Metody probabilistyczne Rozwiązania zadań
|
|
- Grzegorz Walczak
- 5 lat temu
- Przeglądów:
Transkrypt
1 Metody robabilistyczne Rozwiązania zadań 6. Momenty zmiennych losowych Zadanie 1. Poaż, że jeśli X Bn, to EX n. Odowiedź: X rzyjmuje wartości w zbiorze {0, 1,..., n} z rawdoodobieństwami zadanymi wzorem P X n 1 n. Korzystając z definicji wartości oczeiwanej: EX P X 1 n 1 n!!n! 1 n 1 n 1! n 1!n! 1 1 n 1 1 n 1 1 n 1 1 n 1 1 n 1 n 1 1 n, gdzie w obniżyliśmy indes sumowania z na 1, a równość oznaczona rzez wynia z tego, że ażdy element sumy to rawdoodobieństwo sucesów w n 1 róbach, stąd suma o wszystich możliwych od 0 do n 1 musi dać łącznie 1. Zadanie 2. Poaż, że jeśli X NBr, to EX r 1 Odowiedź: Zmienna X {0, 1, 2,...} ma rozład ujemny dwumianowy NBr, jeśli: r + 1 P X 1 r. r 1 Liczymy wartość oczeiwaną: EX P X r r, 1 r 1 1 1
2 gdzie ouściliśmy sładni sumy dla 0 równy zero. Zauważmy, że: r + 1 r + 1! r + 1! r 1 r 1!r + 1 r 1! r 1!! r + 1! r 1! 1! r + 1! r r!r + 1 r! r + 1! r r! 1! r + 1 r. r Wracając do 1, mamy: r + 1 P X r 1 r r 1 r + 1 r 1 r r 1 r + r 1 r+1, 2 1 r gdzie ostatnia równość wynia ze zmiany indesu sumowania z na 1. Czym jest suma otrzymana w ostatnim wyrażeniu? Aby odowiedzieć na to ytanie zauważmy, że Y ma rozład N Br + 1, jeśli: r r + P Y 1 r+1 1 r+1. r r A więc ostatnia suma w 2 jest o rostu równa: Czyli EX r 1, co należało dowieść. Zadanie 3. P Y 1 Poaż, że jeśli X Poisλ to EX λ Odowiedź: Zmienna X {0, 1, 2,...} ma rozład Poissona Poisλ, jeśli: Liczymy wartość oczeiwaną: P X λ! e λ EX 1 b λ P X a λ 1! e λ λ λ! e λ λ 1 1 λ! e λ λ 1 1! e λ P X 1 gdzie w a ouściliśmy sładni sumy dla 0 równy zero, w b zmieniliśmy indes sumowania z na 1, a ostatnia suma wynosi 1, onieważ jest to suma rawdoodobieństw wszystich możliwych wyniów zmiennej losowej X. λ, 2
3 Zadanie 4. Poaż, że dla dysretnej zmiennej losowej X X i funcji g : X Y zachodzi: E gx X gp X. Odowiedź: Zdefiniujmy zmienną losową Y gx. Z definicji wartości oczeiwanej: EY y Y y P Y y, natomiast z definicji rozładu funcji zmiennej losowej mamy: P Y y P X. : gy Łącząc oba owyższe otrzymujemy: EY y P X g P X g P X, y Y :gy y Y :gy X gdzie ostatni ro wynia z fatu, że y Y :gy to o rostu suma o wszystich X. Zadanie 5. Poaż, że dla dowolnych funcji g 1,..., g n : E g 1 X g n X E g 1 X E g n X Odowiedź: Zdefiniujmy sobie funcję gx g 1 X + g 2 X g n X. Używając wzoru na wartość oczeiwaną funcji zmiennej losowej: E gx gp X, mamy: E g 1 X g n X E gx g P X g g n P X g 1 P X E g 1 X E g n X g n P X Zadanie 6. Poaż, że jeśli X Poisλ, to D 2 X λ. Wyorzystaj fat, że EX λ i użyj wzoru sróconego mnożenia dla wariancji. Odowiedź: Jeśli X Poisλ, to rozład X jest dany wyrażeniem: P X λ! e λ, X {0, 1,...}. Wyorzystując wzór sróconego mnożenia dla wariancji oraz fat, że EX λ mamy: D 2 X E X 2 EX 2 E X 2 λ 2. 3
