Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska
|
|
- Ignacy Kania
- 8 lat temu
- Przeglądów:
Transkrypt
1 Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska beretam@torus.uck.pk.edu.pl 1
2 Wyostrzanie Ostateczna, ostra wartość z Zbiór rozmyty C z jest C1 (0.1) z jest C2 (0.2) z jest C3 (0.6) Metoda Środka Ciężkości (Center of Gravity, Center of Area) 2
3 Wyostrzanie 1 Ostateczna, ostra wartość z 0 a b z Zbiór rozmyty C spełnia Metoda maksimum funkcji przynależności 3
4 Wyostrzanie 1 jest nazywany środkiem (ang. Center) zbioru rozmytego 0 a b z N liczba reguł k numer reguły spełnia zależność Metoda Center Average Defuzzification 4
5 Wyostrzanie 1 jest nazywany środkiem (ang. Center) zbioru rozmytego 0 a b z Metoda Center of Sums Defuzzification 5
6 Wnioskowanie rozmyte Wnioskowanie w stylu Mamdaniego. Wnioskowanie w stylu Takagi - Sugeno. 6
7 Wnioskowanie rozmyte Wnioskowanie w stylu Mamdaniego. IF x jest A1 AND y jest B2 THEN z jest Z1 A1, B2 oraz Z1 są wartościami lingwistycznymi opisywanymi za pomocą zbiorów rozmytych. 7
8 Wnioskowanie rozmyte Wnioskowanie w stylu Takagi - Sugeno. IF x jest A1 AND y jest B2 THEN z = f(x, y) A1 oraz B2 są wartościami lingwistycznymi opisywanymi za pomocą zbiorów rozmytych. z przyjmuje wartość zależną od x oraz y, np. wielomian pierwszego stopnia: z = a*x + b*y + c lub stała: z = 13 Tutaj w konkluzji reguły nie ma zbioru rozmytego! 8
9 Wnioskowanie rozmyte x1, x2 wartości ostre Główne etapy wnioskowani a rozmytego: Rozmywanie (Fuzzyfication) Sprawdzenie reguł rozmytych (Rule evaluaion) Agregacja odpowiedzi reguł rozmytych (Aggregation of the rule outputs) Wyostrzanie (Defuzzyfication) y wartość ostra 9
10 Wnioskowanie rozmyte Reguła 1: IF x jest A3 OR y jest B1 THEN z jest C1 Reguła 2: IF x jest A2 AND y jest B2 THEN z jest C2 Reguła 3: IF x jest A1 THEN z jest C3 10
11 Sterownik Takagi-Sugeno... Ogólna postać reguł Numer reguły Numer zmiennej wejściowej 11
12 Sterownik Takagi-Sugeno Krok 1: Obliczanie stopnia aktywacji reguł dla sygnału wejściowego (wektor stanu obiektu): 12
13 Sterownik Takagi-Sugeno Dla reguły 1 obliczamy: oraz stopień aktywacji reguły 1: 13
14 Sterownik Takagi-Sugeno Krok 2: Obliczamy odpowiedź reguły 1: 14
15 Sterownik Takagi-Sugeno Powtarzamy dla każdej reguły 1... N: 15
16 Sterownik Takagi-Sugeno Odpowiedź sterownika Takagi - Sugeno jest znormalizowaną sumą ważoną poszczególnych wyjść 16
17 Sterownik Takagi-Sugeno W przypadku liniowym bazę reguł sterownika można zapisać jako dla k = 1,..., N 17
18 Sterownik Takagi-Sugeno Przykład: 18
19 Sterownik Takagi-Sugeno 1 MAŁE DUŻE x1 19
20 Sterownik Takagi-Sugeno MAŁE 1 ŚREDNIE x2 20
21 Sterownik Takagi-Sugeno Wyznaczymy sygnał wyjściowy dla oraz 21
22 Sterownik Takagi-Sugeno 1 MAŁE DUŻE x1 = 2 x1 22
23 Sterownik Takagi-Sugeno MAŁE 1 ŚREDNIE x2 = 3 x2 23
24 Sterownik Takagi-Sugeno Wyznaczymy sygnał wyjściowy dla oraz Otrzymujemy: oraz (zamiast min może tu wystapić również iloczyn) 24
25 Sterownik Takagi-Sugeno Odpowiedź reguły 1: Odpowiedź reguły 2: Ostateczna odpowiedź sterownika: 25
26 Funkcje aktywacji Klasa s 26
27 Funkcje aktywacji Klasa s a = 120 b = 150 c =
28 Funkcje aktywacji Klasa pi 28
