METODY INTELIGENCJI OBLICZENIOWEJ wykład 6

Wielkość: px
Rozpocząć pokaz od strony:

Download "METODY INTELIGENCJI OBLICZENIOWEJ wykład 6"

Transkrypt

1 METODY INTELIGENCJI OBLICZENIOWEJ wykład 6

2 2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE

3 965 Lotfi A. Zadeh: : Fuzzy sets In almost every case you can build the same product without fuzzy logic, but fuzzy is faster and cheaper. Prof. Lotfi Zadeh, UC Berkeley, Inventor of Fuzzy Logic 3

4 Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna dla systemów komputerowych. Jest dość ciepło informacja opisowa - naturalna dla człowieka. Klasyczna teoria zbiorów: : dowolny element należy lub nie należy do danego zbioru. Teoria zbiorów rozmytych: element może częściowo należeć do pewnego zbioru. 4

5 Zamiast dwóch wartości logicznych (prawda i fałsz) nieskończenie wiele wartości [0,]. Np.: młody człowiek : A= młody μ 0.8 A= młody 0 30 klasycznie [lata] 0 30 sposób rozmyty [lata] Umożliwiają formalne określenie pojęć nieprecyzyjnych i wieloznacznych: - wysoki hałas, - duże zarobki, - niskie zużycie paliwa. 5

6 6 Obszar rozważań X (the nierozmyty the universe of discourse nierozmyty (np. płaca w UK i w Polsce). discourse) - zbiór Zbiór rozmyty w pewnej przestrzeni (niepustej) X - zbiór par: {(, μ ( )); X} A= A μ A () funkcja przynależności zbioru rozmytego A. Funkcja przynależności przypisuje każdemu ele- mentowi X stopień jego przynależności do zbioru rozmytego A.

7 μ A ()) = pełna przynależność elementu do ZR A; μ A ()) = 0 brak przynależności do ZR A; 0 < μ A () < częściowa przynależność do ZR A. Stopień przynależności to nie jest prawdopodobieństwo: młody w 80% to nie 4 młodych na 5 Symboliczny zapis ZR o skończonej liczbie elementów: A μ ( ) μ ( ) μ ( ) μ ( ) n A A 2 A n A i = = 2 n i= i suma mnogościowa przyporządkowanie 7

8 Np. Ciepła woda na basenie : Obszar rozważań: X = [5, 2,..., 35] Zbiór rozmyty A (według osoby nr ): A = Według osoby nr 2: A = Jeśli X - przestrzeń o nieskończonej liczbie elementów, to zapis symboliczny: to zapis symboliczny: μ ( ) A A = 8

9 Np. Zbiór liczb bliskich liczbie 7 : 9 μ ( A ) = + ( 7) 2 μ ( ) A 2 + ( -7) = lub -7 jeżeli 4 0 μa( )= 3 0 w przeciwnym razie μ ( )

10 0 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI

11 GAUSSOWSKA F. PRZYNALEŻNOŚCI μa ( ; ', a) = ep ' a 2 μ() 0.5 a=2 a= ' 0 środek; a określa szerokość krzywej

12 F. PRZYNALEŻNOŚCI KLASY s 0 dla a sabc ( ;,, ) 2 - a 2 dla b a c- a = 2 - c 2 dla b c c- a dla c b = a + c 2 μ ( ) a b 0 0 c 2

13 3 F. PRZYNALEŻNOŚCI KLASY π (zdef.. poprzez klasę s) π ( bc ;, ) s( c ; - bc, - b/2, c) dla a = - s( cc ;, + b/2, c+ b) dla c μ ( ) c-b c-b/2 c c+b/2 c+b 0 6

14 F. PRZYNALEŻNOŚCI KLASY γ (alternatywa dla s) 0 dla a a γ ( ; ab, ) = dla a b b a dla b μ ( ) 0 a 0 0 b F. PRZYNALEŻNOŚCI KLASY L dla a b- Lab ( ;, )= dla a b b- a 0 dla b 0 μ ( ) a b 0 0 4

15 F. PRZYNALEŻNOŚCI KLASY t (alternatywa dla π) μ ( ) c-b c-b/2 c c+b/2 c+b 6 μ ( ) 0 dla a a dla a b b a tabc ( ;,, ) = c dla b c c b dla c 0 a b c 0 0 5

16 F. PRZYNALEŻNOŚCI KLASY singleton ( ) ( - ')= jeżeli = ' μa = δ 0 jeżeli ' μ ( ) ' 0 0 Singleton charakteryzuje jednoelementowy zbiór r rozmyty. Funkcja ta jest wykorzystywana głównie g do operacji rozmywania w systemach wnioskujących. 6

17 Np.: prędkość samochodu: X: [0, ma ] Mała prędkość samochodu (A) typ L Średnia prędkość samochodu (B) typ Duża prędkość samochodu (C) typ typ t typ γ μ A () μ B () μ C () ma =55 μ A ()) =0.25, = μ B ()=0.75, μ C ()=0 7

