmuje się decyzję o kierunku następnej zmiany Metoda wspinania
ZASTOSOWANIE LOGIKI ROZMYTEJ W BUDOWIE SYSTEMÓW ZARZĄDZANIA WIEDZĄ PRODUKCYJNĄ
ZASTOSOWANIE LOGIKI ROZMYTEJ W BUDOWIE SYSTEMÓW ZARZĄDZANIA WIEDZĄ PRODUKCYJNĄ Alfred PASZEK Streszczenie: W artykule przedstawiono przykłady zastosowania elementów logiki rozmytej w opracowaniu reprezentacji
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Zagadnienia AI wykład 1
Zagadnienia AI wykład Podręcznik do wykładu: Leszek Rutkowski Metody i techniki sztucznej inteligencji Wydawnictwo Naukowe PWN Prezentacje do wykładu będą sukcesywnie umieszczane na stronie: http://merlin.fic.uni.lodz.pl/mskulimowski/
Interwałowe zbiory rozmyte
Interwałowe zbiory rozmyte 1. Wprowadzenie. Od momentu przedstawienia koncepcji klasycznych zbiorów rozmytych (typu 1), były one krytykowane za postać jaką przybiera funkcja przynależności. W przypadku
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
BADANIE GOTOWOŚCI PRZEDSIĘBIORSTW DO ZARZĄDZANIA STRATEGICZNEGO Z WYKORZYSTANIEM ROZMYTEGO RACHUNKU ZDAŃ
BADANIE GOTOWOŚCI PRZEDSIĘBIORSTW DO ZARZĄDZANIA STRATEGICZNEGO Z WYKORZYSTANIEM ROZMYTEGO RACHUNKU ZDAŃ Agata SZEPTUCH, Marcin ADAM Streszczenie: W artykule podjęto problem badania gotowości przedsiębiorstw
Kurs logiki rozmytej - zadania. Wojciech Szybisty
Kurs logiki rozmytej - zadania Wojciech Szybisty 2009 Spis treści 1 Zadania - zbiory rozmyte 3 2 Zadania - relacje rozmyte 6 3 Zadania - logika rozmyta 11 1 Zadania - zbiory rozmyte 3 Przykłady rozwiązywania
Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.
Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"
Method of determination of the current liquidity ratio with the use of fuzzy logic in hard coal mines
76 PRZEGLĄD GÓRNICZY 2014 UKD 622.333: 622.338.24: 622.652.2 Metoda określania płynności bieżącej w kopalniach węgla kamiennego z wykorzystaniem systemu rozmytego Method of determination of the current
Normalizacja relacji z atrybutami rozmytymi poziomu drugiego
Rozdział 13 Normalizacja relacji z atrybutami rozmytymi poziomu drugiego Streszczenie. Temat rozdziału jest związany z projektowaniem schematów relacyjnych w rozmytych bazach danych. Uwzględnienie nieprecyzyjnych
Logika rozmyta typu 2
Logika rozmyta typu 2 Zbiory rozmyte Funkcja przynależności Interwałowe zbiory rozmyte Funkcje przynależności przedziałów Zastosowanie.9.5 Francuz Polak Niemiec Arytmetyka przedziałów Operacje zbiorowe
ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Pracownia
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykład 12, str. 1 C 1 C 2 C 3 1. * x 2. x 2. or max then (min)
Politechnika Poznańska, Katedra Sterowania i Inżnierii Sstemów Wkład, str. Implikacja rozmta A B A, B µ A (x, µ B ( x A, B µ A B (x, µ A B (x, = min(µ A (x, µ B ( lub µ A B (x, = µ A (x µ B ( 38. Wnioskowanie
ELEMENTY TEORII ZBIORÓW ROZMYTYCH
ELEMENTY TEORII ZBIORÓW ROZMYTYCH OPRACOWAŁ: M. KWIESIELEWICZ POJĘCIA NIEPRECYZYJNE ODDZIAŁYWANIA CZŁOWIEK-OBIEKT TECHNICZNY OTOCZENIE (Hoang 990: człowieka na otoczenie, np.: ergonomiczna konstrukcja
Automatyka i sterowania
Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Kultura logiczna Klasyczny rachunek zdań 2/2
Kultura logiczna Klasyczny rachunek zdań 2/2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 29 III 2 Plan wykładu: Wartościowanie w KRZ Tautologie KRZ Wartościowanie v, to funkcja, która posyła zbiór
Kurs logiki rozmytej. Wojciech Szybisty
Kurs logiki rozmytej Wojciech Szybisty 2009 Spis treści 1 Co to jest logika rozmyta 3 1.1 Podstawy teorii zbiorów rozmytych........................ 3 1.2 Historia.......................................