4 Musimy więc tylo oliczyć E X 2 : E X 2 2 P X 1 2 λ! e λ λ 2 2 λ! e λ 1 λ! e λ + λ 2! e λ + λ 2 λ 2 λ! e λ 1 λ 2 + λ, λ 2 2! e λ + λ + λ λ! e λ 1 EX gdzie w obniżyliśmy indes sumowania z na 2, a w równości oznaczonej wyorzystaliśmy fat, że elementy sumy to rawdoodobieństwa ostaci P X dla wszystich możliwych {0, 1, 2,...}, stąd suma daje wartość równą 1. Zadanie 7. Poaż, że dla rozładu geometrycznego: P X 1 1, 1, 2,... wariancja wynosi D 2 X 1 2 Odowiedź: Jeden sosób został oazany na wyładzie. Tutaj rozważymy inny sosób, w tórym bezośrednio będziemy róbowali oliczyć niesończone sumy wyorzystując wiedzę z matematyi dysretnej. Wiemy, że wartość oczeiwana w rozładzie geometrycznym wynosi EX 1. Wyorzystując wzór sróconego mnożenia dla wariancji: Musimy tylo oliczyć E X 2 : D 2 X E X 2 EX 2 E X 2 1 2, 3 E X 2 2 P X 1 Rozważmy funcję g oreśloną wyrażeniem: g Możemy wyznaczyć wartość g jao sumę niesończonego szeregu geometrycznego a + ar + ar o wyrazie oczątowym a 1 2 i ilorazie r 1 : g a 1 r
5 Policzmy ierwszą i drugą ochodną g. Możemy wyorzystać wyrażenie 4: g g Teraz zauważmy, że: g E X , 1 EX a więc: g E X E X 2 g 1. Z drugiej strony, orzystając z wyrażenia 5, mamy: g g Tym samym: a więc z 3: E X 2 g , D 2 X E X Zadanie 8. Poaż, że dla rozładu dwumianowego: P X 1 n, 0, 1,..., n wariancja wynosi D 2 X n1 Odowiedź: Wiemy, że wartość oczeiwana w rozładzie dwumianowym wynosi EX n. Wyorzystując wzór sróconego mnożenia dla wariancji: D 2 X E X 2 EX 2 E X 2 n 2 2, 6 5
6 musimy tylo oliczyć E X 2 : E X 2 P X 2 1 n 1 n n n + n! 1!n! 1 n + n n! 2!n! 1 n + n 2 2 nn 1 2 nn 1 2 n n 2! 2!n! 2 n 2 2 n 2 2 n 2 n 2 nn n 1 EXn 1 n + n 2 1 n + n 1 n 2 1 nn n n 2 2 n 2 + n, + n gdzie ostatnia z sum równa jest jeden, onieważ jest to suma rawdoodobieństw wszystich możliwych wyniów zmiennej o rozładzie dwumianowym Bn 2,. Używając 6 otrzymujemy: Zadanie 9. Odowiedź: Mamy: D 2 X E X 2 n 2 2 n 2 2 n 2 + n n 2 2 n n 2 n1. Poaż, że jeśli EX 2 0, to X ma rozład jednountowy w zerze. 0 EX 2 2 P X, Ponieważ wszystie elementy sumy o rawej stronie są nieujemne, równość ta będzie sełniona tylo wtedy, gdy 2 0 a więc i 0 dla wszystich taich, że P X > 0. Oznacza to, że zmienna X ma rozład jednountowy w zerze. 6
Wybrane rozkłady zmiennych losowych i ich charakterystyki
Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych
Bardziej szczegółowoσ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;
Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia
Bardziej szczegółowoi = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) =
Druga zasada inducji matematycznej Niech m będzie liczbą całowitą, niech p(n) będzie ciągiem zdań zdefiniowanych na zbiorze {n Z: n m} oraz niech l będzie nieujemną liczbą całowitą. Jeśli (P) wszystie
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)
Bardziej szczegółowoRozkłady zmiennych losowych
ZIP 007/008 (zaoczne) Rozłady zmiennych losowych I. X zmienna losowa soowa. Rozład zero jedynowy X rzybiera dwie wartości: i 0 Jeśli P(X ), to (X ) q P gdyż P(X ) P(X ) Rozład zmiennej losowej jest rozładem
Bardziej szczegółowoMetody probabilistyczne