18 μ() α 0 Jądro α - przekrój Baza Nośnik (baza) zbioru rozmytego A: zbiór elementów ZR, dla których μ ()) >0 { X μ } supp A= ; ( ) > 0 Jądro zbioru rozmytego A: zb. elementów ZR, dla których μ()= core( A) = { X : μ ( ) = } A A α -przekrój zbioru rozmytego A: zbiór nierozmyty taki, że: A = : ( ) ( [0,] { } α X μa α α 8

19 Np.: A = X={,..., 0} α -przekroje: A 0 = X = {,..., 0}, A 0. = {2, 4, 5, 8, 0}, A 0.3 = {4, 5, 8, 0}, A 0.6 = {5, 8}, A 0.7 = {5}. 9

20 Wysokość zbioru rozmytego A: ha ( ) = sup μ ( ) A A Zbiór normalny: ha= ( ) Normalizacja zbioru: μ A N ( ) μa( ) = ha ( ) X Np.: - przed normalizacją: A = po normalizacji: A N =

21 Inkluzja (zawieranie sie ZR A w ZR B): μ () μ B () μ A () ZR wypukły: μ () ZR niewypukły: μ () Równość dwu ZR A i B: μ ( ) = μ ( ) X A B 2

22 22 OPERACJE NA ZBIORACH ROZMYTYCH

23 PRZECIĘCIE W literaturze istnieje wiele definicji przecięcia (iloczynu) zbiorów rozmytych pod wspólną nazwą T-norm. μ ( ) T ( μ ( ), μ ( )) A B = A B Najczęściej stosowana definicja przecięcia zbiorów A i B: { } μ ( ) min μ ( ), μ ( ) A B = A B μ () μ A () μ B () μ A () μ B () 0 lub (iloczyn algebraiczny): μ A B( ) = μ A( ) μb( ) μ () μ A () μ B () μ A () μ B () 0 23

24 SUMA Definicje sumy zbiorów rozmytych mają nazwę S-norm. Np.: { } μ ( ) ma μ ( ), μ ( ) A B = A B μ () μ A () μ B () μ A () μ B () 0 DOPEŁNIENIE zbioru rozmytego: μ ˆ( ) = μ A( ) A μ () μ A () μ Â () 0 Dla ZR nie są spełnione prawa dopełnienia: A Aˆ X A Aˆ 24

25 25 Przykład: X = {,2,3,4,5,6,7} A = B = Przecięcie: A B = Suma: A B =

26 26 Przykład: X = { 2,3,4,5,6,7} A = ˆ A = Przecięcie: A ˆ A = Suma: A ˆ A = X

27 27 LICZBY ROZMYTE

28 Liczby rozmyte to ZR zdefiniowane na osi liczb rzeczywistych. Wymagania: zbiór normalny: h(a)=; zbiór wypukły; funkcja przynależności przedziałami ciągła. np.: μ () 0 dodatnie μ () ujemne; ani dodatnie ani ujemne. 0 28

29 Dodawanie liczb rozmytych: { } μa+ B( ) = ma μa( y), μb( z) = y+ z μ μ A (y) μ B (z) μ A+B () 0 Mnożenie liczb rozmytych: { } μab ( ) = min μa( y), μb( z) = y z μ μ A (y) μ B (z) μ A B () 0 29

30 Trójkątne liczby rozmyte: Opis: - f. przynależności klasy t; - jako: A = ( a, a, a ) M 2 μ () Wyostrzanie trójkątnej () liczby rozmytej: y = am 0 a + a + a 3 y (2) M 2 y y = = a + 2a + a 4 (3) M 2 a + 4a + a = 6 (4) M 2 a a M a 2 30

31 Płaskie liczby rozmyte: 3 μ() 0

32 32 PRZYBLIŻONE WNIOSKOWANIE

33 33 Logika tradycyjna (dwuwartościowa): O prawdziwości zdań wnioskuje się na podstawie prawdziwości innych zdań. Schemat notowania: Nad kreską zdania, na podstawie których się wnioskuje; Pod kreską otrzymany wniosek. Jeśli prawdziwe są wszystkie zdania powyżej kreski to prawdziwy jest też wniosek. Teraz: A, B zdania.

