ELEMENTY TEORII ZBIORÓW ROZMYTYCH
|
|
- Dominik Matuszewski
- 7 lat temu
- Przeglądów:
Transkrypt
1 ELEMENTY TEORII ZBIORÓW ROZMYTYCH OPRACOWAŁ: M. KWIESIELEWICZ POJĘCIA NIEPRECYZYJNE ODDZIAŁYWANIA CZŁOWIEK-OBIEKT TECHNICZNY OTOCZENIE (Hoang 990: człowieka na otoczenie, np.: ergonomiczna konstrukcja otoczenia, otoczenia na człowieka, np.: temperatura, skład powietrza, człowieka na obiekt, np.: doświadczenie w obsłudze, obiektu na człowieka, np.: złożoność obiektu, wposażenie techniczne, otoczenia na obiekt, np.: warunki klimatczne, obiektu na otoczenie, np.: chałas, emisja substancji szkodliwch. KATEGORIE SUBIEKTYWNE Przkład zmiennch lingwistcznch: niska temperatura, wsoka temperatura, wsoki poziom chałasu, niski poziom chałasu. Cznnik ludzki rzko, zmęczenie, poziom stresu, itd.
2 Podstaw teoretczne modelowania człowiek - obiekt techniczn z zastosowaniem teorii zbiorów rozmtch Podstawowe pojęcia z zakresu teorii zbiorów rozmtch Niech X będzie zbiorem obiektów, zwanm przestrzenią rozważań. Dowoln element ze zbioru X oznaczm przez x. Załóżm ponadto że prznależność elementu x do podzbioru A zbioru X określona jest za pomocą funkcji prznależności A : X [ 0, ]. Zbiór rozmt A zdefiniowan jest następująco (Zadeh 965: Notacja: {(, A(, } A = x x x X A( / A = x x x X n ( / A = x x i= A i i Przkład: Zbiór rozmt mała liczba naturalna określon w przestrzeni X =,,,,,,,,, : rozważań { } mała liczba naturalna = / / / / 4 + / /6 Interpretacja graficzna: (x (x temperatura temperatura niska wsoka temperatura temperatura niska wsoka 0 50 t [ C] Rs.2. Funkcje charakterstczne zbiorów "temperatura niska" i "temperatura wsoka" w sensie logiki klascznej t [ C] Rs.3.Funkcje charakterstczne zbiorów "temperatura niska" i "temperatura wsoka" w sensie logiki rozmtej.
3 Podstawowe operacje na zbiorach rozmtch zdefiniowane są następująco (Zadeh 965, Kacprzk 986 suma zbiorów rozmtch A i B: A B( x = max { A( x, B( x }, przecięcie zbiorów rozmtch A i B: A B( x = min { A( x, B( x } negacja zbioru rozmtego A: A( x = A( x, iloczn kartezjański zbiorów rozmtch A i B (są one zdefiniowane na różnch przestrzeniach rozważań: { } ( x, min ( x, ( C= A B = A B (x (x temperatura temperatura niska wsoka temperatura temperatura niska wsoka 0 50 t [ C] Rs.4. Interpretacja graficzna sum zbiorów rozmtch "temperatura niska" lub "temperatura wsoka" 0 50 Przkład: A = t [ C] Rs.5. Interpretacja graficzna ilocznu zbiorów rozmtch "temperatura niska" i "temperatura wsoka". /. /. /. /. / / X = {,,,,, 23456}. /. / / /. /. / Y = {,,,,, 23456}. B = Iloczn kartezjański: A B= X Y /
4 Definicja. α - przekrojem zbioru rozmtego A ~ X, oznaczonm Aα, nazwam następując zbiór nierozmt: A α = { x X : A ( x α }, α [0, ] Interpretacja graficzna α - przekroju została przedstawiona na rsunku 4: Rs.6. Interpretacja graficzna α - przekroju Twierdzenie o dekompozcji Każd zbiór rozmt A ~ przedstawić w postaci: A = α [ 0, ] αa α, X, można prz czm αa α oznacza zbiór rozmt, którego elementom przpisano następujące stopnie prznależności: α A α (x = α 0 dla x A dla x A α α Definicja Nośnikiem zbioru rozmtego A ~ X, oznaczanm S A nazwam następując zbiór nierozmt: S A = { x X : A ( x > 0 }