Arytmetyka liczb binarnych
Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
ZASTOSOWANIE LOGIKI ROZMYTEJ W ZARZĄDZANIU ZAPASAMI THE USE OF FUZZY LOGIC IN INVENTORY MANAGEMENT
orota Rogowska ZASTOSOWANIE LOGIKI ROZYTEJ W ZARZĄZANIU ZAPASAI Streszczenie Zagadnienie zarządzania zapasami zajmuje ważne miejsce w każdym przedsiębiorstwie. Zapasy stanowią bowiem podstawę zapewnienia
METODY HEURYSTYCZNE wykład 5
METODY HEURYSTYCZNE wykład 5 1 KLASY ZASTOSOWAŃ: PREDYKCJA ze znajomości: przewidzieć : { f ( x ), f ( x ),..., f ( x )} f ( x ) n+ 1 n k n k + 1 n bez jawnego definiowania związku między danymi wejściowymi
WNIOSKOWANIE ROZMYTE FUZZY INFERENCE
Dominik Ziajka WNIOSKOWANIE ROZMYTE FUZZY INFERENCE Celem artykułu jest przedstawienie teorii zbiorów rozmytych, wnioskowania rozmytego oraz porównania ich ze zbiorami przybliżonymi. Wprowadzenie do zbiorów
METODY HEURYSTYCZNE wykład 5
METODY HEURYSTYCZNE wykład 5 1 KLASY ZASTOSOWAŃ: PREDYKCJA ze znajomości: przewidzieć : bez jawnego definiowania związku między danymi wejściowymi a wyjściowymi 2 KLASYFIKACJA I ROZPOZNAWANIE WZORCÓW Zaszeregowanie
Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM
Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie
FUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
ROK LIV NR 3 (194) 2013
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LIV NR 3 (194) 2013 Krzysztof Ficoń Akademia Marynarki Wojennej Wydział Dowodzenia i Operacji Morskich 81-103 Gdynia, ul. J. Śmidowicza 69 e-mail: F.Ficon@amw.gdynia.pl
PODSTAWY INŻYNIERI WIEDZY
Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: PODSTAWY INŻYNIERI WIEDZY 2. Kod przedmiotu: PIW 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
1. Wstęp. 2. Podobieństwo obiektów. Andrzej Łachwa
Podobieństwo zbiorów 105 Andrzej Łachwa Podobieństwo zbiorów 1. Wstęp Niemal codziennie używamy określenia podobieństwo i wskazujemy rzeczy podobne do siebie. Na pierwszy rzut oka jest to pojęcie proste.
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Stan wysoki (H) i stan niski (L)
PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo
a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76
. p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Sterowniki Programowalne (SP)
Sterowniki Programowalne (SP) Wybrane aspekty procesu tworzenia oprogramowania dla sterownika PLC Podstawy języka funkcjonalnych schematów blokowych (FBD) Politechnika Gdańska Wydział Elektrotechniki i
Sterownik rozmyty (na przykładzie parkowania samochodu)
Sterownik rozmyty (na przykładzie parkowania samochodu) 06 kwietnia 2010 Idea ogólna Celem programu jest symulacja zachowania się jakiegoś obiektu, zasymulowanie jakiegoś zjawiska, czynności, na podstawie
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a