34 A= A=0 = : logiczną wartością zdania A jest prawda; =0 : logiczną wartością zdania A jest fałsz. Funktory logiczne: Operacja logiczna Funktor Czyta się: negacja ~ lub nie jest prawdą, że... koniunkcja i, oraz alternatywa lub implikacja jeżeli... to... równoważność wtedy i tylko wtedy, gdy... tożsamość jest tożsame... kwantyfikator ogólny kwantyfikator szczególny dla każdego... istnieje takie... 34

35 Implikacja (wynikanie): Zdanie logiczne o strukturze jeśli p to q" " (p q)( p poprzednik implikacji; q następnik implikacji. Implikacja jest prawdziwa: gdy q jest prawdziwe; gdy p i q są fałszywe. 35

36 REGUŁY WNIOSKOWANIA MODUS PONENS Modus ponendo ponens sposób wnioskowania przez twierdzenie p do twierdzenia q. Przesłanka: Implikacja: Z prawdziwości przesłanki i implikacji wynika prawdziwość wniosku. Np.: Wniosek: A A B A= Jacek jest kierowcą B= Jacek ma prawo jazdy Jeśli A= to B= B 36

37 37 MODUS TOLLENS Modus tollendo tollens sposób wnioskowania prowadzący przez przeczenie do przeczenia. Przesłanka: Implikacja: ~B A B Wniosek: ~A Z prawdziwości przesłanki i implikacji również wynika prawdziwość wniosku. Np.: B=0 (~B( ~B=) Jacek nie ma prawa jazdy A=0 (~A=) Jacek nie jest kierowcą Jeśli B=0 to A=0

38 REGUŁY WNIOSKOWANIA W LOGICE ROZMYTEJ 38 Reguły, których przesłanki lub wnioski wyrażone są w języku zbiorów rozmytych. Reguły pochodzące od ekspertów zwykle wyrażone są w języku nieprecyzyjnym. Zbiory rozmyte pozwalają przełożyć ten język na konkretne wartości liczbowe. Praca systemu decyzyjnego opartego na logice rozmy- tej zależy od definicji reguł rozmytych w bazie reguł.

39 Reguły mają postać IF...AND...THEN. np.: IF a is A AND b is B THEN c is C IF a is A2 AND b is NOT B2 THEN c is C2 gdzie: a, b, c zmienne lingwistyczne, A,,..., C2 zbiory rozmyte. Zmienne lingwistyczne: zmienne, które przyjmują jako wartości słowa lub zdania wypowiedziane w języku naturalnym. (również wartości liczbowe). 39

40 Różnice w porównaniu z klasycznymi regułami IF-THEN THEN: Wykorzystanie W zmiennych opisujących zbiory rozmyte; Występowanie mechanizmu określającego stopień przynależności elementu do zbioru; Wykorzystanie operacji na zbiorach rozmytych. Np.: Schemat wnioskowania, w którym przesłanka, implikacja i wniosek są nieprecyzyjne: Przesłank anka: a: Implikacja: Wniosek: Prędkość samochodu jest duża Jeśli prędko dkość samochodu jest bardzo duża poziom hałasu asu jest wysoki Poziom hałasu jest średniowysoki 40

41 4 Przesłanka: Implikacja: Wniosek: Prędkość samochodu jest duża Jeśli prędko dkość samochodu jest bardzo duża poziom hałasu asu jest wysoki Poziom hałasu jest średniowysoki Rozmyta reguła wnioskowania modus ponens : Przesłanka: Implikacja: Wniosek: jest A Jeśli jest A y jest B y jest B

42 42 Przesłanka: Implikacja: Wniosek: Prędkość samochodu jest duża Jeśli prędko dkość samochodu jest bardzo duża poziom hałasu asu jest wysoki Poziom hałasu jest średniowysoki Zmienne lingwistyczne: prędkość samochodu y poziom hałasu Zbiór wartości zmiennych lingwistycznych: : : T={ mała mała, średnia średnia, duża duża, bardzo duża } y: : T2={ mały mały, średni średni, średniowysoki średniowysoki, wysoki wysoki }

43 Tu: A prędkość samochodu jest bardzo duża ; A prędkość samochodu jest duża ; B poziom hałasu jest wysoki ; B poziom hałasu jest średniowysoki. Do każdego elementu zbiorów T i T2 można przyporządkować zbiór rozmyty o założonej przez nas funkcji przynależności. Implikacja ma tą samą postać (A B) w regule rozmytej jak i w nierozmytej. W regule rozmytej jej przesłanka nie dotyczy zb. rozmytego A lecz A,, który może być zbliżony do A,, ale niekoniecznie A=A A. 43

44 44 Ponieważ A A A - wniosek jest inny niż byłby w przypadku reguły nierozmytej. Zbiór rozmyty B jest określony przez złożenie zbioru rozmytego A oraz implikacji A B: B' = A' ( A B) Rozmyta reguła wnioskowania modus tollens : Przesłanka: Implikacja: Wniosek: y jest B Jeśli jest A y jest B jest A

45 Wyznaczanie funkcji μ A B (,y) gdy μ A () oraz μ B (y) są znane:. Reguła Mamdaniego: 2. Reguła Larsena: 3. Reguła Łukasiewicza: 4. Reguła Zadeha:... μ ( y, ) min[ μ ( ), μ ( y)] A B = A B μa B(, y) = μa( ) μb( y) [ ] μa B( y, ) = min,- μa( ) + μb( y) { [ ] } μa B(, y) = ma min μa( ), μb( y), μa( ) 45

46 46 STEROWNIKI ROZMYTE

47 47 Zastosowania praktyczne: sprzęt AGD (pralki, lodówki, odkurzacze); kamery (autofokus( autofokus); nadzór wentylacji w tunelach; sterowanie światłami na wjeździe na autostradę; klimatyzacja; automatyka przemysłowa; sterowanie robotów;...