29 Funkcje aktywacji Klasa pi b = 30 c =
30 Funkcje aktywacji Klasa gamma 30
31 Funkcje aktywacji Klasa gamma a = 150 b =
32 Funkcje aktywacji Klasa t (trójkątna) 32
33 Funkcje aktywacji Klasa t (trójkątna) a = 130 b = 150 c =
34 Funkcje aktywacji Klasa L 34
35 Funkcje aktywacji Klasa L a = 150 b =
36 Funkcje aktywacji Trapezoidalna 36
37 Funkcje aktywacji Trapezoidalna a = 120 b = 140 c = 160 d =
38 Funkcje aktywacji Dzwonowa (ang. Bell-shaped) a cetrum b nachylenie c - szerokość 38
39 Funkcje aktywacji Dzwonowa (ang. Bell-shaped) a = 150 b = 5 c = 20 39
40 Funkcje aktywacji Dzwonowa (ang. Bell-shaped) a = 150 b = 20 c = 20 40
41 Funkcje aktywacji Dzwonowa (ang. Bell-shaped) a = 150 b = 5 c = 30 41
42 Funkcje aktywacji Funkcja Gaussa a centrum b - szerokość 42
43 Funkcje aktywacji Funkcja Gaussa a = 150 b = 20 43
44 Funkcje aktywacji Funkcja Gaussa a = 150 b = 80 44
45 Funkcje aktywacji Funkcje gładkie są wolniejsze w obliczeniach, jednak są różniczkowalne w każdym punkcie dziedziny. Jest to istotne podczas budowania systemów neuronowo-rozmytych, które mają być uczone metodami gradientowymi, gdzie występuje konieczność liczenia pochodnych cząstkowych. 45
46 Przecięcia i sumy zbiorów rozmytych W przypadku przesłanek reguł z kilkoma jednostkowymi warunkami połączonymi operacją AND istnieje konieczność dokonania operacji przecięcia zbiorów rozmytych (iloczyn zbiorów rozmytych). W przypadku wystąpienia wielu reguł z wnioskami w postacie zbiorów rozmytych (styl Mamdaniego) istnieje konieczność zagregowania odpowiedzie wszystkich reguł, czyli dokonania sumy zbiorów rozmytych. Operacje te można zdefiniować na kilka sposobów. 46
47 Przecięcia i sumy zbiorów rozmytych 47
48 Przecięcia i sumy zbiorów rozmytych 48
49 Przecięcia i sumy zbiorów rozmytych 49
50 Przecięcia i sumy zbiorów rozmytych 50
51 Przecięcia i sumy zbiorów rozmytych 51
52 Przecięcia i sumy zbiorów rozmytych 52
53 Przecięcia i sumy zbiorów rozmytych Powyższe funkcje są przykładami T-norm oraz S-norm 53
54 Rozmyte implikacje Aby przeprowadzić rozmyte wnioskowanie, należy również zdefiniować rozmytą implikację, czyli sposób obliczania funckji przynależności wynikowego zbioru rozmytego danej reguły. 54
55 Iloczyn skalarny zbiorów rozmytych lub 55
56 Rozmyte implikacje Reguła typu minimum: Reguła typu iloczyn: Reguła Łukasiewicza: 56
57 Rozmyte implikacje Reguła typu max-min (reguła Zadeha): Reguła binarna: Reguła Goguena: 57
58 Rozmyte implikacje Reguła Sharpa: Reguła Godela: 58
59 Rozmyte implikacje Reguła probabilistyczna: Reguła ograniczonej sumy: 59
60 Rozmyte wnioskowanie Wnioskowaniem rozmytym z punktu widzenia matematyki nazywamy złożenie zbioru rozmytego (A') oraz rozmytej implikacji (A B). W wyniku otrzymujemy również zbiór rozmyty B'. operacja złożenia rozmyta implikacja 60
61 Rozmyte wnioskowanie Uogólniona rozmyta reguła wnioskowania modus ponens operacja T-normy Uogólniona rozmyta reguła wnioskowania modus tollens 61
62 Rozmyte wnioskowanie Aby przeprowadzićrozmyte wnioskowanie, należy zatem zdefiniować: T-normę wykorzystaną w operacji złożenia Sposób wykonywania iloczynu skalarnego zbiorów rozmytych Sposób wykonywania rozmytej implikacji Sposób agregacji zbiorów rozmytych będących wnioskami poszczególnych reguł (S-normę) Dodatkowo: Sposób rozywania Sposób wyostrzania 62
