Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykład 12, str. 1 C 1 C 2 C 3 1. * x 2. x 2. or max then (min)
|
|
- Bożena Bednarczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Politechnika Poznańska, Katedra Sterowania i Inżnierii Sstemów Wkład, str. Implikacja rozmta A B A, B µ A (x, µ B ( x A, B µ A B (x, µ A B (x, = min(µ A (x, µ B ( lub µ A B (x, = µ A (x µ B ( 38. Wnioskowanie (ang. inference rozmte Regu³a : A A A ( x B B B ( x C C C Regu³a : x A A x A ( x and B B B ( x min C C then (min C Regu³a 3: x A A x A ( x and B B B ( x min C C then (min x x or max then (min fuzfikacja w ( agregacja ( max Rs. 73. Wnioskowanie wg metod Mamdaniego reguła : if (x = A and ( = B then ( = C reguła : if (x = A and ( = B then ( = C reguła 3: if (x = A or ( = B then ( = C, C, x, x Sterowanie neuro-rozmte
2 Politechnika Poznańska, Katedra Sterowania i Inżnierii Sstemów Wkład, str. Regu³a : A A A ( x B B B ( x Regu³a : x A A x A ( x and B B B ( x min k k then (min k Regu³a 3: x A A x A ( x and B B B ( x min k k then (min k x x k k or max then (min fuzfikacja w ( agregacja ( max k k Rs. 74. Wnioskowanie wg metod Takagi-Sugeno reguła : if (x = A and ( = B then ( = k reguła : if (x = A and ( = B then ( = k reguła 3: if (x = A or ( = B then ( = 39. Defuzfikacja (wostrzanie µ w ( metod wostrzania: (a metoda środka maksimum, (b metoda pierwszego maksimum, (c metoda ostatniego maksimum, (d metoda środka ciężkości, (e metoda wsokości Sterowanie neuro-rozmte
3 Politechnika Poznańska, Katedra Sterowania i Inżnierii Sstemów Wkład, str. 3 a metoda środka maksimum ( C ( C ( w ( Rs. 75. = ( + / ( C C ( C C ( C C w ( w ( w ( Rs. 76. b metoda pierwszego maksimum ( C ( C ( ( C ( C ( w ( w ( Rs. 77. = c metoda ostatniego maksimum ( C ( C ( ( C ( C ( w ( w ( Rs. 78. = Sterowanie neuro-rozmte
4 Politechnika Poznańska, Katedra Sterowania i Inżnierii Sstemów Wkład, str. 4 d metoda środka ciężkości ( C ( C ( w ( ( C ( P P 3 C ( P 4 P 5 w ( P P 6 Rs. 79. = c = µw (d µw (d (64 e metoda wsokości ( C C =m 3 = Rs. 8. n m j µ Cj j= n µ Cj j= (65 Sterowanie neuro-rozmte
5 Politechnika Poznańska, Katedra Sterowania i Inżnierii Sstemów Wkład, str. 5 Przkład: (sterowanie suwnica Rs. 8. sgnał wejściowe: d odległość wózka od zadanej pozcji docelowej, θ kat odchlenia lin od pionu wejściowe zbior rozmte: d: duża, mała, zero θ: ujemne duże, ujemne średnie, zero, dodatnie średnie, dodatnie duże Rs. 8. Sterowanie neuro-rozmte
6 Politechnika Poznańska, Katedra Sterowania i Inżnierii Sstemów Wkład, str. 6 r_: r_: r_3: r_4: r_5: r_6: r_7: r_8: if (d = duża then (P = dodatnia duża if (d = mała and (θ = ujemn duż then (P = dodatnia średnia if (d = mała and (θ = dodatni duż then (P = ujemna średnia if (d = mała and ((θ = ujemn mał or (θ = zero or (θ = dodatni mał then (P = dodatnia średnia if (d = zero and ((θ = dodatni duż or (θ = dodatni mał then (P = ujemna średnia if (d = zero and (θ = zero then (P = zero if (d = zero and (θ = ujemn mał then (P = dodatnia średnia if (d = zero and (θ = ujemn duż then (P = dodatnia duża Sterowanie neuro-rozmte
7 Politechnika Poznańska, Katedra Sterowania i Inżnierii Sstemów Wkład, str. 7 Przkład: (robot mobiln algortm omijania przeszkod x cos θ sin θ z =, R(θ = sin θ cos θ (66 θ Y Y r przeszkoda X r R d act d obs kierunek skrêcania x X (a Rs. 83. d act bieżaca odległość od przeszkod, d act {d_z, d_m, d_d} λ namiar na przeszkodę, λ {l_ud, l_us, l_um, l_uz, l_dz, l_dm, l_ds, l_dd} (b µ d_z d_s d_d µ l_ud l_us l_um l_uz l_dz l_dm l_ds l_dd d act 3 3 λ (a Sterowanie neuro-rozmte d act (b λ Rs. 84.