48 Nie wymagają tworzenia modelu rozważanego procesu (co często jest trudne); Należy jedynie sformułować zasady postępowania w postaci rozmytych reguł (IF( IF....THEN). Np.: Schemat układu klimatyzacji: STEROWNIK ROZMYTY pomieszczenie czujnik temperatury czujnik wilgotności KLIMATYZATOR 2, y zmierzone wartości wejściowe; sygnał sterujący (intensywność chłodzenia). 48

49 STEROWNIK ROZMYTY: 49 BAZA REGUŁ BLOK ROZMYWANIA A' X BLOK WNIOSKOWANIA B' BLOK WYOSTRZANIA y Baza reguł (model lingwistyczny): zbiór rozmytych reguł w postaci: R ( k ) : IF ( is A AND is A AND is A ) k k k 2 2 n n k THEN ( y is B AND y is B AND y is B ) k k 2 2 m m

50 Np. Sterowanie ogrzewaniem: 50 Cena Temperatura ogrzewania mróz zimno chłodno tanio mocno mocno średnio średnio mocno średnio słabo drogo średnio słabo wcale () R : IF ( is AND is Temperatura mróz Cena _ ogrz tanio) THEN ( Grzać is mocno) R (2) : IF ( Temperatura is chłodno AND Cena _ ogrz is drogo) THEN ( Grzać is wcale)

51 ROZMYWANIE (fuzzyfikacja) Przejście od pomiarów (konkretna wartość ) do funkcji przynależności przez określenie stopni przyna- leżności zmiennych lingwistycznych do każdego ze zbiorów rozmytych. Np.: Temperatura: T =5 C Cena_ogrz: p =48zł/MBTU (3) R : IF ( Temperatura is chłodno AND Cena _ ogrz is tanio) THEN ( Grzać is średnio) μ chłodno (T) μ tanio (p) C T 0 48zł/MBtu p 5

52 52 μ chłodno (T)=0.5 μ tanio (p)= C T 0 48zł/MBtu p Stopień spełnienia reguły dla wszystkich przesłanek: μ ( ) = min{ μ ( T), μ ( p)} całe chłodno tanio = min{0.5,0.3} = 03. poziom zapłonu reguły

53 53 WNIOSKOWANIE Obliczanie stopnia prawdziwości wniosku: Wnioskowanie MIN: μ = wniosku min{ μ, μ } całe średnio μ średnio (h) μ całe =0.3 0 μ wniosku (h) h

54 54 AGREGACJA Jeżeli więcej niż jedna reguła ma niezerowy poziom zapłonu, wyniki (zbiory rozmyte) sumuje się. THEN Grzać is słabo THEN Grzaćis średnio THENGrzać is mocno μ wniosku słabo średnio mocno 0 h

55 55 WYOSTRZANIE (defuzzyfikacja) Jeżeli na wyjściu wymagana jest wartość liczbowa,, stosuje się jedną z metod wyostrzania: Metoda pierwszego maksimum: Metoda środka maksimum: Metoda środka ciężkości (COG):

56 Tu: μ wniosku słabo COG średnio mocno 0 57 h h = i i μ Ac i i i μ A A i powierzchnia zbioru i μ i stopień przynależności do zbioru i c i środek ciężkości zbioru i. i i 56

57 57

58 58 STEROWNIKI ROZMYTE TAKAGI-SUGENO

59 59 Baza reguł sterownika ma charakter rozmyty tylko w częś ęści IF. W częś ęści THEN występuj pują zależno ności funkcyjne. Reguły Mamdaniego: : wynikiem jest zbiór r rozmyty B: IF =A AND 2 =A 2 n =A n THEN y = B Reguły Takagi-Sugeno Sugeno: : wynikiem jest funkcja Zwykle sąs to funkcje liniowe : funkcja f ( i ): IF =A AND 2 =A 2 n =A n THEN y = f (, 2,.. n ) f ( i ) = y = a 0 +a +a n n

60 Np.: R () : IF prędkość is niska THEN hamowanie = prędkość R (2) : IF prędkość is średnia THEN hamowanie = 4 prędkość R (3) : IF prędkość is wysoka THEN hamowanie = 8 prędkość μ niska średnia wysoka Prędkość R () : w = 0.3; r = 2 R (2) : w 2 = 0.8; r 2 = 4 2 R (3) : w 3 = 0.; r 3 = 8 2 w r i Hamowanie = = 7.2 i w i 60

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F. METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI

Bardziej szczegółowo

ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE

ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium

Bardziej szczegółowo

Wnioskowanie rozmyte. Krzysztof Patan

Wnioskowanie rozmyte. Krzysztof Patan Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne

Bardziej szczegółowo

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów: Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo

Bardziej szczegółowo

Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.

Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup. Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO

Bardziej szczegółowo

WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte)

WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) Motywacje:! przezwyciężenie wad tradycyjnych algorytmów komputerowych, które zawodzą zwłaszcza w sytuacjach, w których człowiek

Bardziej szczegółowo

Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonych przypadkach daje się opisać tylko w sposób nieprecyzyjny, np.

Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonych przypadkach daje się opisać tylko w sposób nieprecyzyjny, np. ZBIORY ROZMYTE Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonyc przypadkac daje się opisać tylko w sposób nieprecyzyjny, np. W dużym mieście, powinien istnieć regionalny port

Bardziej szczegółowo

Technologie i systemy oparte na logice rozmytej

Technologie i systemy oparte na logice rozmytej Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie

Bardziej szczegółowo

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru

Bardziej szczegółowo

SID Wykład 7 Zbiory rozmyte

SID Wykład 7 Zbiory rozmyte SID Wykład 7 Zbiory rozmyte Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Wstęp Language Ontological Commitment Epistemological Commitment (What exists in the world) (What an agent

Bardziej szczegółowo

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo

Sztuczna inteligencja : Zbiory rozmyte cz. III

Sztuczna inteligencja : Zbiory rozmyte cz. III Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,

Bardziej szczegółowo

Piotr Sobolewski Krzysztof Skorupski

Piotr Sobolewski Krzysztof Skorupski Plan prezentacji Logika rodzaje Logika klasyczna Logika wielowartościowa Logika rozmyta Historia powstania Definicje Zbiory rozmyte Relacje rozmyte Systemy rozmyte Modele Zastosowanie w optymalizacji przykłady

Bardziej szczegółowo

Inteligencja obliczeniowa

Inteligencja obliczeniowa Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie

Bardziej szczegółowo

6. Zagadnienie parkowania ciężarówki.

6. Zagadnienie parkowania ciężarówki. 6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można

Bardziej szczegółowo

7. Zagadnienie parkowania ciężarówki.

7. Zagadnienie parkowania ciężarówki. 7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można

Bardziej szczegółowo

Układy logiki rozmytej. Co to jest?

Układy logiki rozmytej. Co to jest? PUAV Wykład 14 Co to jest? Co to jest? Logika rozmyta (fuzzy logic) jest to dział matematyki precyzyjnie formalizujący nieprecyzyjne, nieformalne ludzkie rozumowanie. Co to jest? Logika rozmyta (fuzzy

Bardziej szczegółowo

Logika rozmyta. Agnieszka Nowak - Brzezińska

Logika rozmyta. Agnieszka Nowak - Brzezińska Logika rozmyta Agnieszka Nowak - Brzezińska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information

Bardziej szczegółowo

Logika rozmyta. Agnieszka Nowak - Brzezińska

Logika rozmyta. Agnieszka Nowak - Brzezińska Logika rozmyta Agnieszka Nowak - Brzezińska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information

Bardziej szczegółowo

ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO

ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO Szybkobieżne Pojazdy Gąsienicowe (2) Nr 2, 24 Mirosław ADAMSKI Norbert GRZESIK ALGORYTM PROJEKTOWANIA CH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO. WSTĘP

Bardziej szczegółowo

Temat: Model SUGENO. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Model SUGENO. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Model SUGENO Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Zdań III

Wstęp do logiki. Klasyczny Rachunek Zdań III Wstęp do logiki Klasyczny Rachunek Zdań III Przypomnijmy: Logika: = Teoria form (schematów, reguł) poprawnych wnioskowań. Wnioskowaniem nazywamy jakąkolwiek skończoną co najmniej dwuwyrazową sekwencję

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Cel projektu: Wymogi dotyczące sprawozdania:

Cel projektu: Wymogi dotyczące sprawozdania: W ramach zajęć proszę wykonać sprawozdanie z logiki rozmytej. Sprawozdanie powinno realizować zadanie wnioskowania rozmytego. Cel projektu: Student projektuje bazę wiedzy wnioskowania rozmytego (kilka,

Bardziej szczegółowo

Sztuczna inteligencja: zbiory rozmyte

Sztuczna inteligencja: zbiory rozmyte Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą

Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad

Bardziej szczegółowo

Rachunek zdań i predykatów

Rachunek zdań i predykatów Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)

Bardziej szczegółowo

Sztuczna inteligencja : Zbiory rozmyte cz. 2

Sztuczna inteligencja : Zbiory rozmyte cz. 2 Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:

Bardziej szczegółowo

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie System

Bardziej szczegółowo

Systemy rozmyte i ich zastosowania. Krzysztof Rykaczewski

Systemy rozmyte i ich zastosowania. Krzysztof Rykaczewski Systemy rozmyte i ich zastosowania Krzysztof Rykaczewski 21 czerwca 2006 SPIS TREŚCI Spis treści 1 Wstęp 1 2 Podstawowe pojęcia i definicje logiki rozmytej 1 2.1 Przykłady funkcji przynależności..................