5 Rozmt sstem ekspertow Uogólnioną rozmtą regułę wnioskowania modus ponens, można przedstawić prz pomoc następującego schematu (Dubois and Prade 988, Kacprzk 986: IP : Q PP :, WP :!( P Q gdzie: "!" jest złożeniem tpu max-min, I jest implikacją lingwistczną, P przesłanką lingwistczną, W wnioskiem z rozumowania rozmtego. Implikacja rozmta może bć zdefiniowana na różne sposob (Kacprzk 986, Mizumoto 988. W niniejszej prac przjęto iloczn kartezjański (7 (metoda Zadeha i Mamdaniego (Zadeh 973,992. u u 2 Rozmt Sstem Ekspercki Rs.7. Schemat blokow sstemu eksperckiego. W trakcie sntez sstemu eksperckiego wstępują następujące zadania do wkonania: wbór wielkości wejściowch i wjściowch sstemu, dskretzacja przestrzeni rozważań dla wielkości wejściowch i wjściowch, ustalenie reguł wnioskowania, wbór odpowiedniej metod wnioskowania, zastosowanie odpowiedniej metod wostrzania w przpadku, kied oczekujem zmiennej deczjnej rzeczwistej, realizacja sstemu eksperckiego w wbranm środowisku programowm.
6 REGUŁY. If u is low and u is low then is low 2 2. If u is low and u is then is low 3. 2 If u is and u is low then is 2 4. If u is and u is then is, 2 DYSKRETYZACJA ( u ( u 2 ( low low low 0 0 u 0 0 u Rs.8. Dskretzacja przestrzeni rozważań dla zmiennch wejściowch i zmiennej wjściowej.
7 ( u low 0.7 ( u 2 low ( low u u =min(0.7, Rs.9. Rozmte wnioskowanie dla reguł. ( u ( u 2 ( low 0.7 low u u =min(0.7, Rs.0. Rozmte wnioskowanie dla reguł 2. ( u ( u 2 ( low u u =min(0.3, Rs.. Rozmte wnioskowanie dla reguł 3. ( u ( u 2 ( u u =min(0.3, Rs.2. Rozmte wnioskowanie dla reguł 4. ( max w 0 Rs.3. Składanie wniku.
8 Operacje na liczbach rozmtch Wprowadźm definicję liczb rozmtej (Zadeh 965. Definicja. Liczbą rozmtą A nazwam zbiór rozmt określon na zbiorze liczb rzeczwistch R co zapisujem: A ~ R., A : R [0,] Podstawowe operacje na liczbach rozmtch można zdefiniować stosując zasadę rozszerzania (Zadeh 965: Definicja. Niech dana będzie pewna operacja dwuargumentowa na liczbach rzeczwistch: *: R R R Ponadto, niech A i B będą liczbami rozmtmi A, B ~ R, wted operację * można rozszerzć na argument rozmte A i B w następując sposób: C ( z = { A( x B( } sup min, x* = z Dla operacji jednoargumentowch zasada rozszerzania sprowadza się do postaci: Dodawanie: C ( z C ( z = max z = f x ( A ( x { A( x B( } sup min, = x + = z sup min { A( x, B( z x }. = x Jest to szczególn przpadek splotu.
9 LICZBY ROZMYTE W REPREZENTACJI LR Spłaszczona liczba rozmta (ogólnienie przedziału rozmtego ( M = m, m, α, β, LR gdzie m i m są odpowiednio dolną i górną wartością modalną liczb rozmtej M, natomiast α β są odpowiednio jej dolnm i górnm rozrzutem. Funkcja prznależności zdefiniowana jest następująco: M ( x Przpadki szczególne: (( α L m x dla x m, α > 0 dla m < x < m = R( ( x m β dlax m, β > 0 0 w pozostałch przpadkach 00, liczba rzeczwistą m jeśli M = ( m, m,, LR przedział liczbow [a,b] jeśli = (,,, liczbę rozmtą = (,, α, β, M a b00, LR M m m LR formę trapezoidalną i trójkątną liczbę rozmtą jeśli zastosujem następującą funkcję Lu ( = Ru ( = max ( 0, u odpowiednio dla przedziału rozmtego M i dla liczb rozmtej M.