Metody probabilistyczne 6. Momenty zmiennych losowych Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 8.11.2018 1 / 47 Funkcje zmiennych losowych Mierzalna funkcja Y
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Zadanie Rozważmy następujący model strzelania do tarczy. Współrzędne puntu trafienia (, Y ) są niezależnymi zmiennymi losowymi o jednaowym rozładzie normalnym N ( 0, σ ). Punt (0,0) uznajemy za środe tarczy,
Bardziej szczegółowoPodstawy rachunku prawdopodobieństwa (przypomnienie)
. Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń
Bardziej szczegółowoRóżne rozkłady prawdopodobieństwa
Różne rozłady prawdopodobieństwa. Rozład dwupuntowy D(p). Zmienna losowa ξ ma rozład D(p), jeżeli P p {ξ = 0} = p oraz P p {ξ = } = p. Eξ = p D ξ = p( p). Rozład dwumianowy Bin(n, p). Zmienna losowa ξ
Bardziej szczegółowoMateriały dydaktyczne. Matematyka. Semestr III. Wykłady
Materiały dydatyczne Matematya Semestr III Wyłady Aademia Morsa w Szczecinie ul. Wały Chrobrego - 70-500 Szczecin WIII RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE PIERWSZEGO RZĘDU. Pojęcia wstępne. Równania różniczowe
Bardziej szczegółowo1 Przestrzeń zdarzeń elementarnych
Przestrzeń zdarzeń elementarnych Przestrzeń zdarzeń elementarnych jest pojęciem pierwotnym w teorii prawdopodobieństwa. W zastosowaniach tej teorii zdarzenia elementarne interpretuje się jao możliwe przypadi,
Bardziej szczegółowoWykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego.
Rachue rawdoodobieństwa MAP064 Wydział Eletroii, ro aad. 008/09, sem. leti Wyładowca: dr hab. A. Jurlewicz Wyład 8: Zmiee losowe dysrete. Rozłady Beroulliego (dwumiaowy), Pascala, Poissoa. Przybliżeie
Bardziej szczegółowoSygnały stochastyczne
Sygnały stochastyczne Zmienne losowe E zbiór zdarzeń elementarnych (zbiór możliwych wyniów esperymentu) e E zdarzenie elementarne (wyni esperymentu) B zbiór wybranych podzbiorów zbioru E β B zdarzenie
Bardziej szczegółowoWykład 4. Zmienne losowe i ich rozkłady
Wstęp do probabilistyi i statystyi Wyład. Zmienne losowe i ich rozłady dr hab.inż. Katarzyna Zarzewsa, prof.agh, Katedra Eletronii, WIET AGH Wstęp do probabilistyi i statystyi. wyład Plan: Pojęcie zmiennej
Bardziej szczegółowoDefinicja Mówimy, że zmienna losowa X ma rozkład gamma, jeśli jej funkcja gęstości jest określona wzorem
.. Pewne rozłady zmiennej osowej ciągłej 5 Rozład gamma Definicja.7. Mówimy, że zmienna osowa X ma rozład gamma, jeśi jej funcja gęstości jest oreśona wzorem gdzie b > 0 i p > 0 oznaczają pewne stałe.
Bardziej szczegółowoMatematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki
Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi
Bardziej szczegółowoPrzykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Bardziej szczegółowoObóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimiady Matematycznej Gimnazjalistów Liga zadaniowa 01/01 Seria VII styczeń 01 rozwiązania zadań 1. Udowodnij, że dla dowolnej dodatniej liczby całkowitej n liczba n! jest odzielna rzez n!