8 Politechnika Poznańska, Katedra Sterowania i Inżnierii Sstemów Wkład, str. 8 Uchb e v ev_ud ev_us ev_um ev_z ev_dm ev_ds ev_dd Sterowanie u v uv_dd uv_dd uv_dm uv_z uv_um uv_um uv_ud Sterowanie Odległość d act u θ d_z d_m d_d l_ud l_us uth_dm uth_z Namiar na l_um uth_dd uth_ds przeszkodę l_uz uth_dd uth_dd λ l_dz uth_ud uth_ud l_dm uth_ud uth_us l_ds uth_um uth_z l_dd Sterowanie neuro-rozmte
9 Politechnika Poznańska, Katedra Sterowania i Inżnierii Sstemów Wkład, str. 9 [m] x [m] θ [rad] t [s] (a ścieżka ruchu (b orientacja θ.4 4. u v v [m/s] u v, u θ 4 u θ t [s] t [s] (c prędkość v (d sgnał sterujace u v, u θ Rs. 85. Sterowanie neuro-rozmte
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 7,8, str. 1
Politechnika Poznańska, Katedra Sterowania i Inżnierii Sstemów Wkład 7,8, str. 28. Uchb ustalon w układach z niejednostkowm (elastcznm) sprzężeniem zwrotnm [rad] k u 0 [V] [V] u[v] G (s) G 2 (s) [rad]
Bardziej szczegółowoInżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość
Bardziej szczegółowoSTANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.
METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI
Bardziej szczegółowoWnioskowanie rozmyte. Krzysztof Patan
Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne
Bardziej szczegółowoPiotr Sobolewski Krzysztof Skorupski
Plan prezentacji Logika rodzaje Logika klasyczna Logika wielowartościowa Logika rozmyta Historia powstania Definicje Zbiory rozmyte Relacje rozmyte Systemy rozmyte Modele Zastosowanie w optymalizacji przykłady
Bardziej szczegółowoZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE
SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna
Bardziej szczegółowoSztuczna inteligencja : Zbiory rozmyte cz. III
Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,
Bardziej szczegółowoInżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo
Bardziej szczegółowoRysunek 1-1. Przykładowy zbiór klasyczny (nierozmyty) oraz jego funkcja przynale żności.