63 Rozmyte wnioskowanie Wszystkie te operacje się uprszaczają, jeśli przyjętym sposobem rozmywania jest singleton. Singleton to zbiór rozmyty, do którego jeden element (jedna wartość) należy w stopniu 1, a wszystkie inne w stopniu 0. Znacznie upraszcza to wykonanie operacji sup. 63
Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Wnioskowanie rozmyte. Krzysztof Patan
Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne
STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.
METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI
INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Jeśli X jest przestrzenią o nieskończonej liczbie elementów:
Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów
Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.
Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0
Temat: Model SUGENO. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model SUGENO Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
Rozmyte systemy doradcze
Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu
Piotr Sobolewski Krzysztof Skorupski
Plan prezentacji Logika rodzaje Logika klasyczna Logika wielowartościowa Logika rozmyta Historia powstania Definicje Zbiory rozmyte Relacje rozmyte Systemy rozmyte Modele Zastosowanie w optymalizacji przykłady
Podstawy sztucznej inteligencji
wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru
WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte)
WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) Motywacje:! przezwyciężenie wad tradycyjnych algorytmów komputerowych, które zawodzą zwłaszcza w sytuacjach, w których człowiek
ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE
SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 965 Lotfi A. Zadeh: : Fuzzy sets In almost every case you can build the same product without fuzzy logic, but fuzzy
Sztuczna inteligencja : Zbiory rozmyte cz. 2
Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I IDENTYFIKACJA Logika rozmyta podstawy wnioskowania w GUI Fuzzy. Materiały pomocnicze do laboratorium
Temat: Model TS + ANFIS. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model TS + ANFIS Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
Sztuczna inteligencja: zbiory rozmyte
Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element
6. Zagadnienie parkowania ciężarówki.
6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Sztuczna inteligencja : Zbiory rozmyte cz. III
Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,
Kurs logiki rozmytej - zadania. Wojciech Szybisty
Kurs logiki rozmytej - zadania Wojciech Szybisty 2009 Spis treści 1 Zadania - zbiory rozmyte 3 2 Zadania - relacje rozmyte 6 3 Zadania - logika rozmyta 11 1 Zadania - zbiory rozmyte 3 Przykłady rozwiązywania
Sterowanie z wykorzystaniem logiki rozmytej
Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie
PODSTAWY INŻYNIERI WIEDZY
Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: PODSTAWY INŻYNIERI WIEDZY 2. Kod przedmiotu: PIW 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma
Układy logiki rozmytej. Co to jest?