Bardziej szczegółowozadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Bardziej szczegółowoZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH
Henry TOMASZEK Ryszard KALETA Mariusz ZIEJA Instytut Techniczny Wojs Lotniczych PRACE AUKOWE ITWL Zeszyt 33, s. 33 43, 2013 r. DOI 10.2478/afit-2013-0003 ZARYS METODY OPISU KSZTAŁTOWAIA SKUTECZOŚCI W SYSTEMIE
Bardziej szczegółowoSZEREGI LICZBOWE I FUNKCYJNE
Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany
Bardziej szczegółowoKody Huffmana oraz entropia przestrzeni produktowej. Zuzanna Kalicińska. 1 maja 2004
Kody uffmana oraz entroia rzestrzeni rodutowej Zuzanna Kalicińsa maja 4 Otymalny od bezrefisowy Definicja. Kod nad alfabetem { 0, }, w tórym rerezentacja żadnego znau nie jest refisem rerezentacji innego
Bardziej szczegółowoPojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:
Bardziej szczegółowon(n + 1) 2 k = k = 1, P = 1 (1 + 1)/2 = 2/2 = 1 = L. n(n + 1) 2 + (n + 1) = n(n + 1)(2n + 1) 6 k 2 = n(n + 1)(2n + 1) 6 + (n + 1) 2 = n + 1
Materiały do zajęć wyrównawczych z matematyi da studentów informatyi, ro aademici 013/14 Zestaw zadań 5 odpowiedzi uwaga: nieco inna oejność zadań 1. Udowodnij, że 1 n(n 1 (1a Odpowiedź: Da n 1 mamy L
Bardziej szczegółowoPEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Bardziej szczegółowoW. Otto Zadania z Metod Aktuarialnych w Ubezpieczeniach Majątkowych 2014
W Otto Zadania z Metod Atuarialnych w Ubezpieczeniach Majątowych 4 Zadanie Znajdź dystrybuantę F W sumy W = X + X dwóch niezależnych zmiennych losowych X, X, tórych dystrybuanty dane są odpowiednio wzorami:
Bardziej szczegółowo4,5. Dyskretne zmienne losowe (17.03; 31.03)
4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie
Bardziej szczegółowoAlgebra liniowa z geometrią analityczną
WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór
Bardziej szczegółowoDRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH
Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza
Bardziej szczegółowoDyskretne zmienne losowe
Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która
Bardziej szczegółowoWstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
Bardziej szczegółowoWykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie
Bardziej szczegółowoRachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )
Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby
Bardziej szczegółowoModelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne
Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez
Bardziej szczegółowoColloquium 3, Grupa A
Colloquium 3, Grupa A 1. Z zasobów obliczeniowych pewnego serwera orzysta dwóch użytowniów. Każdy z nich wysyła do serwera zawsze trzy programy naraz. Użytowni czea, aż serwer wyona obliczenia dotyczące
Bardziej szczegółowo3 k a 2k + 3 k b 2k = φ((a k ) k=1 ) + φ((b k) k=1 ). a 2k p 3 q (1 3 q ) 1 (a k ) k=1 p,
Zadanie 1. Sprawdzić, czy formuła φa ) ) = 3 a 2 zadaje funcjonał liniowy na l p dla p [1, ] i na c, jeśli ta, to czy zadaje funcjonał ciągły, i jeśli ta, policzyć normę. Dowód. Sprawdzam liniowość: φλa
Bardziej szczegółowoLista 6. Kamil Matuszewski 13 kwietnia D n =
Lista 6 Kamil Matuszewski 3 kwietnia 6 3 4 5 6 7 8 9 Zadanie Mamy Pokaż, że det(d n ) = n.... D n =.... Dowód. Okej. Dla n =, n = trywialne. Załóżmy, że dla n jest ok, sprawdzę dla n. Aby to zrobić skorzystam
Bardziej szczegółowoTEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Bardziej szczegółowoZestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 5.0.00 r. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej µ wariancji oraz momencie centralnym µ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora
Bardziej szczegółowoP k k (n k) = k {O O O} = ; {O O R} =
Definicja.5 (Kombinacje bez powtórzeń). Każdy -elementowy podzbiór zbioru A wybrany (w dowolnej olejności) bez zwracania nazywamy ombinacją bez powtórzeń. Twierdzenie.5 (Kombinacje bez powtórzeń). Liczba
Bardziej szczegółowoPrognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1
Prognozowanie notowań paietów acji poprzez ortogonalizację szeregów czasowych Andrzej Kasprzyci. WSĘP Dynamię rynu finansowego opisuje się indesami agregatowymi: cen, ilości i wartości. Indes giełdowy
Bardziej szczegółowoĆwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
Bardziej szczegółowoMatematyka Dyskretna Zadania
Matematya Dysretna Zadania Jace Cichoń Politechnia Wrocławsa, WPPT Wrocław 015 1 Wstęp 11 Oznaczenia [n] = {1,, n} [] = {X P ( : X = } (x = 1 j=0 (x j, (x = 1 (x + j Zadanie 1 j=0 Poaż za pomocą inducji
Bardziej szczegółowoIII. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
Bardziej szczegółowoMatematyka Dyskretna - zagadnienia
Matematya Dysretna - zagadnienia dr hab. Szymon Żebersi opracował: Miołaj Pietre Semestr letni 206/207 - strona internetowa Zasada inducji matematycznej. Zbiory sończone, podstawowe tożsamości 2. Zasada
Bardziej szczegółowoRozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Bardziej szczegółowoZmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Bardziej szczegółowoStatystyka matematyczna
Statystyka matematyczna Wykład 5 Magdalena Alama-Bućko 1 kwietnia 2019 Magdalena Alama-Bućko Statystyka matematyczna 1 kwietnia 2019 1 / 19 Rozkład Poissona Po(λ), λ > 0 - parametr tzw. rozkład zdarzeń
Bardziej szczegółowoWykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.
Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.
Bardziej szczegółowoWYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g zares rozszerzony 1. Wielomiany bardzo zna pojęcie jednomianu jednej zmiennej; potrafi wsazać jednomiany podobne; potrafi
Bardziej szczegółowoFunkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju
Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Bardziej szczegółowoA i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy
3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja
Bardziej szczegółowoKrzysztof Rykaczewski. Szeregi
Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a
Bardziej szczegółowoMateriały do wykładów na temat Obliczanie sił przekrojowych i momentów przekrojowych. dla prętów zginanych.
ateriały do wyładów na temat Obliczanie sił przerojowych i momentów przerojowych dla prętów zginanych Wydr eletroniczny. slajdów na. stronach przeznaczony do celów dydatycznych dla stdentów II ro stdiów
Bardziej szczegółowoNiech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
Bardziej szczegółowoParametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f
Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Bardziej szczegółowoWykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Bardziej szczegółowoPrawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Bardziej szczegółowoEGZAMIN, ANALIZA 1A, zadań po 5 punktów, progi: 20=3.0, 24=3.5, 28=4.0, 32=4.5, 36=5.0
Zadanie. W każdym z zadań.-.5 podaj kresy zbioru oraz napisz, czy kresy należą do zbioru (napisz TAK lub NIE). Kres może być liczbą rzeczywistą lub może być równy albo +. Za każde zadanie, w którym podasz
Bardziej szczegółowoSztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyi,. 311 Wyład 3 PLAN: - Reetitio (brevis) - Algorytmy mięiej selecji: algorytmy ewolucyjne symulowane wyżarzanie -Zastosowanie
Bardziej szczegółowoBadanie stacjonarności szeregów czasowych w programie GRETL
Badanie stacjonarności szeregów czasowych w programie GRETL Program proponuje następujące rodzaje testów stacjonarności zmiennych:. Funcję autoorelacji i autoorelacji cząstowej 2. Test Diceya-Fullera na
Bardziej szczegółowowtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz
Temat: Programowanie wieloryterialne. Ujęcie dysretne.. Problem programowania wieloryterialnego. Z programowaniem wieloryterialnym mamy do czynienia, gdy w problemie decyzyjnym występuje więcej niż jedno
Bardziej szczegółowo3. Kinematyka podstawowe pojęcia i wielkości
3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny
Bardziej szczegółowoPODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Bardziej szczegółowoMUMIO Lab 6 (składki, kontrakt stop-loss)
MUMIO Lab 6 (składki, kontrakt stop-loss) 1. (6p.) Niech X oznacza ryzyko (zmienn a losow a o własności P (X 0) = 1), a H( ) niech oznacza formułȩ kalkulacji składki (przyporz adkowuj ac a każdemu ryzyku
Bardziej szczegółowoWykład 13 Druga zasada termodynamiki
Wyład 3 Druga zasada termodynamii Entroia W rzyadu silnia Carnota z gazem dosonałym otrzymaliśmy Q =. (3.) Q Z tego wzoru wynia, że wielość Q Q = (3.) dla silnia Carnota jest wielością inwariantną (niezmienniczą).
Bardziej szczegółowoWażne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Bardziej szczegółowoMetody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZA 1. Wyład wstępny. Teoria prawdopodobieństwa i elementy ombinatoryi. Zmienne losowe i ich rozłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
Bardziej szczegółowoWykład 2 Zmienne losowe i ich rozkłady
Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie
Bardziej szczegółowoa 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a
Bardziej szczegółowoSterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji.
emat ćwiczenia nr 7: Synteza parametryczna uładów regulacji. Sterowanie Ciągłe Celem ćwiczenia jest orecja zadanego uładu regulacji wyorzystując następujące metody: ryterium amplitudy rezonansowej i metodę
Bardziej szczegółowoPrzykłady 6.1 : charakterystyki liczbowe rozkładów dyskretnych
Rachunek Prawdopodobieństwa MAP8 Wydział Matematyki, Matematyka Stosowana Przykłady 6. Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa. Transformacje zmiennej losowej. Opracowanie:
Bardziej szczegółowoPrzegląd ważniejszych rozkładów
Przegląd ważniejszych rozkładów Rozkład dwupunktowy P (X = x) = { p dla x = a, 1 p dla x = b, to zmienna losowa X ma rozkład dwupunktowy z parametrem p (0 < p < 1). Rozkład ten pojawia się przy opisie
Bardziej szczegółowoAnaliza B II zadania. cos kx = sin(n x) 2 sin x 2. cos n sin 1 n., tan x, cot x, log sin x, log tan x, 1 + x
Analiza B II zadania Oblicz granicę n cos n n Udowodnij wzór dla mπ 3 Udowodnij że szereg + n = cos = sin(n + sin cos n sin n jest zbieżny warunowo 4 Wyprowadź wzory (sin = cos (cos = sin 5 Wyaż że funcje
Bardziej szczegółowoA. Cel ćwiczenia. B. Część teoretyczna
A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów
Bardziej szczegółowoWykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Bardziej szczegółowo(U.3) Podstawy formalizmu mechaniki kwantowej
3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne
Bardziej szczegółowoZadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Bardziej szczegółowoSzeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego
Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego Przy założeniu, że wszystkie składniki szeregu jest rosnący. Wynika stąd natychmiast stwierdzenie: są dodatnie, ciąg jego sum
Bardziej szczegółowoPROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE
PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś
Bardziej szczegółowoPrzestrzeń probabilistyczna
Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty
Bardziej szczegółowoCIĄGI wiadomości podstawowe
1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie
Bardziej szczegółowoPROBABILISTYKA - test numery zestawów 1,3,5,7,9,...,41
1 numery zestawów 1,3,5,7,9,...,41 (a) Jeśli P (A) = 0.5 oraz P (B) = 0.3 oraz B A, to P (B \ A) = 0.2. (b) Przy jednokrotnym rzucie kostk a prawdopodobieństwo, że wypadnie szóstka pod warunkiem, że wypad
Bardziej szczegółowoDo Szczegółowych Zasad Prowadzenia Rozliczeń Transakcji przez KDPW_CCP
Załączni nr Do Szczegółowych Zasad Prowadzenia Rozliczeń Transacji rzez KDPW_CCP Wyliczanie deozytów zabezieczających dla rynu asowego (ozycje w acjach i obligacjach) 1. Definicje Ileroć w niniejszych
Bardziej szczegółowoUwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy:
Matematya dysretna - wyład 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produtu artezjańsiego X Y, tórego elementami są pary uporządowane (x, y), taie, że x X i y Y. Uwaga 1.1 Jeśli
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
Bardziej szczegółowoDOWODY NIERÓWNOŚCI HÖLDERA I MINKOWSKIEGO (DO UŻYTKU WEWNȨTRZNEGO, I DO SPRAWDZENIA)
DOWODY NIERÓWNOŚCI HÖLDERA I MINKOWSKIEGO (DO UŻYTKU WEWNȨTRZNEGO I DO SPRAWDZENIA) R R Tematem niniejszych notatek jest zbadanie warunków istnienia normy na ewnej rzestrzeni funkcji rzeczywistych określonych
Bardziej szczegółowoDSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH. Ćwiczenie 5. Przemysław Korohoda, KE, AGH
DSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH Instrucja do laboratorium z cyfrowego przetwarzania sygnałów Ćwiczenie 5 Wybrane właściwości Dysretnej Transformacji Fouriera Przemysław Korohoda, KE, AGH Zawartość
Bardziej szczegółowoP(T) = P(T M) = P(T A) = P(T L) = P(T S) = P(T L M) = P(T L A) = P(T S M) = P(T S A) =
Przyład (obrona orętów USA przed ataami lotnictwa japońsiego) Możliwe dwie wyluczające się tatyi: M = manewr A = artyleria przeciwlotnicza Departament Marynari Wojennej na podstawie danych z wojny na Pacyfiu
Bardziej szczegółowoC04 - STATYSTYKA MATEMATYCZNA - Zadania do oddania
C4 - STATYSTYKA MATEMATYCZNA - Zadania do oddania Parametr = liczba trzycyfrowa dwie ostatnie cyfry to dwie ostatnie cyfry numeru indesu pierwsza cyfra to pierwsza cyfra liczby liter pierwszego imienia.
Bardziej szczegółowoAnaliza B. Paweł Głowacki
Analiza B Paweł Głowaci Pojęcie liczby rzeczywistej uważać będziemy za intuicyjnie oczywiste. Tym niemniej celowe wydaje się przypomnienie i ugruntowanie nietórych fundamentalnych własności liczb rzeczywistych.
Bardziej szczegółowoL.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3
ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)
Bardziej szczegółowoP (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
Bardziej szczegółowo