Podstaw logiki rozmtej i regulatorów rozmtch. Zbiór rozmt Pojęcie zbioru rozmtego zostało wprowadzone przez L. A. Zadeha w 965. Celem wprowadzenia tego pojęcia bła chęć modelowania procesów złożonch, w
Bardziej szczegółowoMETODY INTELIGENCJI OBLICZENIOWEJ wykład 6
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 965 Lotfi A. Zadeh: : Fuzzy sets In almost every case you can build the same product without fuzzy logic, but fuzzy
Bardziej szczegółowoJeśli X jest przestrzenią o nieskończonej liczbie elementów:
Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów
Bardziej szczegółowoDefinicja. Złożenie zbioru rozmytego i relacji rozmytej. Rozważmy. zbiór rozmyty A X z funkcją przynależności
Zagadnienia I Złożenie zbioru rozmtego i relacji rozmtej Rozważm zbiór rozmt X z funcją prznależności relację rozmtą RX Y z funcją prznależności Definicja R Złożenie zbioru rozmtego i relacji rozmtej R
Bardziej szczegółowoSystemy rozmyte i ich zastosowania. Krzysztof Rykaczewski
Systemy rozmyte i ich zastosowania Krzysztof Rykaczewski 21 czerwca 2006 SPIS TREŚCI Spis treści 1 Wstęp 1 2 Podstawowe pojęcia i definicje logiki rozmytej 1 2.1 Przykłady funkcji przynależności..................
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Bardziej szczegółowoELEMENTY TEORII ZBIORÓW ROZMYTYCH
ELEMENTY TEORII ZBIORÓW ROZMYTYCH OPRACOWAŁ: M. KWIESIELEWICZ POJĘCIA NIEPRECYZYJNE ODDZIAŁYWANIA CZŁOWIEK-OBIEKT TECHNICZNY OTOCZENIE (Hoang 990: człowieka na otoczenie, np.: ergonomiczna konstrukcja
Bardziej szczegółowoMetody sterowania sterowanie rozmyte System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym
System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym Sterowanie rozmyte jest sterowaniem za pomocą reguł Sterowanie rozmyte można sklasyfikować jako: -
Bardziej szczegółowoTemat: Model SUGENO. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model SUGENO Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
Bardziej szczegółowoImplementacja rozmytych systemów wnioskujących w zdaniach regulacji
Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 5 Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika
Bardziej szczegółowoPodstawy sztucznej inteligencji
wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru
Bardziej szczegółowoPodstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Bardziej szczegółowoWzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.
Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =
Bardziej szczegółowoLogika Stosowana Ćwiczenia
Logika Stosowana Ćwiczenia Systemy sterowania wykorzystujące zbiory rozmyte Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Semestr letni 2014/15 Marcin Szczuka (MIMUW) Logika Stosowana 2014/15
Bardziej szczegółowoPlanowanie przejazdu przez zbiór punktów. zadania zrobotyzowanej inspekcji
dla zadania zrobotyzowanej inspekcji Katedra Sterowania i Inżynierii Systemów, Politechnika Poznańska 3 lipca 2014 Plan prezentacji 1 Wprowadzenie 2 3 4 Postawienie problemu Założenia: Rozpatrujemy kinematykę
Bardziej szczegółowoZadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Bardziej szczegółowoINŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Bardziej szczegółowo6. Zagadnienie parkowania ciężarówki.
6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
Bardziej szczegółowoRozmyte systemy doradcze
Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu
Bardziej szczegółowoWPŁYW OPÓŹNIENIA NA DYNAMIKĘ UKŁADÓW Z REGULACJĄ KLASYCZNĄ I ROZMYTĄ
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 65 Politechniki Wrocławskiej Nr 65 Studia i Materiały Nr 31 2011 Kinga GÓRNIAK* układy z opóźnieniem, regulacja rozmyta, model Mamdaniego,
Bardziej szczegółowoWstęp do Sztucznej Inteligencji: Laboratorium Sterownik rozmyty
Wstęp do Sztucznej Inteligencji: Laboratorium Sterowni rozmt Zbior rozmte pozwalają w sposób usstematzowan modelować pojęcia niepreczjne, jaimi ludzie posługują się na co dzień. Przładem może bć wrażenie