PUAV Wykład 14 Co to jest? Co to jest? Logika rozmyta (fuzzy logic) jest to dział matematyki precyzyjnie formalizujący nieprecyzyjne, nieformalne ludzkie rozumowanie. Co to jest? Logika rozmyta (fuzzy
7. Zagadnienie parkowania ciężarówki.
7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
KOMPUTERY W STEROWANIU. Ćwiczenie 6 Projektowanie układu regulacji rozmytej
Wydział Elektryczny Zespół Automatyki (ZTMAiPC) KOMPUTERY W STEROWANIU Ćwiczenie 6 Projektowanie układu regulacji rozmytej 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z procedurą projektowania
ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Pracownia
Metody sterowania sterowanie rozmyte System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym
System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym Sterowanie rozmyte jest sterowaniem za pomocą reguł Sterowanie rozmyte można sklasyfikować jako: -
WPŁYW OPÓŹNIENIA NA DYNAMIKĘ UKŁADÓW Z REGULACJĄ KLASYCZNĄ I ROZMYTĄ
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 65 Politechniki Wrocławskiej Nr 65 Studia i Materiały Nr 31 2011 Kinga GÓRNIAK* układy z opóźnieniem, regulacja rozmyta, model Mamdaniego,
Zadanie 0 gdy nie mamy logiki rozmytej
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Inteligencja obliczeniowa
Ćwiczenie nr 3 Zbiory rozmyte logika rozmyta Sterowniki wielowejściowe i wielowyjściowe, relacje rozmyte, sposoby zapisu reguł, aproksymacja funkcji przy użyciu reguł rozmytych, charakterystyki przejściowe
Inteligencja obliczeniowa
Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie
WNIOSKOWANIE ROZMYTE FUZZY INFERENCE
Dominik Ziajka WNIOSKOWANIE ROZMYTE FUZZY INFERENCE Celem artykułu jest przedstawienie teorii zbiorów rozmytych, wnioskowania rozmytego oraz porównania ich ze zbiorami przybliżonymi. Wprowadzenie do zbiorów
Tworzenie rozmytego systemu wnioskowania
Tworzenie rozmytego systemu wnioskowania Wstęp W odróżnieniu od klasycznych systemów regałowych modele rozmyte pozwalają budowad modele wnioskujące oparte o język naturalny, dzieki czemu inżynierom wiedzy
Logika rozmyta. Agnieszka Nowak - Brzezińska
Logika rozmyta Agnieszka Nowak - Brzezińska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information
ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO
Szybkobieżne Pojazdy Gąsienicowe (2) Nr 2, 24 Mirosław ADAMSKI Norbert GRZESIK ALGORYTM PROJEKTOWANIA CH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO. WSTĘP
Cel projektu: Wymogi dotyczące sprawozdania:
W ramach zajęć proszę wykonać sprawozdanie z logiki rozmytej. Sprawozdanie powinno realizować zadanie wnioskowania rozmytego. Cel projektu: Student projektuje bazę wiedzy wnioskowania rozmytego (kilka,
W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco.
Zadanie 0 Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad wartośd funkcji przynależności
Systemy rozmyte i ich zastosowania. Krzysztof Rykaczewski
Systemy rozmyte i ich zastosowania Krzysztof Rykaczewski 21 czerwca 2006 SPIS TREŚCI Spis treści 1 Wstęp 1 2 Podstawowe pojęcia i definicje logiki rozmytej 1 2.1 Przykłady funkcji przynależności..................
Logika rozmyta. Agnieszka Nowak - Brzezińska
Logika rozmyta Agnieszka Nowak - Brzezińska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information
ELEMENTY SZTUCZNEJ INTELIGENCJI. Wstęp do logiki rozmytej
ELEMENTY SZTUCZNEJ INTELIGENCJI 1 Wstęp do logiki rozmytej PLN 1. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte: 1. typu
Kurs logiki rozmytej. Wojciech Szybisty
Kurs logiki rozmytej Wojciech Szybisty 2009 Spis treści 1 Co to jest logika rozmyta 3 1.1 Podstawy teorii zbiorów rozmytych........................ 3 1.2 Historia.......................................
Technologie i systemy oparte na logice rozmytej
Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie
Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy
Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Współczynniki pewności (ang. Certainty
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Logika Stosowana Ćwiczenia
Logika Stosowana Ćwiczenia Systemy sterowania wykorzystujące zbiory rozmyte Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Semestr letni 2014/15 Marcin Szczuka (MIMUW) Logika Stosowana 2014/15
Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte
Sieci Neuronowe Wykład 11 Algorytmy genetyczne; Systemy rozmyte wykład przygotowany na podstawie. S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 4, PWNT, Warszawa 1996. W. Duch, J. Korbicz,
Logika rozmyta. Agnieszka Nowak - Brzezioska
Logika rozmyta Agnieszka Nowak - Brzezioska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information
Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie System
SID Wykład 7 Zbiory rozmyte
SID Wykład 7 Zbiory rozmyte Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Wstęp Language Ontological Commitment Epistemological Commitment (What exists in the world) (What an agent
Logika rozmyta. Agnieszka Nowak - Brzezioska
Logika rozmyta Agnieszka Nowak - Brzezioska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information
Implementacja rozmytych systemów wnioskujących w zdaniach regulacji
Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 5 Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika
Metoda zaburz-obserwuj oraz metoda wspinania
Metoda zaburz-obserwuj oraz metoda wspinania Algorytm zaburz-obserwuj mierzy się moc (zwykle modułu) przed i po zmianie na tej podstawie podejmuje się decyzję o kierunku następnej zmiany Metoda wspinania
MODELOWANIE CZĘSTOŚCI TRANSMISJI DANYCH Z WYKORZYSTANIEM FUZZY TOOLBOX MATLAB
DAMIAN FILIPKOWSKI doi: 10.12716/1002.29.06 Akademia Morska w Gdyni Katedra Nawigacji MODELOWANIE CZĘSTOŚCI TRANSMISJI DANYCH Z WYKORZYSTANIEM FUZZY TOOLBOX MATLAB Ten artykuł powstał podczas prac nad
Wiedza niepewna i wnioskowanie (c.d.)
Wiedza niepewna i wnioskowanie (c.d.) Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wnioskowanie przybliżone Wnioskowanie w logice tradycyjnej (dwuwartościowej) polega na stwierdzeniu
Elementy teorii zbiorów rozmytych. Materiał udostępniony na prawach rękopisu
Elementy teorii zbiorów rozmytych. Materiał udostępniony na prawach rękopisu Sławomir T.Wierzchoń Instytut Podstaw Informatyki PAN Uniwersytet Gdański, Instytut Informatyki 9 kwietnia 2009 Spis treści
Piegat A.: Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999 r.
Metody prognozowania: Podstawy logiki rozmytej Literatura do wykładu: Piegat A.: Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999 r. D. Rutkowska, M. Pilinski, L. Rutkowski,
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykład 12, str. 1 C 1 C 2 C 3 1. * x 2. x 2. or max then (min)
Politechnika Poznańska, Katedra Sterowania i Inżnierii Sstemów Wkład, str. Implikacja rozmta A B A, B µ A (x, µ B ( x A, B µ A B (x, µ A B (x, = min(µ A (x, µ B ( lub µ A B (x, = µ A (x µ B ( 38. Wnioskowanie
Logika Stosowana. Wykład 5 - Zbiory i logiki rozmyte Część 1. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 5 - Zbiory i logiki rozmyte Część 1 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 36 Plan
THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS
Journal of KONES Internal Combustion Engines 2005, vol. 12, 3-4 THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS Mariusz Topolski Politechnika Wrocławska,
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
1. Logika, funkcje logiczne, preceptron.
Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
Method of determination of the current liquidity ratio with the use of fuzzy logic in hard coal mines
76 PRZEGLĄD GÓRNICZY 2014 UKD 622.333: 622.338.24: 622.652.2 Metoda określania płynności bieżącej w kopalniach węgla kamiennego z wykorzystaniem systemu rozmytego Method of determination of the current
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Jeśli przeszkoda jest blisko to przyhamuj
Rozmyte systemy regułowe Informacja, którą przetwarzają ludzie często (prawie zawsze) jest nieprecyzyjna, a mimo to potrafimy poprawnie wnioskować i podejmować decyzję, czego klasyczne komputery nie potrafią.