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie

Bardziej szczegółowo

Inteligencja obliczeniowa

Inteligencja obliczeniowa Ćwiczenie nr 3 Zbiory rozmyte logika rozmyta Sterowniki wielowejściowe i wielowyjściowe, relacje rozmyte, sposoby zapisu reguł, aproksymacja funkcji przy użyciu reguł rozmytych, charakterystyki przejściowe

Bardziej szczegółowo

Zagadnienia AI wykład 1

Zagadnienia AI wykład 1 Zagadnienia AI wykład Podręcznik do wykładu: Leszek Rutkowski Metody i techniki sztucznej inteligencji Wydawnictwo Naukowe PWN Prezentacje do wykładu będą sukcesywnie umieszczane na stronie: http://merlin.fic.uni.lodz.pl/mskulimowski/

Bardziej szczegółowo

PODSTAWY INŻYNIERI WIEDZY

PODSTAWY INŻYNIERI WIEDZY Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: PODSTAWY INŻYNIERI WIEDZY 2. Kod przedmiotu: PIW 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma

Bardziej szczegółowo

Temat: Model TS + ANFIS. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Model TS + ANFIS. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Model TS + ANFIS Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania

Bardziej szczegółowo

Kurs logiki rozmytej. Wojciech Szybisty

Kurs logiki rozmytej. Wojciech Szybisty Kurs logiki rozmytej Wojciech Szybisty 2009 Spis treści 1 Co to jest logika rozmyta 3 1.1 Podstawy teorii zbiorów rozmytych........................ 3 1.2 Historia.......................................

Bardziej szczegółowo

Logika Stosowana. Wykład 5 - Zbiory i logiki rozmyte Część 1. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 5 - Zbiory i logiki rozmyte Część 1. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 5 - Zbiory i logiki rozmyte Część 1 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 36 Plan

Bardziej szczegółowo

Metody sterowania sterowanie rozmyte System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym

Metody sterowania sterowanie rozmyte System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym Sterowanie rozmyte jest sterowaniem za pomocą reguł Sterowanie rozmyte można sklasyfikować jako: -

Bardziej szczegółowo

Reprezentacja rozmyta - zastosowania logiki rozmytej

Reprezentacja rozmyta - zastosowania logiki rozmytej 17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych

Bardziej szczegółowo

WNIOSKOWANIE ROZMYTE FUZZY INFERENCE

WNIOSKOWANIE ROZMYTE FUZZY INFERENCE Dominik Ziajka WNIOSKOWANIE ROZMYTE FUZZY INFERENCE Celem artykułu jest przedstawienie teorii zbiorów rozmytych, wnioskowania rozmytego oraz porównania ich ze zbiorami przybliżonymi. Wprowadzenie do zbiorów

Bardziej szczegółowo

KOMPUTERY W STEROWANIU. Ćwiczenie 6 Projektowanie układu regulacji rozmytej

KOMPUTERY W STEROWANIU. Ćwiczenie 6 Projektowanie układu regulacji rozmytej Wydział Elektryczny Zespół Automatyki (ZTMAiPC) KOMPUTERY W STEROWANIU Ćwiczenie 6 Projektowanie układu regulacji rozmytej 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z procedurą projektowania

Bardziej szczegółowo

Zadanie 0 gdy nie mamy logiki rozmytej

Zadanie 0 gdy nie mamy logiki rozmytej Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad

Bardziej szczegółowo

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 4. Semantyka Klasycznego Rachunku Zdań 1 Skróty: Język Klasycznego Rachunku Zdań zamiast Klasyczny Rachunek Zdań piszę

Bardziej szczegółowo

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe: LOGIKA MATEMATYCZNA Poziom podstawowy Zadanie ( pkt.) Która koniunkcja jest prawdziwa: a) Liczba 6 jest niewymierna i 6 jest liczbą dodatnią. b) Liczba 0 jest wymierna i 0 jest najmniejszą liczbą całkowitą.