Bardziej szczegółowoTomasz Żabiński, tomz@prz-rzeszow.pl, 2006-03-14 90
Poniżej przedstawiono zagadnienie automatycznej pracy suwnicy (Sawodny et al. 2002), będącej elementem np. zautomatyzowanej linii produkcyjnej. Opracowany system sterowania realizuje bezpieczny transport
Bardziej szczegółowoKOMPUTERY W STEROWANIU. Ćwiczenie 6 Projektowanie układu regulacji rozmytej
Wydział Elektryczny Zespół Automatyki (ZTMAiPC) KOMPUTERY W STEROWANIU Ćwiczenie 6 Projektowanie układu regulacji rozmytej 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z procedurą projektowania
Bardziej szczegółowo2.12. Zadania odwrotne kinematyki
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.12. Zadania odwrotne kinematyki Określenie zadania odwrotnego kinematyki T 0 N = [ ] n s a p = r 11 r 12 r 13 p x r 21 r 22 r 23
Bardziej szczegółowoOpis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
Bardziej szczegółowoPodstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Bardziej szczegółowoUniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Bardziej szczegółowoTworzenie rozmytego systemu wnioskowania
Tworzenie rozmytego systemu wnioskowania Wstęp W odróżnieniu od klasycznych systemów regałowych modele rozmyte pozwalają budowad modele wnioskujące oparte o język naturalny, dzieki czemu inżynierom wiedzy
Bardziej szczegółowoKinematyka robotów mobilnych
Kinematyka robotów mobilnych Maciej Patan Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Adaptacja slajdów do wykładu Autonomous mobile robots R. Siegwart (ETH Zurich Master Course:
Bardziej szczegółowoInżynieria Systemów Dynamicznych (4)
Inżynieria Systemów Dynamicznych (4) liniowych (układów) Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 2 WE OKREŚLO 3 ASYMPTO 4 DYNAMICZ
Bardziej szczegółowo7. Zagadnienie parkowania ciężarówki.
7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
Bardziej szczegółoworectan.co.uk 1. Szkic projektu Strona:1
Zadanie: Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności 1. Szkic projektu * Rozwiązanie zadania * Oznaczenia: A [cm²] - pole powierzchni figury
Bardziej szczegółowoSztuczna inteligencja : Zbiory rozmyte cz. 2
Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:
Bardziej szczegółowoCel projektu: Wymogi dotyczące sprawozdania:
W ramach zajęć proszę wykonać sprawozdanie z logiki rozmytej. Sprawozdanie powinno realizować zadanie wnioskowania rozmytego. Cel projektu: Student projektuje bazę wiedzy wnioskowania rozmytego (kilka,
Bardziej szczegółowoMechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej
Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Mechanika Robotów Wojciech Lisowski 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Mechanika Robotów KRiM, WIMIR, AGH
Bardziej szczegółowoElementy teorii zbiorów rozmytych. Materiał udostępniony na prawach rękopisu
Elementy teorii zbiorów rozmytych. Materiał udostępniony na prawach rękopisu Sławomir T.Wierzchoń Instytut Podstaw Informatyki PAN Uniwersytet Gdański, Instytut Informatyki 9 kwietnia 2009 Spis treści
Bardziej szczegółowoPOLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Mechanika Stosowana. y P 1. Śr 1 (x 1,y 1 ) P 2
POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACI I ZARZĄDZANIA. Katedra Podstaw Sstemów Technicznch Płaska geometria mas c c 3c Dla zadanego pola przekroju wznaczć: - połoŝenie środka cięŝkości S( s, s ) - moment
Bardziej szczegółowoZasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.
Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0
Bardziej szczegółowoSztuczna inteligencja: zbiory rozmyte
Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element
Bardziej szczegółowoZadanie 0 gdy nie mamy logiki rozmytej
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Bardziej szczegółowoPiegat A.: Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999 r.