KARTA PRZEDMIOTU. 17. Efekty kształcenia:
Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: CYBERNETYKA 2. Kod przedmiotu: CYB 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia:
Temat: Sterowanie mobilnością robota z wykorzystaniem algorytmu logiki rozmytej
Wrocław, 13.01.2016 Metody sztucznej inteligencji Prowadzący: Dr hab. inż. Ireneusz Jabłoński Temat: Sterowanie mobilnością robota z wykorzystaniem algorytmu logiki rozmytej Wykonał: Jakub Uliarczyk, 195639
Kurs logiki rozmytej - pomoc. Wojciech Szybisty
Kurs logiki rozmytej - pomoc Wojciech Szybisty 2009 Spis treści 1 Wymagania 3 2 Zawartość strony internetowej 3 3 Obsługa apletów 6 3.1 Aplet Rodzaje funkcji przynależności...................... 6 3.2
Logika rozmyta typu 2
Logika rozmyta typu 2 Zbiory rozmyte Funkcja przynależności Interwałowe zbiory rozmyte Funkcje przynależności przedziałów Zastosowanie.9.5 Francuz Polak Niemiec Arytmetyka przedziałów Operacje zbiorowe
ROK LIV NR 3 (194) 2013
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LIV NR 3 (194) 2013 Krzysztof Ficoń Akademia Marynarki Wojennej Wydział Dowodzenia i Operacji Morskich 81-103 Gdynia, ul. J. Śmidowicza 69 e-mail: F.Ficon@amw.gdynia.pl
Reprezentacja rozmyta - zastosowania logiki rozmytej
17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych
ROZMYTY REGULATOR PRĘDKOŚCI OBROTOWEJ ODPORNY NA ZMIANY BEZWŁADNOŚCI
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Michał JAKUBOWSKI* Krystian NOWAKOWSKI* Krzysztof ZAWIRSKI* ROZMYTY REGULATOR PRĘDKOŚCI OBROTOWEJ ODPORNY NA ZMIANY
Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
Sterownik rozmyty (na przykładzie parkowania samochodu)
Sterownik rozmyty (na przykładzie parkowania samochodu) 06 kwietnia 2010 Idea ogólna Celem programu jest symulacja zachowania się jakiegoś obiektu, zasymulowanie jakiegoś zjawiska, czynności, na podstawie
RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska
RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy
Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna
Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1
Zagadnienia AI wykład 3
Zagadnienia I wyład 3 Rozmyte systemy wniosujące by móc sterować pewnym procesem technologicznym lub tez pracą urządzeń onieczne jest zbudowanie modelu, na podstawie tórego można będzie podejmować decyzje
Metoda ułamka prądu zwarcia
Metoda ułamka prądu zwarcia Zakłada się, że Imp / Isc = const (ki 0,78 0,92) Mierzony jest Isc, a prąd pracy modułu utrzymywany jest na wartości ki Isc Metody pomiaru zależność bliższa proporcjonalnej
Filtracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu
wiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
Interwałowe zbiory rozmyte
Interwałowe zbiory rozmyte 1. Wprowadzenie. Od momentu przedstawienia koncepcji klasycznych zbiorów rozmytych (typu 1), były one krytykowane za postać jaką przybiera funkcja przynależności. W przypadku
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
Zagadnienia AI wykład 1
Zagadnienia AI wykład Podręcznik do wykładu: Leszek Rutkowski Metody i techniki sztucznej inteligencji Wydawnictwo Naukowe PWN Prezentacje do wykładu będą sukcesywnie umieszczane na stronie: http://merlin.fic.uni.lodz.pl/mskulimowski/
Rachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Matematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
Funkcje dwóch zmiennych
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach