SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji

Wielkość: px
Rozpocząć pokaz od strony:

Download "SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji"

Transkrypt

1 SZEREG CZASOWY Y zjawisko badane w różnch okresach lub momentach czasu. Dnamika zjawiska to zmiana zjawiska w czasie. Przkład. Y średni kurs akcji firm OPTMUS na giełdzie Okres: notowania od do ; jednostka: notowanie. 1

2 Wartości zjawiska tworzą szereg czasow: t i t 1 t 2... t n i n t i chwile lub okres (przedział powinn bć jednakowe) Uwaga: niekied stosuje się zapis: t 0, t 1,..., t n. 2

3 Średni poziom badanego zjawiska w szeregu czasowm okresów liczm za pomocą średniej artmetcznej natomiast w szeregu czasowm momentów za pomocą średniej chronologicznej: Y ch n n 1 n 3

4 Przkład. Liczbę pracowników pewnego banku wg stanu na koniec poszczególnch kwartałów roku podano w tabeli: Kwartał V Liczba pracowników średnia chronologiczna jest równa Y ch 724 / /

5 Tendencja rozwojowa (trend) - określa ogóln kierunek rozwoju zjawiska w czasie. Metod określania tendencji rozwojowej: a) metoda średnich ruchomch b) metoda analitczna (omówiona prz zagadnieniu regresji). 5

6 Np. średnia ruchoma trzokresowa (k 3) ma postać: Y , Y ,..., Y n n 2 n 1 n 3 6

7 Przkład. Liczba wpadków w pewnej firmie w kolejnch latach wnosiła: Rok Liczba wpadków średnie (k3) 20,7 19,7 22,0 19,0 18,7 15,3 15,3 13,3 14,3 7

8 Efekt wgładzania średnimi ruchommi (k 3) przedstawiono na wkresie: liczba wpadków dane średnie (k3) lata 8

9 PRZYROSTY Przrost absolutne (bezwzględne) a) ciąg przrostów bezwzględnch (o stałej podstawie): 1-0, 2-0, 3-0,..., n stała podstawa (dowolna spośród 1,..., n ). 9

10 b) ciąg przrostów bezwzględnch łańcuchowch (o zmiennej podstawie): 2 1, 3 2, 4 3,..., n n

11 Są to wielkości mianowane więc nie nadają się do porównań zmian dla różnch zjawisk. Do porównań bardziej nadają się wielkości względne: 11

12 Przrost względne (wskaźniki tempa dnamiki) (często wrażane w procentach) a) ciąg przrostów względnch o stałej podstawie 0 : 1-0 0, 2-0 0,..., n

13 b) ciąg przrostów łańcuchowch: 2-1 1, 3-2 2,..., n - n - 1 n

14 Przkład. Y liczba zarejestrowanch samochodów osobowch w pewnm mieście (stan na 31.12) przrost absolutne przrost względne Lata t (szt.) stała podstawa łańcuchowe stała podstawa łańcuchowe x 0 x ,162 0, ,236 0, ,287 0, ,360 0,056 14

15 NDEKSY (wskaźniki dnamiki). ndeks dzielim na: indeks indwidualne (proste), indeks zespołowe (agregatowe). 15

16 ndeks indwidualne. a) ciąg indeksów o stałej podstawie: 1/0, 2/0, 3/0,..., n/0 0 stała podstawa (dowolna spośród 1,..., n ). gdzie t t/0 t 0 1, 2,...,n 16

17 b) ciąg indeksów łańcuchowch: 2/1, 3/2, 4/3,..., n/n - 1 gdzie t t/t -1 t t-1 2, 3,..., n 17

18 Uwaga. t t 1 t t-1 t t/t-1 t 2, t-1 t-1 t-1 t-1 3,...,n zatem mam zależność: indeks łańcuchow przrost względn łańcuchow

19 Przkład. Y liczba wpadków drogowch w ciągu roku. Rok t liczba wpadków t t/0 t t/t -1 t t-1 19

20 Przkład. Y liczba wpadków drogowch w ciągu roku. Rok t liczba wpadków t t/0 t t/t ,000 X ,015 1, ,100 1, ,976 0, ,017 1,042 t t-1 20

21 Średnie tempo dnamiki to średnie tempo zmian przpadające na jednostkę czasu. 21

22 Zagadnienie. Wznaczć liczb g taką, że gdb wszstkie indeks łańcuchowe bł sobie równe i miał wartość g to wartość zjawiska w okresie t n błab równa n (taka sama jak prz różnch indeksach łańcuchowch). 22

23 Liczbę g nazwam średnim tempem dnamiki lub średnim tempem zmian lub średnim indeksem łańcuchowm. 23

24 Zauważm, że (*) n n/ n... / gdb wszstkie indeks bł równe to g (**) n Porównując (*) i (**) mam n g n 1 n/n /1 (średnia geometrczna) Własność: g n 1 n/1 n 1 n 1 24

25 Uwaga Średnie tempo dnamiki g możem zastosować do wznaczania prognoz: * n+ k n ( g ) k 25

26 Średni wskaźnik tempa to T g 1 26

27 Przkład. Dla danch z poprzedniego przkładu: g 4 1,015 1,084 0,887 1,042 1,017 1, ,4 % T 0,004 0,4 % 27

28 ndeks agregatowe (zespołowe). ndeks agregatowe dzielim na: indeks agregatowe wielkości absolutnch (np. wartości, ilości, cen), indeks (agregatowe) wielkości stosunkowch (np. wdajność prac koszt jednostkow, gęstość zaludnienia). 28

29 Agregatow wskaźnik (indeks) wartości w w n i 1 n i 1 w w 1i 0i suma wartości w okresie badanm suma wartości w okresie podstawowm 29

30 Gd p 1i cena jednostkowa w okresie badanm q 1i ilość w okresie badanm, p 0i cena jednostkowa w okresie podstawowm q 0i ilość w okresie podstawowm to w 1i p 1i q 1i w 0i p 0i q 0i 30

31 Przkład. Wznaczm agregatow indeks wartości sprzedaż czterech artkułów A, B, C, D w latach 1995 i 1999: Sprzedaż (ts. Cena za 1 szt. artkuł szt.) (średnio) 1995 q q p p 1 A ,65 14,90 B ,65 4,20 C ,00 90,00 D ,00 10,50 Ogółem x x x x Wartość sprzedaż (zł) 1995 w 0 p 0 q w 1 p 1 q 1 31

32 artkuł Sprzedaż (ts. szt.) Cena za 1 szt. (średnio) Wartość sprzedaż (zł) q 0 q 1 p 0 p 1 w 0 p 0 q 0 w 1 p 1 q 1 A ,65 14, , ,20 B ,65 4, , ,00 C ,00 90, , ,0 D ,00 10, , ,00 Ogółem x x x x 29232, ,2 32

33 Zatem: suma wartości sprzedaż w ,2 w 3, % suma wartości sprzedaż w ,0 Tzn. sprzedaż wzrosła o 219%. 33

34 ndeks agregatow ilości q., ndeks agregatow cen p Nazwa Cecha indeksu indeksu Definicja indeksu Wg Lasperesa Wg Paaschego ndeks agregatow ilości Stałe cen jednostkowe (cen z okresu podstawowego) (cen z okresu badanego) ndeks agregatow cen Stałe ilości (ilości z okresu podstawowego) (ilości z okresu badanego) 34

35 ndeks agregatow ilości q., ndeks agregatow cen p Nazwa indeksu ndeks agregatow ilości ndeks agregatow cen Cecha indeksu Stałe cen jednostkowe Stałe ilości Definicja indeksu Wg Lasperesa Wg Paaschego L q q q 1i 0i p p 0i 0i (cen z okresu podstawowego) L p q q 0i 0i p p 1i 0i (ilości z okresu podstawowego) P q q q 1i 0i p p 1i 1i (cen z okresu badanego) P p q q 1i 1i p p 1i 0i (ilości z okresu badanego) 35

36 Dla powższego przkładu: artkuł q 1 p 0 q 0 p 1 A B C D Ogółem 36

37 Dla powższego przkładu: artkuł q 1 p 0 q 0 p 1 A 1153,2 3278,00 B 3605, ,00 C 18700, ,0 D 1472, ,00 Ogółem 24930,

38 L q 24930, ,00 0,853 85,3% (ilość globalnie spadła o 14,7%) P q 93236, ,00 0,84 84% 38

39 L p , ,00 3, ,6% (cen globalnie wzrosł o 279,6%) P p 93236, ,45 3,74 374% 39

40 Wniosek: zmiana cen miała większ wpłw na zmianę wartości niż zmiana ilości. 40

41 Zależności: W P q L p W L q P p 41

42 ndeks Fiszera dla ilości F q L q P q dla cen F p L p P p 42

43 Wniosek F q F p w 43

44 Hermann Paasche ( ), niemiecki ekonomista, politk i statstk. 44

45 Niemiecki ekonomista Étienne Lasperes ( ) 45

46 riving Fisher ( ) ekonomista i matematk amerkański, 46

Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %)

Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %) Analza dnamk Zad. 1 Indeks lczb studującch studentów w województwe śląskm w kolejnch pęcu latach przedstawał sę następująco: Lata 1 2 3 4 5 Indeks jednopodstawowe z roku t = 1 100,0 115,7 161,4 250,8 195,9

Bardziej szczegółowo

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne

Bardziej szczegółowo

Statystyka. Wykład 11. Magdalena Alama-Bućko. 22 maja Magdalena Alama-Bućko Statystyka 22 maja / 41

Statystyka. Wykład 11. Magdalena Alama-Bućko. 22 maja Magdalena Alama-Bućko Statystyka 22 maja / 41 Statystyka Wykład 11 Magdalena Alama-Bućko 22 maja 2017 Magdalena Alama-Bućko Statystyka 22 maja 2017 1 / 41 Analiza dynamiki zjawisk badamy zmiany poziomu (tzn. wzrosty/spadki) badanego zjawiska w czasie.

Bardziej szczegółowo

Analiza szeregów czasowych

Analiza szeregów czasowych Statystyka Wykład 5. Analiza szeregów czasowych michal.trzesiok@ue.katowice.pl Uniwersytet Ekonomiczny w Katowicach Katedra Analiz Gospodarczych i Finansowych 9 listopada 2015 r. Plan Szeregi czasowe wprowadzenie

Bardziej szczegółowo

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 4. ZADANIA Zestaw 4

L.Kowalski zadania ze statystyki opisowej-zestaw 4. ZADANIA Zestaw 4 ZADANA Zestaw 4 Zadanie 4. Na podstawie informacji o zyskach firmy podanych w tabeli: Lata 995 996 997 998 999 Zysk (w tys. zł) 5200 600 6500 6700 700 a) wyznaczyć ciąg przyrostów łańcuchowych (bezwzględnych

Bardziej szczegółowo

Statystyka. Wykład 12. Magdalena Alama-Bućko. 29 maja Magdalena Alama-Bućko Statystyka 29 maja / 47

Statystyka. Wykład 12. Magdalena Alama-Bućko. 29 maja Magdalena Alama-Bućko Statystyka 29 maja / 47 Statystyka Wykład 12 Magdalena Alama-Bućko 29 maja 2017 Magdalena Alama-Bućko Statystyka 29 maja 2017 1 / 47 Analiza dynamiki zjawisk badamy zmiany poziomu (tzn. wzrosty/spadki) badanego zjawiska w czasie.

Bardziej szczegółowo

ANALIZA DYNAMIKI ZJAWISK SZEREG CZASOWY

ANALIZA DYNAMIKI ZJAWISK SZEREG CZASOWY D. Miszczńska, M.Miszczński, Maeriał do wkładu 5 ze Saski, 29/ [] ANALZA DYNAMK ZJAWSK. szereg czasow, chronologiczn (momenów, okresów) 2. średni oziom zjawiska w czasie (średnia armeczna, średnia chronologiczna)

Bardziej szczegółowo

Statystyka. Wykład 10. Magdalena Alama-Bućko. 15 maja Magdalena Alama-Bućko Statystyka 15 maja / 32

Statystyka. Wykład 10. Magdalena Alama-Bućko. 15 maja Magdalena Alama-Bućko Statystyka 15 maja / 32 Statystyka Wykład 10 Magdalena Alama-Bućko 15 maja 2017 Magdalena Alama-Bućko Statystyka 15 maja 2017 1 / 32 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary

Bardziej szczegółowo

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K. Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą

Bardziej szczegółowo

Statystyka. Wykład 11. Magdalena Alama-Bućko. 21 maja Magdalena Alama-Bućko Statystyka 21 maja / 31

Statystyka. Wykład 11. Magdalena Alama-Bućko. 21 maja Magdalena Alama-Bućko Statystyka 21 maja / 31 Statystyka Wykład 11 Magdalena Alama-Bućko 21 maja 2018 Magdalena Alama-Bućko Statystyka 21 maja 2018 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary

Bardziej szczegółowo

Analiza dynamiki zjawisk STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 28 września 2018

Analiza dynamiki zjawisk STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 28 września 2018 STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 28 września 2018 1 Pojęcie szeregów czasowych i ich składowych SZEREGIEM CZASOWYM nazywamy tablicę, która zawiera ciag wartości cechy uporzadkowanych

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE INDEKSY STATYSTYCZNE Absolutny przyrost t = y t y t 1 Względny przyrost δ t = t y t Indeks indywidualny jednopodstawowy

Bardziej szczegółowo

STATYSTYKA. Na egzamin należy przynieść:

STATYSTYKA. Na egzamin należy przynieść: [1] STATYSTYKA Na egzamin należy przynieść: 1. kalkulator 2. wzory na kartce (bez komentarzy!!!) UWAGA!!! wzory muszą być napisane odręcznie (kserokopie będą zabierane) Na kolejnych stronach zamieszczono

Bardziej szczegółowo

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK Założena Nech oznacza ozom (warość) badanego zjawska (zmennej) w kolejnch momenach czasu T0, gdze T 0 0,1,..., n 1 oznacza worz szereg czasow. zbór numerów czasu. Cąg

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X

Bardziej szczegółowo

Zad. 1. Wartość pożyczki ( w tys. zł) kształtowała się następująco w pewnym banku:

Zad. 1. Wartość pożyczki ( w tys. zł) kształtowała się następująco w pewnym banku: Zad. 1. Wartość pożyczki ( w tys. zł) kształtowała się następująco w pewnym banku: Kwota Liczba pożyczek pożyczki 0 4 0 4 8 8 12 40 12 16 16 Zbadać asymetrię rozkładu kwoty pożyczki w tym banku. Wynik

Bardziej szczegółowo

Analiza Zmian w czasie

Analiza Zmian w czasie Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Zmian w czasie Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Zajęcia 1. Statystyki opisowe

Zajęcia 1. Statystyki opisowe Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,

Bardziej szczegółowo

Ekstrema funkcji dwóch zmiennych

Ekstrema funkcji dwóch zmiennych Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.

Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. 1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004

Bardziej szczegółowo

Statystyka. Wykład 13. Magdalena Alama-Bućko. 18 czerwca Magdalena Alama-Bućko Statystyka 18 czerwca / 36

Statystyka. Wykład 13. Magdalena Alama-Bućko. 18 czerwca Magdalena Alama-Bućko Statystyka 18 czerwca / 36 Statystyka Wykład 13 Magdalena Alama-Bućko 18 czerwca 2018 Magdalena Alama-Bućko Statystyka 18 czerwca 2018 1 / 36 Agregatowy (zespołowy) indeks wartości określonego zespołu produktów np. jak zmianiała

Bardziej szczegółowo

Ćwiczenia 13 WAHANIA SEZONOWE

Ćwiczenia 13 WAHANIA SEZONOWE Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009

Bardziej szczegółowo

Zasady budowania prognoz ekonometrycznych

Zasady budowania prognoz ekonometrycznych Zasad budowania prognoz ekonometrcznch Klasczne założenia teorii predkcji 1. Znajomość modelu kształtowania się zmiennej prognozowanej Znajomość postaci analitcznej wstępującch zależności międz zmiennmi

Bardziej szczegółowo

Prognozowanie i symulacje

Prognozowanie i symulacje Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

Definicja wartości bezwzględnej. x < x y. x =

Definicja wartości bezwzględnej. x < x y. x = 1.9. WARTOŚĆ BEZWZGLĘDNA Definicja wartości bezwzględnej... gd... 0 =... gd... < 0 Własności wartości bezwzględnej 0 = = = n a n = a, gd n jest liczbą parzstą Przkład 1.9.1. Oblicz: a) b) c) 1 d) 0 e)

Bardziej szczegółowo

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006 Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje

Bardziej szczegółowo

ROZDZIAŁ 10 DEKOMPOZYCJA STRUKTURALNA ZMIAN OSZCZĘDNOŚCI SEKTORÓW INSTYTUCJONALNYCH W POLSCE

ROZDZIAŁ 10 DEKOMPOZYCJA STRUKTURALNA ZMIAN OSZCZĘDNOŚCI SEKTORÓW INSTYTUCJONALNYCH W POLSCE Joanna Trębska ROZDZIAŁ 10 DEKOMPOZYCJA STRUKTURALNA ZMIAN OSZCZĘDNOŚCI SEKTORÓW INSTYTUCJONALNYCH W POLSCE Wprowadzenie Dekompozcja strukturalna definiowana jest jako metoda pozwalająca na wróżnienie

Bardziej szczegółowo

Prognozowanie popytu. mgr inż. Michał Adamczak

Prognozowanie popytu. mgr inż. Michał Adamczak Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej

Bardziej szczegółowo

Rachunki narodowe ćwiczenia, 2015

Rachunki narodowe ćwiczenia, 2015 Obliczanie (zmian) wolumenów (na przykładzie PKB). Przykład opracowany na podstawie Understanding, ćwiczenie 3, str. 40. PKB, podobnie jak wiele innych wielkości makroekonomicznych, może być przedstawiany

Bardziej szczegółowo

Wykład 5: Analiza dynamiki szeregów czasowych

Wykład 5: Analiza dynamiki szeregów czasowych Wykład 5: Analiza dynamiki szeregów czasowych ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie tego procesu

Bardziej szczegółowo

Analiza dynamiki. Sesja Cena akcji 1 42,9 2 41, ,5 5 41, , ,5

Analiza dynamiki. Sesja Cena akcji 1 42,9 2 41, ,5 5 41, , ,5 Analiza dynamiki Zadanie 1 Dynamikę produkcji samochodów osobowych przez pewną fabrykę w latach 2007-2013 opisuje następujący ciąg indeksów łańcuchowych: 1,1; 1,2; 1,3; 1,4; 0,8; 0,9. a) Jak zmieniała

Bardziej szczegółowo

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.

Bardziej szczegółowo

Średnie. Średnie. Kinga Kolczyńska - Przybycień

Średnie. Średnie. Kinga Kolczyńska - Przybycień Czym jest średnia? W wielu zagadnieniach praktycznych, kiedy mamy do czynienia z jakimiś danymi, poszukujemy liczb, które w pewnym sensie charakteryzują te dane. Na przykład kiedy chcielibyśmy sklasyfikować,

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki

Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

A.Światkowski. Wroclaw University of Economics. Working paper

A.Światkowski. Wroclaw University of Economics. Working paper A.Światkowski Wroclaw University of Economics Working paper 1 Planowanie sprzedaży na przykładzie przedsiębiorstwa z branży deweloperskiej Cel pracy: Zaplanowanie sprzedaży spółki na rok 2012 Słowa kluczowe:

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA Młodzieżowe Uniwerstet Matematczne Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu połecznego REGUŁA GULDINA dr Bronisław Pabich Rzeszów marca 1 Projekt realizowan przez Uniwerstet

Bardziej szczegółowo

t y x y'y x'x y'x x-x śr (x-x śr)^2

t y x y'y x'x y'x x-x śr (x-x śr)^2 Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.20 2011 Zawartość Zawartość 1. Tworzenie szeregu rozdzielczego przedziałowego (klasowego)... 3 2. Podstawowy opis struktury... 3 3. Opis rozkładu jednej cechy szereg

Bardziej szczegółowo

ANALIZA SPRZEDAŻY: - struktura

ANALIZA SPRZEDAŻY: - struktura KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - struktura - koncentracja - kompleksowa analiza - dynamika Spis treści Wstęp 3 Analiza struktury 4 Analiza koncentracji 7 Kompleksowa

Bardziej szczegółowo

Informacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej III kwartał 2016 r.

Informacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej III kwartał 2016 r. Listopad 216 r. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej III kwartał 216 r. NBP Oddział Okręgowy w Katowicach Katowice, 216 r. Synteza Synteza Informację

Bardziej szczegółowo

Ruch po równi pochyłej

Ruch po równi pochyłej Sławomir Jemielit Ruch po równi pochłej Z równi pochłej o kącie nachlenia do poziomu α zsuwa się ciało o masie m. Jakie jest przspieszenie ciała, jeśli współcznnik tarcia ciała o równię wnosi f? W jakich

Bardziej szczegółowo

Statystyka. Wykład 10. Magdalena Alama-Bućko. 14 maja Magdalena Alama-Bućko Statystyka 14 maja / 31

Statystyka. Wykład 10. Magdalena Alama-Bućko. 14 maja Magdalena Alama-Bućko Statystyka 14 maja / 31 Statystyka Wykład 10 Magdalena Alama-Bućko 14 maja 2018 Magdalena Alama-Bućko Statystyka 14 maja 2018 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary

Bardziej szczegółowo

Informacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej II kwartał 2016 r.

Informacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej II kwartał 2016 r. Sierpień 216 r. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej II kwartał 216 r. NBP Oddział Okręgowy w Katowicach Katowice, 216 r. Synteza Synteza Informację

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr /4 Specjalność Bez specjalności Kod katedry/zakładu w

Bardziej szczegółowo

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym . Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego

Bardziej szczegółowo

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej 1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm

Bardziej szczegółowo

PDF stworzony przez wersje demonstracyjna pdffactory Pro

PDF stworzony przez wersje demonstracyjna pdffactory Pro Zestaw A Ćwiczenie 1 Koszty zużycia energii elektrycznej stosowanej bezpośrednio do produkcji wyniosły w okresie 1 25.000 zł, zaś w okresie 2 32.000 zł. Wielkość produkcji w tych okresach: 1-15.000 szt,

Bardziej szczegółowo

INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W II KWARTALE 2010 R.

INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W II KWARTALE 2010 R. Narodowy Bank Polski Departament Systemu Płatniczego INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W II KWARTALE 2010 R. Warszawa, sierpień 2010 r. SPIS TREŚCI Informacja o rozliczeniach

Bardziej szczegółowo

Informacja o rozliczeniach pieniężnych i rozrachunkach międzybankowych w I kwartale 2015 r.

Informacja o rozliczeniach pieniężnych i rozrachunkach międzybankowych w I kwartale 2015 r. Informacja o rozliczeniach pieniężnych i rozrachunkach międzybankowych w I kwartale r. Departament Systemu Płatniczego NBP Warszawa, czerwiec r. Spis treści Wprowadzenie 2 1. System SORBNET2 4 2. System

Bardziej szczegółowo

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS Nazwa przedmiotu: Statystyka opisowa Profil 1 : ogólnoakademicki Cel przedmiotu: Zapoznanie studentów

Bardziej szczegółowo

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2)

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2) euler-przkl_.xmcd Metod Eulera i Eulera-Cauch'ego rozwiązwania równań różniczkowch zwczajnch ' ( x, ) : x () + Rozwiązanie dokładne równania () ( x, C) : + C exp( atan( x) ) () Sprawdzenie: d dx ( x, C)

Bardziej szczegółowo

Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji)

Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji) Wkład 1: Prosta regresja liniowa Statstczn model regresji liniowej Dane dla prostej regresji liniowej Przedział ufności i test parametrów Przedział ufności dla średniej odpowiedzi Interwał prognoz (dla

Bardziej szczegółowo

Zmiany cen nieruchomości w czasie

Zmiany cen nieruchomości w czasie Inwestycje i ryzyko na rynku nieruchości Ewa Kusideł 1 Zmiany cen nieruchomości w czasie Dr Ewa Kusideł Inwestycje i ryzyko na rynku nieruchości 2 Analiza średnich zmian cen nieruchomości w czasie za pomocą

Bardziej szczegółowo

Równania różniczkowe

Równania różniczkowe Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz

Bardziej szczegółowo

Wielowymiarowe bazy danych

Wielowymiarowe bazy danych Wielowmiarowe baz danch Wielowmiarowe baz danch Dziedzin zastosowań Multimedialne baz danch dane medialne przechowwane jako wielowmiarowe wektor danch Sstem geograficzne, sstem wspomagania projektowania

Bardziej szczegółowo

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów Tomasz Gruszczyk Informatyka i Ekonometria I rok, nr indeksu: 156012 Sopot, styczeń

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

PROJEKCJE MAKROEKONOMICZNE EKSPERTÓW EUROSYSTEMU DLA OBSZARU EURO

PROJEKCJE MAKROEKONOMICZNE EKSPERTÓW EUROSYSTEMU DLA OBSZARU EURO PROJEKCJE MAKROEKONOMICZNE EKSPERTÓW EUROSYSTEMU DLA OBSZARU EURO Eksperci Eurosystemu opracowali projekcje rozwoju sytuacji makroekonomicznej w obszarze euro na podstawie informacji dostępnych na dzień

Bardziej szczegółowo

3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.

3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5. WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja

Bardziej szczegółowo

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007 Egzamin ze statystyki, Studia Licencjackie Stacjonarne TEMAT C grupa 1 Czerwiec 2007 (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i

Bardziej szczegółowo

Macierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A)

Macierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A) Macierze normalne Twierdzenie: Macierz można zdiagonalizować za pomocą unitarnej transformacji podobieństwa wted i tlko wted gd jest normalna (AA A A). ( ) D : Dowolną macierz kwadratową można zapisać

Bardziej szczegółowo

Warsztat pracy matematyka

Warsztat pracy matematyka Warsztat prac matematka Izabela Bondecka-Krzkowska Marcin Borkowski Jęzk matematki Teoria Jednm z podstawowch pojęc matematki jest pojęcie zbioru. Teorię opisującą zbior nazwa sie teorią mnogości. Definicja

Bardziej szczegółowo

MODEL TENDENCJI ROZWOJOWEJ

MODEL TENDENCJI ROZWOJOWEJ MODEL TENDENCJI ROZWOJOWEJ Model endencji rozwojowej o konsrukcja eoreczna (równanie lub układ równań) opisująca kszałowanie się określonego zjawiska jako funkcji: zmiennej czasowej wahań okresowch (sezonowe

Bardziej szczegółowo

INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W IV KWARTALE 2012 R.

INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W IV KWARTALE 2012 R. Narodowy Bank Polski Departament Systemu Płatniczego INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W IV KWARTALE 2012 R. Warszawa, marzec 2013 r. SPIS TREŚCI Wprowadzenie strona

Bardziej szczegółowo

Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym

Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym Jacek Batóg Uniwersytet Szczeciński Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym Jednym z ważniejszych elementów każdej gospodarki jest system bankowy. Znaczenie

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

Zapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:

Bardziej szczegółowo

Egzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A

Egzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i współczynnik ufności 0,95. Zadanie 1 W 005 roku przeprowadzono badanie ankietowe, którego

Bardziej szczegółowo

Cechy szeregów czasowych

Cechy szeregów czasowych energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas

Bardziej szczegółowo

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 czerwiec 2013 Zadanie 1 Poniższe tabele przestawiają dane dotyczące umieralności dzieci

Bardziej szczegółowo

Finanse i Rachunkowość studia stacjonarne lista nr 9 zastosowania metod teorii funkcji rzeczywistych w ekonomii (część II)

Finanse i Rachunkowość studia stacjonarne lista nr 9 zastosowania metod teorii funkcji rzeczywistych w ekonomii (część II) dr inż. Ryszard Rębowski 1 FUNKCJA KOSZTU Finanse i Rachunkowość studia stacjonarne lista nr 9 zastosowania metod teorii funkcji rzeczywistych w ekonomii (część II) 1 Funkcja kosztu Z podstaw mikroekonomii

Bardziej szczegółowo

Projekcja wyników ekonomicznych produkcji mleka na 2020 rok. Seminarium, IERiGŻ-PIB, r. mgr Konrad Jabłoński

Projekcja wyników ekonomicznych produkcji mleka na 2020 rok. Seminarium, IERiGŻ-PIB, r. mgr Konrad Jabłoński Projekcja wyników ekonomicznych produkcji mleka na 2020 rok Seminarium, IERiGŻ-PIB, 02.09.2016 r. mgr Konrad Jabłoński Plan prezentacji 1. Cel badań 2. Metodyka badań 3. Projekcja wyników ekonomicznych

Bardziej szczegółowo

Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)

Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące

Bardziej szczegółowo

Informacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej IV kwartał 2018 r.

Informacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej IV kwartał 2018 r. luty 219 r. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej IV kwartał 218 r. NBP Oddział Okręgowy w Katowicach Katowice, 219 r. Synteza Synteza Informację

Bardziej szczegółowo

INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W I KWARTALE 2013 R.

INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W I KWARTALE 2013 R. Narodowy Bank Polski Departament Systemu Płatniczego INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W I KWARTALE 2013 R. Warszawa, czerwiec 2013 r. SPIS TREŚCI Wprowadzenie strona

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO STATYSTYCZNA ANALIZA ZMIAN LICZBY HOTELI W POLSCE W LATACH 1995-2004

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO STATYSTYCZNA ANALIZA ZMIAN LICZBY HOTELI W POLSCE W LATACH 1995-2004 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 429 EKONOMICZNE PROBLEMY TURYSTYKI NR 7 2006 RAFAŁ CZYŻYCKI, MARCIN HUNDERT, RAFAŁ KLÓSKA STATYSTYCZNA ANALIZA ZMIAN LICZBY HOTELI W POLSCE W LATACH 1995-2004

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo

Indeksy dynamiki (o stałej i zmiennej podstawie)

Indeksy dynamiki (o stałej i zmiennej podstawie) Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy

Bardziej szczegółowo

Ćwiczenia, Makrokonomia II, 4/11 października 2017

Ćwiczenia, Makrokonomia II, 4/11 października 2017 Ćwiczenia, Makrokonomia II, 4/11 października 2017 1. W gospodarce zamkniętej Francia produkowane i konsumowane są trzy produkty: Camembert, bagietki i czerwone wino. W poniższej tabeli przedstawiono ceny

Bardziej szczegółowo

Informacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej III kwartał 2017 r.

Informacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej III kwartał 2017 r. Listopad 217 r. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej III kwartał 217 r. NBP Oddział Okręgowy w Katowicach Katowice, 217 r. Synteza Synteza Informację

Bardziej szczegółowo

Opisowa analiza struktury zjawisk statystycznych

Opisowa analiza struktury zjawisk statystycznych Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2

Bardziej szczegółowo

Dynamics of changes in the production of natural aggregates in Poland in years with a forecast up to 2020

Dynamics of changes in the production of natural aggregates in Poland in years with a forecast up to 2020 30 PRZEGLĄD GÓRNICZY 2014 UKD 622.271: 622.271.338.3: 622.271.001.18 Dynamika zmian produkcji kruszyw naturalnych w Polsce w latach 1989 2012 wraz z prognozą do 2020 roku Dynamics of changes in the production

Bardziej szczegółowo

Badanie zależności cech

Badanie zależności cech PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i element kombinatorki. Zmienne losowe i ich rozkład 3. Populacje i prób danch, estmacja parametrów 4. Testowanie hipotez 5. Test parametrczne (na przkładzie

Bardziej szczegółowo

Informacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej II kwartał 2018 r.

Informacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej II kwartał 2018 r. sierpień 218 r. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej II kwartał 218 r. NBP Oddział Okręgowy w Katowicach Katowice, 218 r. Synteza Synteza Informację

Bardziej szczegółowo

Pochodna funkcji wykład 5

Pochodna funkcji wykład 5 Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren

Bardziej szczegółowo

Prognoza nastrojów i działań przedsiębiorców w perspektywie najbliższego półrocza. Data badania: II kwartał 2015

Prognoza nastrojów i działań przedsiębiorców w perspektywie najbliższego półrocza. Data badania: II kwartał 2015 Prognoza nastrojów i działań przedsiębiorców w perspektywie najbliższego półrocza. Data badania: II kwartał 2015 Informacje o badaniu 1/2 METODOLOGIA Badanie zostało przeprowadzone metodą CAWI (Computer

Bardziej szczegółowo

Cele badania Cel diagnostyczny zbadanie czy spółki o wskaźniku C/WK poniżej/powyżej wartości średniej dla branży przynosiły większą/mniejszą stopę zwr

Cele badania Cel diagnostyczny zbadanie czy spółki o wskaźniku C/WK poniżej/powyżej wartości średniej dla branży przynosiły większą/mniejszą stopę zwr Badanie statystyczne Wskaźnik C/WK a stopy zwrotu akcji Borys Drajczyk i Adam Rogaliński, Cele badania Cel diagnostyczny zbadanie czy spółki o wskaźniku C/WK poniżej/powyżej wartości średniej dla branży

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera

Bardziej szczegółowo