Bardziej szczegółowo

Lekcja 3: Elementy logiki - Rachunek zdań

Lekcja 3: Elementy logiki - Rachunek zdań Lekcja 3: Elementy logiki - Rachunek zdań S. Hoa Nguyen 1 Materiał a) Zdanie proste, złożone b) Spójniki logiczne (funktory zdaniotwórcze):,,,,, (alternatywa wykluczająca - XOR). c) Tautologia, zdanie

Bardziej szczegółowo

Rachunek zdao i logika matematyczna

Rachunek zdao i logika matematyczna Rachunek zdao i logika matematyczna Pojęcia Logika - Zajmuje się badaniem ogólnych praw, według których przebiegają wszelkie poprawne rozumowania, w szczególności wnioskowania. Rachunek zdao - dział logiki

Bardziej szczegółowo

ELEMENTY SZTUCZNEJ INTELIGENCJI. Wstęp do logiki rozmytej

ELEMENTY SZTUCZNEJ INTELIGENCJI. Wstęp do logiki rozmytej ELEMENTY SZTUCZNEJ INTELIGENCJI 1 Wstęp do logiki rozmytej PLN 1. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte: 1. typu

Bardziej szczegółowo

Tworzenie rozmytego systemu wnioskowania

Tworzenie rozmytego systemu wnioskowania Tworzenie rozmytego systemu wnioskowania Wstęp W odróżnieniu od klasycznych systemów regałowych modele rozmyte pozwalają budowad modele wnioskujące oparte o język naturalny, dzieki czemu inżynierom wiedzy

Bardziej szczegółowo

Wiedza niepewna i wnioskowanie (c.d.)

Wiedza niepewna i wnioskowanie (c.d.) Wiedza niepewna i wnioskowanie (c.d.) Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wnioskowanie przybliżone Wnioskowanie w logice tradycyjnej (dwuwartościowej) polega na stwierdzeniu

Bardziej szczegółowo

BADANIE GOTOWOŚCI PRZEDSIĘBIORSTW DO ZARZĄDZANIA STRATEGICZNEGO Z WYKORZYSTANIEM ROZMYTEGO RACHUNKU ZDAŃ

BADANIE GOTOWOŚCI PRZEDSIĘBIORSTW DO ZARZĄDZANIA STRATEGICZNEGO Z WYKORZYSTANIEM ROZMYTEGO RACHUNKU ZDAŃ BADANIE GOTOWOŚCI PRZEDSIĘBIORSTW DO ZARZĄDZANIA STRATEGICZNEGO Z WYKORZYSTANIEM ROZMYTEGO RACHUNKU ZDAŃ Agata SZEPTUCH, Marcin ADAM Streszczenie: W artykule podjęto problem badania gotowości przedsiębiorstw

Bardziej szczegółowo

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych

Bardziej szczegółowo

Kultura logiczna Klasyczny rachunek zdań 2/2

Kultura logiczna Klasyczny rachunek zdań 2/2 Kultura logiczna Klasyczny rachunek zdań 2/2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 29 III 2 Plan wykładu: Wartościowanie w KRZ Tautologie KRZ Wartościowanie v, to funkcja, która posyła zbiór

Bardziej szczegółowo

Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte

Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte Sieci Neuronowe Wykład 11 Algorytmy genetyczne; Systemy rozmyte wykład przygotowany na podstawie. S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 4, PWNT, Warszawa 1996. W. Duch, J. Korbicz,

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Zdań II

Wstęp do logiki. Klasyczny Rachunek Zdań II Wstęp do logiki Klasyczny Rachunek Zdań II DEF. 1 (Słownik). Następujące znaki tworzą słownik języka KRZ: p 1, p 2, p 3, (zmienne zdaniowe) ~,,,, (spójniki) ), ( (nawiasy). DEF. 2 (Wyrażenie). Wyrażeniem

Bardziej szczegółowo

ELEMENTY TEORII ZBIORÓW ROZMYTYCH

ELEMENTY TEORII ZBIORÓW ROZMYTYCH ELEMENTY TEORII ZBIORÓW ROZMYTYCH OPRACOWAŁ: M. KWIESIELEWICZ POJĘCIA NIEPRECYZYJNE ODDZIAŁYWANIA CZŁOWIEK-OBIEKT TECHNICZNY OTOCZENIE (Hoang 990: człowieka na otoczenie, np.: ergonomiczna konstrukcja

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

Sterowanie z wykorzystaniem logiki rozmytej

Sterowanie z wykorzystaniem logiki rozmytej Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie

Bardziej szczegółowo

Implementacja rozmytych systemów wnioskujących w zdaniach regulacji

Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 5 Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika

Bardziej szczegółowo

Piegat A.: Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999 r.

Piegat A.: Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999 r. Metody prognozowania: Podstawy logiki rozmytej Literatura do wykładu: Piegat A.: Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999 r. D. Rutkowska, M. Pilinski, L. Rutkowski,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)

Bardziej szczegółowo

ZBIORY ROZMYTE. METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 I WNIOSKOWANIE PRZYBLIŻONE. sets

ZBIORY ROZMYTE. METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 I WNIOSKOWANIE PRZYBLIŻONE. sets METODY INTELIGENCJI OBLICZENIOWEJ wykłd 6 ZBIORY ROZMYTE I WNIOSKOWNIE PRZYBLIŻONE 965 Lotfi. Zdeh: : Fuzzy sets Metod reprezentcji wiedzy wyrżonej w języku nturlnym: Tempertur wynosi 9 o C informcj liczow

Bardziej szczegółowo

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco.

W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco. Zadanie 0 Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad wartośd funkcji przynależności

Bardziej szczegółowo

WPŁYW OPÓŹNIENIA NA DYNAMIKĘ UKŁADÓW Z REGULACJĄ KLASYCZNĄ I ROZMYTĄ

WPŁYW OPÓŹNIENIA NA DYNAMIKĘ UKŁADÓW Z REGULACJĄ KLASYCZNĄ I ROZMYTĄ Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 65 Politechniki Wrocławskiej Nr 65 Studia i Materiały Nr 31 2011 Kinga GÓRNIAK* układy z opóźnieniem, regulacja rozmyta, model Mamdaniego,

Bardziej szczegółowo

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rachunek zdań Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak RACHUNEK ZDAŃ Zdania Definicja Zdanie jest to stwierdzenie w języku naturalnym, któremu można przypisać wartość prawdy lub

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018

Bardziej szczegółowo

Podstawowe Pojęcia. Semantyczne KRZ

Podstawowe Pojęcia. Semantyczne KRZ Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga

Bardziej szczegółowo

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu Witold Marciszewski: Wykład Logiki, 17 luty 2005, Collegium Civitas, Warszawa Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu 1. Poniższe wyjaśnienie (akapit

Bardziej szczegółowo

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji

Bardziej szczegółowo

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność

Bardziej szczegółowo

Logika rozmyta typu 2

Logika rozmyta typu 2 Logika rozmyta typu 2 Zbiory rozmyte Funkcja przynależności Interwałowe zbiory rozmyte Funkcje przynależności przedziałów Zastosowanie.9.5 Francuz Polak Niemiec Arytmetyka przedziałów Operacje zbiorowe

Bardziej szczegółowo

Jeśli przeszkoda jest blisko to przyhamuj

Jeśli przeszkoda jest blisko to przyhamuj Rozmyte systemy regułowe Informacja, którą przetwarzają ludzie często (prawie zawsze) jest nieprecyzyjna, a mimo to potrafimy poprawnie wnioskować i podejmować decyzję, czego klasyczne komputery nie potrafią.

Bardziej szczegółowo

Roger Bacon Def. Def. Def Funktory zdaniotwórcze

Roger Bacon Def. Def. Def Funktory zdaniotwórcze Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym

Bardziej szczegółowo

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań System aksjomatyczny logiki Budując logikę

Bardziej szczegółowo

Logika Stosowana Ćwiczenia

Logika Stosowana Ćwiczenia Logika Stosowana Ćwiczenia Systemy sterowania wykorzystujące zbiory rozmyte Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Semestr letni 2014/15 Marcin Szczuka (MIMUW) Logika Stosowana 2014/15

Bardziej szczegółowo

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Egzamin z logiki i teorii mnogości, rozwiązania zadań Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?

Bardziej szczegółowo

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

Method of determination of the current liquidity ratio with the use of fuzzy logic in hard coal mines

Method of determination of the current liquidity ratio with the use of fuzzy logic in hard coal mines 76 PRZEGLĄD GÓRNICZY 2014 UKD 622.333: 622.338.24: 622.652.2 Metoda określania płynności bieżącej w kopalniach węgla kamiennego z wykorzystaniem systemu rozmytego Method of determination of the current

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Wnioskowanie logiczne i systemy eksperckie Systemy posługujące się logiką predykatów: część 3/3 Dzisiaj Uogólnienie Poprawność i pełność wnioskowania

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 1

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 1 Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 1 Zasady współpracy https://mat.ug.edu.pl/~matpz/ wykłady nie są obowiązkowe, ale nieobecności będą odnotowywane nieobecności nie należy usprawiedliwiać,

Bardziej szczegółowo

Notacja. - operator implikacji, - operator koniunkcji v operator alternatywy - operator równoważności ~ operator negacji Duża litera (np.

Notacja. - operator implikacji, - operator koniunkcji v operator alternatywy - operator równoważności ~ operator negacji Duża litera (np. Systemy ekspertowe Notacja - operator implikacji, - operator koniunkcji v operator alternatywy - operator równoważności ~ operator negacji Duża litera (np. A) - fakt Klauzula Horna Klauzula Horna mówi,

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 7 i 8. Aksjomatyczne ujęcie Klasycznego Rachunku Zdań

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 7 i 8. Aksjomatyczne ujęcie Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykłady 7 i 8. Aksjomatyczne ujęcie Klasycznego Rachunku Zdań 1 Istnieje wiele systemów aksjomatycznych Klasycznego Rachunku

Bardziej szczegółowo

ROZDZIAŁ 1. Rachunek funkcyjny

ROZDZIAŁ 1. Rachunek funkcyjny ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast

Bardziej szczegółowo

Rachunek logiczny. 1. Język rachunku logicznego.

Rachunek logiczny. 1. Język rachunku logicznego. Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były

Bardziej szczegółowo