Metody prognozowania: Podstawy logiki rozmytej Literatura do wykładu: Piegat A.: Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999 r. D. Rutkowska, M. Pilinski, L. Rutkowski,
Bardziej szczegółowoSterowanie rozmyte. mgr inż. Piotr Fiertek p. 544
Sterowanie rozmte mgr inż. Piotr iertek p. 544 Literatura do wkładu: D. Driankov H. Hellendoorn M. einfrank Wprowadzenie do sterowania ozmtego Wdawnictwo Naukowo-Techniczne Warszawa 996 Piegat A.: Modelowanie
Bardziej szczegółowoModelowanie układów dynamicznych
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 11 Równania Eulera-Lagrange a Rozważmy układ p punktów materialnych o współrzędnych uogólnionych q i i zdefiniujmy lagranżian
Bardziej szczegółowoPole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Bardziej szczegółowoZadanie : Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności Strona :1
Zadanie : Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności * Rozwiązanie zadania * Oznaczenia : A [cm²] - pole powierzchni figury Xo [cm] - współrzędna
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Bardziej szczegółowoPodstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny
Bardziej szczegółowoDefinicja wartości bezwzględnej. x < x y. x =
1.9. WARTOŚĆ BEZWZGLĘDNA Definicja wartości bezwzględnej... gd... 0 =... gd... < 0 Własności wartości bezwzględnej 0 = = = n a n = a, gd n jest liczbą parzstą Przkład 1.9.1. Oblicz: a) b) c) 1 d) 0 e)
Bardziej szczegółowoPodstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie
Bardziej szczegółowoPODSTAWY INŻYNIERI WIEDZY
Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: PODSTAWY INŻYNIERI WIEDZY 2. Kod przedmiotu: PIW 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma
Bardziej szczegółowoJAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów. Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Źródła odkształcenia prądu układy przekształtnikowe Źródła odkształcenia prądu układy
Bardziej szczegółowoKONKURS MATEMATYCZNY
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W CHEŁMIE INSTYTUT MATEMATYKI i INFORMATYKI 22-100 Chełm, ul. Pocztowa 54 tel./fax. (082) 562 11 24 KONKURS MATEMATYCZNY im. Samuela Chróścikowskiego 30 marzec 2017r. godz.
Bardziej szczegółowoStruktury energetyczne samochodów osobowych opracowane na podstawie dostępnych wyników prób zderzeniowych
Struktury energetyczne samochodów osobowych opracowane na podstawie dostępnych wyników prób zderzeniowych dr hab. inŝ. Krzysztof Piotr Jankowski, nadzw. PR Politechnika Radomska dr inŝ. Mirosław Gidlewski
Bardziej szczegółowo2.9. Kinematyka typowych struktur manipulatorów
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.9. Kinematyka typowych struktur manipulatorów 2.9.1. Manipulator planarny 3DOF Notacja DH Rys. 28 Tablica 1 Parametry DH Nr ogniwa
Bardziej szczegółowoW przypadku przepływu potencjalnego y u z. nieściśliwego równanie zachowania masy przekształca się w równanie Laplace a: = + + t
J. Szantr Wkład nr 3 Przepłw potencjalne 1 Jeżeli przepłw płn jest bezwirow, czli wszędzie lb prawie wszędzie w pol przepłw jest rot 0 to oznacza, że istnieje fnkcja skalarna ϕ,, z, t), taka że gradϕ.
Bardziej szczegółowoOtrzymali Państwo od Pani dr Cichockiej przykładowe zadania na egzamin. Na ostatnich zajęciach możemy je porozwiązywać, ale ze względu na
Otrzymali Państwo od Pani dr Cichockiej przykładowe zadania na egzamin. Na ostatnich zajęciach możemy je porozwiązywać, ale ze względu na ograniczenie czasowe chciałam już dziś dać pewne wskazówki i porady,
Bardziej szczegółowoTemat: Model TS + ANFIS. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model TS + ANFIS Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
Bardziej szczegółowoWarunek zaliczenia wykładu: wykonanie sześciu ćwiczeń w Pracowni Elektronicznej
Elektronika cyfrowa Warunek zaliczenia wykładu: wykonanie sześciu ćwiczeń w Pracowni Elektronicznej Część notatek z wykładu znajduje się na: http://zefir.if.uj.edu.pl/planeta/wyklad_elektronika/ 1 Pracownia
Bardziej szczegółowoĆwiczenie EA9 Czujniki położenia
Akademia Górniczo-Hutnicza im.s.staszica w Krakowie KATEDRA MASZYN ELEKTRYCZNYCH Ćwiczenie EA9 Program ćwiczenia I. Transformator położenia kątowego 1. Wyznaczenie przekładni napięciowych 2. Pomiar napięć
Bardziej szczegółowoUrz¹dzenie steruj¹ce. Obiekt. Urz¹dzenie steruj¹ce. Obiekt. 1. Podstawowe pojęcia. u 1. y 1 y 2... y n. z 1 z 2... z l.
Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str.. Podstawowe pojęcia z (t) z 2 (t)... u (t) u 2 (t). Obiet u m (t) z l (t) (t) 2 (t). n (t) u(t) z(t) Obiet (t) (a) u Rs. u u =
Bardziej szczegółowoI. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
Bardziej szczegółowoLogika rozmyta. Agnieszka Nowak - Brzezińska
Logika rozmyta Agnieszka Nowak - Brzezińska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information
Bardziej szczegółowoGranica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Bardziej szczegółowoGranica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Bardziej szczegółowoPRACA DYPLOMOWA MAGISTERSKA
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania PRACA DYPLOMOWA MAGISTERSKA Konstrukcja autonomicznego robota mobilnego Małgorzata Bartoszewicz Promotor: prof. dr hab. inż. A. Milecki Zakres
Bardziej szczegółowoAlgorytmy estymacji stanu (filtry)
Algorytmy estymacji stanu (filtry) Na podstawie: AIMA ch15, Udacity (S. Thrun) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 kwietnia 2014 Problem lokalizacji Obserwowalność? Determinizm?
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD grudnia 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 10 14 grudnia 2009 PARAMETRY POŁOŻENIA Przypomnienie: Model statystyczny pomiaru: wynik pomiaru X = µ + ε 1. ε jest zmienną losową 2. E(ε) = 0 pomiar nieobciążony, pomiar
Bardziej szczegółowoALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO
Szybkobieżne Pojazdy Gąsienicowe (2) Nr 2, 24 Mirosław ADAMSKI Norbert GRZESIK ALGORYTM PROJEKTOWANIA CH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO. WSTĘP
Bardziej szczegółowoWpływ przegrody izolacyjnej na wytrzymałość dielektryczną powietrza
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Protokół
Bardziej szczegółowoCharakterystyki geometryczne figur płaskich. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji
Charakterstki geometrczne figur płaskich dr hab. inż. Tadeusz Chż Katedra Mechaniki Konstrukcji Wielkości geometrczne charakterzujące przekrój pod względem wtrzmałościowm to: pole przekroju (A), (ang.
Bardziej szczegółowoPochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.
Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika
Bardziej szczegółowoObciążenia środowiskowe: śnieg i wiatr wg PN-EN i PN-EN
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Obciążenia środowiskowe: śnieg i wg PN-EN 1991-1-3 i PN-EN 1991-1-4 Jerzy Bobiński Gdańsk, wersja 0.32 (2014) Obciążenie śniegiem Obciążenie
Bardziej szczegółowoDynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon
Bardziej szczegółowoPrzenośnik zgrzebłowy - obliczenia
Przenośnik zgrzebłowy - obliczenia Katedra Maszyn Górniczych, Przeróbczych i Transportowych Przenośnik zgrzebłowy - obliczenia Dr inż. Piotr Kulinowski pk@imir.agh.edu.pl tel. (67) 0 7 B- parter p.6 konsultacje:
Bardziej szczegółowoif (wyrażenie ) instrukcja
if (wyrażenie ) instrukcja Jeśli wartość wyrażenia jest różna od zera, to jest wykonywana instrukcja, jeśli wartość wyrażenia jest równa 0, to dana instrukcja nie jest wykonywana Wyrażenie testowe podajemy
Bardziej szczegółowoMetamorfozy neutrin. Katarzyna Grzelak. Sympozjum IFD Zakład Czastek i Oddziaływań Fundamentalnych IFD UW. K.Grzelak (UW ZCiOF) 1 / 23
Metamorfozy neutrin Katarzyna Grzelak Zakład Czastek i Oddziaływań Fundamentalnych IFD UW Sympozjum IFD 2008 6.12.2008 K.Grzelak (UW ZCiOF) 1 / 23 PLAN Wprowadzenie Oscylacje neutrin Eksperyment MINOS
Bardziej szczegółowoWykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34
Wykład 13 Informatyka Stosowana 14 stycznia 2019 Magdalena Alama-Bućko Informatyka Stosowana Wykład 13 14.01.2019, M.A-B 1 / 34 Pochodne z funkcji elementarnych c = 0 (x n ) = nx n 1 (a x ) = a x ln a,
Bardziej szczegółowoElektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 11 Promieniowanie 3 11.1 Promieniowanie dipolowe............... 3 11
Bardziej szczegółowogruparectan.pl 1. Szkic projektu Strona:1
Zadanie: Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności 1. Szkic projektu * Rozwiązanie zadania * Oznaczenia: A [cm²] - pole powierzchni figury
Bardziej szczegółowolim Np. lim jest wyrażeniem typu /, a
Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona
Bardziej szczegółowoO ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE
Ryszard Zieliński, IMPAN Warszawa O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE XXXIX Ogólnopolska Konferencja Zastosowań Matematyki Zakopane-Kościelisko 7-14 września 2010 r Model statystyczny pomiaru: wynik pomiaru
Bardziej szczegółowoWYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI Robot do pokrycia powierzchni terenu Zadania robota Zadanie całkowitego pokrycia powierzchni na podstawie danych sensorycznych Zadanie unikania przeszkód
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I IDENTYFIKACJA Logika rozmyta podstawy wnioskowania w GUI Fuzzy. Materiały pomocnicze do laboratorium
Bardziej szczegółowoCyfrowe układy scalone c.d. funkcje
Cyfrowe układy scalone c.d. funkcje Ryszard J. Barczyński, 206 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Kombinacyjne układy cyfrowe
Bardziej szczegółowoUkład sterowania filtrem aktywnym i dynamicznym stabilizatorem napięcia. Katedra Automatyki i Robotyki, AGH, Kraków,
Układ sterowania filtrem aktywnym i dynamicznym stabilizatorem napięcia Katedra Automatyki i Robotyki, AGH, Kraków, 208-06-06. Plan Prointerface - zespół Filtr aktywny zasada pracy, schemat W oraz 4W Architektura
Bardziej szczegółowoLXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
Bardziej szczegółowoRodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Bardziej szczegółowo1 Pochodne wyższych rzędów
Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne
Bardziej szczegółowoObiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany).
SWB - Systemy wbudowane w układach sterowania - wykład 13 asz 1 Obiekt sterowania Wejście Obiekt Wyjście Obiekt sterowania obiekt, który realizuje proces (zaplanowany). Fizyczny obiekt (proces, urządzenie)
Bardziej szczegółowoJAKOŚĆ ENERGII ELEKTRYCZNEJ - PROCES ŁĄCZENIA BATERII KONDENSATORÓW
Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią JAKOŚĆ ENERGII ELEKTRYCZNEJ PROCES ŁĄCZENIA BATERII KONDENSATORÓW
Bardziej szczegółowoProstowniki. 1. Prostowniki jednofazowych 2. Prostowniki trójfazowe 3. Zastosowania prostowników. Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY
POLITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY Prostowniki 1. Prostowniki jednofazowych 2. Prostowniki trójfazowe 3. Zastosowania prostowników ELEKTRONIKA Jakub Dawidziuk sobota, 16
Bardziej szczegółowoSystemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Bardziej szczegółowo