10 Podstawowe operacje algebraiczne dotczące przedziałów rozmtch opisane są w pracach (Dubois and Prade 979a, 979b, 980, 988: Dodawanie ( ab,, α, β ( cd,, γ, δ ( a cb, d, α γ, β δ Odejmowanie = LR LR LR ( ab,, α, β ( cd,, γ, δ ( a db, c, α δ, β γ LR RL = + +. Mnożenie (dla dodatnich przedziałów rozmtch ( a, b, α, β ( c, d, γ, δ ( ac, bd, cα aγ, dβ bδ = + +. LR LR LR LR
11 Laarhoven and Pedrcz (983 proponują inną notację dla trójkątnej liczb rozmtej. Z powodzeniem można ją zastosować dla form trapezoidalnej: M = l, m, m, u ( gdzie m i m są odpowiednio dolną i górną wartośćią modalną form trapezoidalnej M, natomiast l oraz u są odpowiednio jej dolną i górną wartością. Funkcja prznależności zdefiniowana jest następująco: M ( x m l x l dla l x m m l = dla m < x < m, m u x u dla m x u m u 0 w pozostałch przpadkach Podstawowe opearcje algebraiczne będą zdefiniowane następująco: Dodawanie ( la, ma, ma, ua ( lb, mb, mb, ub ( la lb, ma mb, ma mb, ua ub Odejmowanie = ( la, ma, ma, ua ( la, ma, ma, ua ( la ub, ma mb, ma mb, ua lb Mnożenie (dla dodatnich form trapezoidalnch =. ( l, m, m, u ( l, m, m, u = ( ll, mm, mm, uu a a a a b b b b a b a b a b a b
12 Podstawowe operacje algebraiczne dla przedziałów liczbowch zdefiniowane są następująco (Moore 966: Dodawanie l, u l, u = l + l, u + u. Odejmowanie [ a a] [ b b] [ a b a b] [ la, ua] [ la, ua] [ la ub, ua lb] =. Mnożenie (dla dodatnich przedziałów liczbowch [ la, ua] [ lb, ub] = [ lalb, uaub] Nguen (978 udowodnił, że dla podstawowch operacji algebraicznch na liczbach rozmtch tzn. dla dodawania, odejmowania, mnożenia i dzielenia równoważnm z zasadą rozszerzania jest następując algortm: rozłożć dane liczb rozmte na skończoną liczbę α - przekrojów w wniku dla każdej liczb rozmtej otrzmam taką samą skończoną liczbę przedziałow liczbowch, wkonać operacje algebraiczne dla każdego α - przekroju oddzielnie korzstając z artmetki przedziałowej złożć wnik. Twierdzenie Jeśli funkcja f :R R R jest ciągła, funkcje charakterstczne liczb rozmtch A i B są kawałkami ciągłe oraz ich nośniki są zwarte, wówczas: f A, B = f A, B. [ ( ] ( α α α
Sterowanie rozmyte. mgr inż. Piotr Fiertek p. 544
Sterowanie rozmte mgr inż. Piotr iertek p. 544 Literatura do wkładu: D. Driankov H. Hellendoorn M. einfrank Wprowadzenie do sterowania ozmtego Wdawnictwo Naukowo-Techniczne Warszawa 996 Piegat A.: Modelowanie
STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.
METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI
Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.
Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0
Wstęp do Sztucznej Inteligencji: Laboratorium Sterownik rozmyty
Wstęp do Sztucznej Inteligencji: Laboratorium Sterowni rozmt Zbior rozmte pozwalają w sposób usstematzowan modelować pojęcia niepreczjne, jaimi ludzie posługują się na co dzień. Przładem może bć wrażenie
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Wektory. P. F. Góra. rok akademicki
Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.
Pierwiastki kwadratowe z liczby zespolonej
Pierwiastki kwadratowe z liczb zespolonej Pierwiastkiem kwadratowm z liczb w C nazwam każdą liczbę zespoloną z C, dla której z = w. Zbiór wszstkich pierwiastków oznaczam smbolem w. Innmi słow w = {z C
ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE
SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna
Realizacja funkcji przełączających
Realizacja funkcji przełączającch. Wprowadzenie teoretczne.. Podstawowe funkcje logiczne Funkcja logiczna NOT AND OR Zapis = x x = = x NAND NOR.2. Metoda minimalizacji funkcji metodą tablic Karnaugha Metoda
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 965 Lotfi A. Zadeh: : Fuzzy sets In almost every case you can build the same product without fuzzy logic, but fuzzy
14. Grupy, pierścienie i ciała.
4. Grup, pierścienie i ciała. Definicja : Zbiór A nazwam grupą jeśli jest wposaŝon w działanie wewnętrzne łączne, jeśli to działanie posiada element neutraln i kaŝd element zbioru A posiada element odwrotn.
Definicja. Złożenie zbioru rozmytego i relacji rozmytej. Rozważmy. zbiór rozmyty A X z funkcją przynależności
Zagadnienia I Złożenie zbioru rozmtego i relacji rozmtej Rozważm zbiór rozmt X z funcją prznależności relację rozmtą RX Y z funcją prznależności Definicja R Złożenie zbioru rozmtego i relacji rozmtej R
Rysunek 1-1. Przykładowy zbiór klasyczny (nierozmyty) oraz jego funkcja przynale żności.
Podstaw logiki rozmtej i regulatorów rozmtch. Zbiór rozmt Pojęcie zbioru rozmtego zostało wprowadzone przez L. A. Zadeha w 965. Celem wprowadzenia tego pojęcia bła chęć modelowania procesów złożonch, w
Pochodna funkcji wykład 5
Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren
Sztuczna inteligencja : Zbiory rozmyte cz. III
Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,
0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.
Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek
Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość
Programowanie nieliniowe optymalizacja funkcji wielu zmiennych
Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu
SKRYPT Z MATEMATYKI. Wstęp do matematyki. Rafał Filipów Piotr Szuca
Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego SKRYPT Z MATEMATYKI Wstęp do matematki Rafał Filipów Piotr Szuca Publikacja współfinansowana przez Unię Europejską
Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Liczby zespolone. Niech C = R 2. Zdefiniujmy dwa działania w C. Dodawanie + : C 2 C zdefiniowane jest przez
Liczb zespolone Ciało liczb zespolonch Niech C = R. Zdefiniujm dwa działania w C. Dodawanie + : C C zdefiniowane jest przez (, ) + (, ) = ( +, + ). Ćwiczenie. Obliczm (, ) + (, 0) =.................................................
Cykl III ćwiczenie 3. Temat: Badanie układów logicznych
Ckl III ćwiczenie Temat: Badanie układów logicznch Ćwiczenie składa się z dwóch podtematów: Poziom TTL układów logicznch oraz Snteza układów kombinacjnch Podtemat: Poziom TTL układów logicznch. Wprowadzenie
020 Liczby rzeczywiste
020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie
Z funkcji zdaniowej x + 3 = 7 można otrzymać zdania w dwojaki sposób:
Z funkcji zdaniowej + 3 = 7 można otrzmać zdania w dwojaki sposób: podstawiając w tej funkcji zdaniowej za stałe będące nazwami liczb np. 4 2 itp. poprzedzając tę funkcję zdaniową zwrotami: dla każdego
1 Podstawowe oznaczenia
Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Macierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A)
Macierze normalne Twierdzenie: Macierz można zdiagonalizować za pomocą unitarnej transformacji podobieństwa wted i tlko wted gd jest normalna (AA A A). ( ) D : Dowolną macierz kwadratową można zapisać
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM
Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma
Warsztat pracy matematyka
Warsztat prac matematka Izabela Bondecka-Krzkowska Marcin Borkowski Jęzk matematki Teoria Jednm z podstawowch pojęc matematki jest pojęcie zbioru. Teorię opisującą zbior nazwa sie teorią mnogości. Definicja
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem
lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów
9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt
Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń
Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest
Technologie i systemy oparte na logice rozmytej
Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie
Wnioskowanie rozmyte. Krzysztof Patan
Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne
Równania różniczkowe
Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz
Lekcja 3: Elementy logiki - Rachunek zdań
Lekcja 3: Elementy logiki - Rachunek zdań S. Hoa Nguyen 1 Materiał a) Zdanie proste, złożone b) Spójniki logiczne (funktory zdaniotwórcze):,,,,, (alternatywa wykluczająca - XOR). c) Tautologia, zdanie
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu
WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte)
WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) Motywacje:! przezwyciężenie wad tradycyjnych algorytmów komputerowych, które zawodzą zwłaszcza w sytuacjach, w których człowiek
Logika klasyczna i rozmyta. Rozmyte złożenie relacji (ang. fuzzy composition) Złożenie relacji (ang. composition)
Złożenie relacji ang. compoition) Niech X Y, Y Z. Ptanie: X Z? Cz można znaleźć taą relację, tóra wiąże te ame element z X, tóre zawiera z tmi ammi elementami z Z, tóre zawiera? Czli cz zuam X Z. Przład
Jeśli X jest przestrzenią o nieskończonej liczbie elementów:
Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów
1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.
Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze
SID Wykład 7 Zbiory rozmyte
SID Wykład 7 Zbiory rozmyte Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Wstęp Language Ontological Commitment Epistemological Commitment (What exists in the world) (What an agent
Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję
RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska
RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy
Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III)
Zmienne losowe tpu ciągłego. Parametr zmiennch losowch. Izolda Gorgol wciąg z prezentacji (wkład III) Zmienna losowa tpu ciągłego Zmienna losowa X o ciągłej dstrbuancie F nazwa się zmienną losową tpu ciągłego,
Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.
Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"
Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5
Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................
Funkcje wielu zmiennych
Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
Wstęp do Techniki Cyfrowej... Algebra Boole a
Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w
Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka
Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość
FINAŁ 10 marca 2007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut. x +
FINAŁ 0 marca 007 r. KLASA PIERWSZA - POZIOM PODSTAWOWY Czas pisania 90 minut ZADANIE Największ wspóln dzielnik dwóch liczb naturalnch wnosi 6, a ich najmniejsza wspólna wielokrotność tch liczb równa jest
Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacyjnego z zakresu przedmiotów matematyczno-przyrodniczych
Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacjnego z zakresu przedmiotów matematczno-przrodniczch Z a d a n i a z a m k n i ę t e Numer zadania 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne
IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
Inteligencja obliczeniowa
Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje
STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI
INTELIGENTNE TECHNIKI KOMPUTEROWE wkłd STNDRDOWE FUNKCJE PRZYNLEŻNOŚCI GUSSOWSK F. PRZYNLEŻNOŚCI ' μ ( ; ', ) ep μ().5 ' środek; określ szerokość krzwej.5 3 F. PRZYNLEŻNOŚCI KLSY s dl - dl c- sc ( ;,,
3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.
WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW
Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
0. ELEMENTY LOGIKI. ALGEBRA BOOLE A
WYKŁAD 5() ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań Matematyka zbudowana jest z pierwotnych twierdzeń (nazywamy
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.
Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2
1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest
Wykład 10. Funkcje wielu zmiennych
Wkład 1. Funkcje wielu zmiennch dr Mariusz Grządziel 6 maja 1 (ostatnie poprawki: 1 maja 1) Funkcje wielu zmiennch Przestrzeń dwuwmiarowa, oznaczana w literaturze matematcznej smbolem R, może bć utożsamiona
RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH
RACHUNEK CAŁKOWY FUNKCJI WÓCH ZMIENNYCH einicja całki podwójnej po prostokącie einicja Podziałem prostokąta R ={ : a b c d} inaczej: R = [a b] [c d] nazwam zbiór Pn złożon z prostokątów R R... Rn które
Interwałowe zbiory rozmyte
Interwałowe zbiory rozmyte 1. Wprowadzenie. Od momentu przedstawienia koncepcji klasycznych zbiorów rozmytych (typu 1), były one krytykowane za postać jaką przybiera funkcja przynależności. W przypadku
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Kształcenie w zakresie podstawowym. Klasa 1
Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Wykład Analiza jakościowa równań różniczkowych
Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie
Zbiory wypukłe i stożki
Katedra Matematyki i Ekonomii Matematycznej 28 kwietnia 2016 Hiperpłaszczyzna i półprzestrzeń Definicja Niech a R n, a 0, b R. Zbiór H(a, b) = {x R n : (a x) = b} nazywamy hiperpłaszczyzną, zbiory {x R
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykład 12, str. 1 C 1 C 2 C 3 1. * x 2. x 2. or max then (min)
Politechnika Poznańska, Katedra Sterowania i Inżnierii Sstemów Wkład, str. Implikacja rozmta A B A, B µ A (x, µ B ( x A, B µ A B (x, µ A B (x, = min(µ A (x, µ B ( lub µ A B (x, = µ A (x µ B ( 38. Wnioskowanie
x 1 x 2 x 3 x n w 1 w 2 Σ w 3 w n x 1 x 2 x 1 XOR x (x A, y A ) y A x A
Sieci neuronowe model konekcjonistczn Plan wkładu Perceptron - przpomnienie Uczenie nienadzorowane Sieci Hopfielda Perceptron w 3 Σ w n A Liniowo separowaln problem klasfikacji ( A, A ) Problem XOR 0 0
Rozwiązywanie układu równań metodą przeciwnych współczynników
Rozwiązwanie układu równań metodą przeciwnch współcznników Sposob postępowania krok po kroku: I. przgotowanie równań. pozbwam się ułamków mnoŝąc kaŝd jednomian równania równań przez najmniejszą wspólną
Rozmyte systemy doradcze
Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu
Kurs logiki rozmytej. Wojciech Szybisty
Kurs logiki rozmytej Wojciech Szybisty 2009 Spis treści 1 Co to jest logika rozmyta 3 1.1 Podstawy teorii zbiorów rozmytych........................ 3 1.2 Historia.......................................
INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 1
Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 1 Zasady współpracy https://mat.ug.edu.pl/~matpz/ wykłady nie są obowiązkowe, ale nieobecności będą odnotowywane nieobecności nie należy usprawiedliwiać,
4 Klasyczny rachunek zdań
4 Klasyczny rachunek zdań Elementy Logiki i Teorii Mnogości 2015/2016 Spis najważniejszych tautologii: (a) p p prawo wyłączonego środka (b) ( p) p prawo podwójnej negacji (c) p q q p (d) p q q p prawo
Podstawy Automatyki. Człowiek- najlepsza inwestycja. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Podstaw Automatki Człowiek- najlepsza inwestcja Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Politechnika Warszawska Insttut Automatki i Robotki Dr inż. Wieńczsław
Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne
Literatura: podstawowa: C. Radhakrishna Rao, Statystyka i prawda, 1994. G. Wieczorkowska-Wierzbińska, J. Wierzbiński, Statystyka. Od teorii do praktyki, 2013. A. Aczel, Statystyka w zarządzaniu, 2002.
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
f x f y f, jest 4, mianowicie f = f xx f xy f yx
Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją
Układy logiki rozmytej. Co to jest?
PUAV Wykład 14 Co to jest? Co to jest? Logika rozmyta (fuzzy logic) jest to dział matematyki precyzyjnie formalizujący nieprecyzyjne, nieformalne ludzkie rozumowanie. Co to jest? Logika rozmyta (fuzzy
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Rachunek różniczkowy funkcji jednej zmiennej
Rachunek różniczkow funkcji jednej zmiennej wkład z MATEMATYKI Budownictwo, studia niestacjonarne sem. I, rok ak. 2008/2009 Katedra Matematki Wdział Informatki Politechnika Białostocka 1 Iloraz różnicow
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora