SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji
|
|
- Bogumił Pawłowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 SZEREG CZASOWY Y zjawisko badane w różnch okresach lub momentach czasu. Dnamika zjawiska to zmiana zjawiska w czasie. Przkład. Y średni kurs akcji firm OPTMUS na giełdzie Okres: notowania od do ; jednostka: notowanie. 1
2 Wartości zjawiska tworzą szereg czasow: t i t 1 t 2... t n i n t i chwile lub okres (przedział powinn bć jednakowe) Uwaga: niekied stosuje się zapis: t 0, t 1,..., t n. 2
3 Średni poziom badanego zjawiska w szeregu czasowm okresów liczm za pomocą średniej artmetcznej natomiast w szeregu czasowm momentów za pomocą średniej chronologicznej: Y ch n n 1 n 3
4 Przkład. Liczbę pracowników pewnego banku wg stanu na koniec poszczególnch kwartałów roku podano w tabeli: Kwartał V Liczba pracowników średnia chronologiczna jest równa Y ch 724 / /
5 Tendencja rozwojowa (trend) - określa ogóln kierunek rozwoju zjawiska w czasie. Metod określania tendencji rozwojowej: a) metoda średnich ruchomch b) metoda analitczna (omówiona prz zagadnieniu regresji). 5
6 Np. średnia ruchoma trzokresowa (k 3) ma postać: Y , Y ,..., Y n n 2 n 1 n 3 6
7 Przkład. Liczba wpadków w pewnej firmie w kolejnch latach wnosiła: Rok Liczba wpadków średnie (k3) 20,7 19,7 22,0 19,0 18,7 15,3 15,3 13,3 14,3 7
8 Efekt wgładzania średnimi ruchommi (k 3) przedstawiono na wkresie: liczba wpadków dane średnie (k3) lata 8
9 PRZYROSTY Przrost absolutne (bezwzględne) a) ciąg przrostów bezwzględnch (o stałej podstawie): 1-0, 2-0, 3-0,..., n stała podstawa (dowolna spośród 1,..., n ). 9
10 b) ciąg przrostów bezwzględnch łańcuchowch (o zmiennej podstawie): 2 1, 3 2, 4 3,..., n n
11 Są to wielkości mianowane więc nie nadają się do porównań zmian dla różnch zjawisk. Do porównań bardziej nadają się wielkości względne: 11
12 Przrost względne (wskaźniki tempa dnamiki) (często wrażane w procentach) a) ciąg przrostów względnch o stałej podstawie 0 : 1-0 0, 2-0 0,..., n
13 b) ciąg przrostów łańcuchowch: 2-1 1, 3-2 2,..., n - n - 1 n
14 Przkład. Y liczba zarejestrowanch samochodów osobowch w pewnm mieście (stan na 31.12) przrost absolutne przrost względne Lata t (szt.) stała podstawa łańcuchowe stała podstawa łańcuchowe x 0 x ,162 0, ,236 0, ,287 0, ,360 0,056 14
15 NDEKSY (wskaźniki dnamiki). ndeks dzielim na: indeks indwidualne (proste), indeks zespołowe (agregatowe). 15
16 ndeks indwidualne. a) ciąg indeksów o stałej podstawie: 1/0, 2/0, 3/0,..., n/0 0 stała podstawa (dowolna spośród 1,..., n ). gdzie t t/0 t 0 1, 2,...,n 16
17 b) ciąg indeksów łańcuchowch: 2/1, 3/2, 4/3,..., n/n - 1 gdzie t t/t -1 t t-1 2, 3,..., n 17
18 Uwaga. t t 1 t t-1 t t/t-1 t 2, t-1 t-1 t-1 t-1 3,...,n zatem mam zależność: indeks łańcuchow przrost względn łańcuchow
19 Przkład. Y liczba wpadków drogowch w ciągu roku. Rok t liczba wpadków t t/0 t t/t -1 t t-1 19
20 Przkład. Y liczba wpadków drogowch w ciągu roku. Rok t liczba wpadków t t/0 t t/t ,000 X ,015 1, ,100 1, ,976 0, ,017 1,042 t t-1 20
21 Średnie tempo dnamiki to średnie tempo zmian przpadające na jednostkę czasu. 21
22 Zagadnienie. Wznaczć liczb g taką, że gdb wszstkie indeks łańcuchowe bł sobie równe i miał wartość g to wartość zjawiska w okresie t n błab równa n (taka sama jak prz różnch indeksach łańcuchowch). 22
23 Liczbę g nazwam średnim tempem dnamiki lub średnim tempem zmian lub średnim indeksem łańcuchowm. 23
24 Zauważm, że (*) n n/ n... / gdb wszstkie indeks bł równe to g (**) n Porównując (*) i (**) mam n g n 1 n/n /1 (średnia geometrczna) Własność: g n 1 n/1 n 1 n 1 24
25 Uwaga Średnie tempo dnamiki g możem zastosować do wznaczania prognoz: * n+ k n ( g ) k 25
26 Średni wskaźnik tempa to T g 1 26
27 Przkład. Dla danch z poprzedniego przkładu: g 4 1,015 1,084 0,887 1,042 1,017 1, ,4 % T 0,004 0,4 % 27
28 ndeks agregatowe (zespołowe). ndeks agregatowe dzielim na: indeks agregatowe wielkości absolutnch (np. wartości, ilości, cen), indeks (agregatowe) wielkości stosunkowch (np. wdajność prac koszt jednostkow, gęstość zaludnienia). 28
29 Agregatow wskaźnik (indeks) wartości w w n i 1 n i 1 w w 1i 0i suma wartości w okresie badanm suma wartości w okresie podstawowm 29
30 Gd p 1i cena jednostkowa w okresie badanm q 1i ilość w okresie badanm, p 0i cena jednostkowa w okresie podstawowm q 0i ilość w okresie podstawowm to w 1i p 1i q 1i w 0i p 0i q 0i 30
31 Przkład. Wznaczm agregatow indeks wartości sprzedaż czterech artkułów A, B, C, D w latach 1995 i 1999: Sprzedaż (ts. Cena za 1 szt. artkuł szt.) (średnio) 1995 q q p p 1 A ,65 14,90 B ,65 4,20 C ,00 90,00 D ,00 10,50 Ogółem x x x x Wartość sprzedaż (zł) 1995 w 0 p 0 q w 1 p 1 q 1 31
32 artkuł Sprzedaż (ts. szt.) Cena za 1 szt. (średnio) Wartość sprzedaż (zł) q 0 q 1 p 0 p 1 w 0 p 0 q 0 w 1 p 1 q 1 A ,65 14, , ,20 B ,65 4, , ,00 C ,00 90, , ,0 D ,00 10, , ,00 Ogółem x x x x 29232, ,2 32
33 Zatem: suma wartości sprzedaż w ,2 w 3, % suma wartości sprzedaż w ,0 Tzn. sprzedaż wzrosła o 219%. 33
34 ndeks agregatow ilości q., ndeks agregatow cen p Nazwa Cecha indeksu indeksu Definicja indeksu Wg Lasperesa Wg Paaschego ndeks agregatow ilości Stałe cen jednostkowe (cen z okresu podstawowego) (cen z okresu badanego) ndeks agregatow cen Stałe ilości (ilości z okresu podstawowego) (ilości z okresu badanego) 34
35 ndeks agregatow ilości q., ndeks agregatow cen p Nazwa indeksu ndeks agregatow ilości ndeks agregatow cen Cecha indeksu Stałe cen jednostkowe Stałe ilości Definicja indeksu Wg Lasperesa Wg Paaschego L q q q 1i 0i p p 0i 0i (cen z okresu podstawowego) L p q q 0i 0i p p 1i 0i (ilości z okresu podstawowego) P q q q 1i 0i p p 1i 1i (cen z okresu badanego) P p q q 1i 1i p p 1i 0i (ilości z okresu badanego) 35
36 Dla powższego przkładu: artkuł q 1 p 0 q 0 p 1 A B C D Ogółem 36
37 Dla powższego przkładu: artkuł q 1 p 0 q 0 p 1 A 1153,2 3278,00 B 3605, ,00 C 18700, ,0 D 1472, ,00 Ogółem 24930,
38 L q 24930, ,00 0,853 85,3% (ilość globalnie spadła o 14,7%) P q 93236, ,00 0,84 84% 38
39 L p , ,00 3, ,6% (cen globalnie wzrosł o 279,6%) P p 93236, ,45 3,74 374% 39
40 Wniosek: zmiana cen miała większ wpłw na zmianę wartości niż zmiana ilości. 40
41 Zależności: W P q L p W L q P p 41
42 ndeks Fiszera dla ilości F q L q P q dla cen F p L p P p 42
43 Wniosek F q F p w 43
44 Hermann Paasche ( ), niemiecki ekonomista, politk i statstk. 44
45 Niemiecki ekonomista Étienne Lasperes ( ) 45
46 riving Fisher ( ) ekonomista i matematk amerkański, 46
Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %)
Analza dnamk Zad. 1 Indeks lczb studującch studentów w województwe śląskm w kolejnch pęcu latach przedstawał sę następująco: Lata 1 2 3 4 5 Indeks jednopodstawowe z roku t = 1 100,0 115,7 161,4 250,8 195,9
Bardziej szczegółowoNa poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy
Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne
Bardziej szczegółowoStatystyka. Wykład 11. Magdalena Alama-Bućko. 22 maja Magdalena Alama-Bućko Statystyka 22 maja / 41
Statystyka Wykład 11 Magdalena Alama-Bućko 22 maja 2017 Magdalena Alama-Bućko Statystyka 22 maja 2017 1 / 41 Analiza dynamiki zjawisk badamy zmiany poziomu (tzn. wzrosty/spadki) badanego zjawiska w czasie.
Bardziej szczegółowoAnaliza szeregów czasowych
Statystyka Wykład 5. Analiza szeregów czasowych michal.trzesiok@ue.katowice.pl Uniwersytet Ekonomiczny w Katowicach Katedra Analiz Gospodarczych i Finansowych 9 listopada 2015 r. Plan Szeregi czasowe wprowadzenie
Bardziej szczegółowoTeoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr
Bardziej szczegółowoSTATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w
Bardziej szczegółowoL.Kowalski zadania ze statystyki opisowej-zestaw 4. ZADANIA Zestaw 4
ZADANA Zestaw 4 Zadanie 4. Na podstawie informacji o zyskach firmy podanych w tabeli: Lata 995 996 997 998 999 Zysk (w tys. zł) 5200 600 6500 6700 700 a) wyznaczyć ciąg przyrostów łańcuchowych (bezwzględnych
Bardziej szczegółowoStatystyka. Wykład 12. Magdalena Alama-Bućko. 29 maja Magdalena Alama-Bućko Statystyka 29 maja / 47
Statystyka Wykład 12 Magdalena Alama-Bućko 29 maja 2017 Magdalena Alama-Bućko Statystyka 29 maja 2017 1 / 47 Analiza dynamiki zjawisk badamy zmiany poziomu (tzn. wzrosty/spadki) badanego zjawiska w czasie.
Bardziej szczegółowoANALIZA DYNAMIKI ZJAWISK SZEREG CZASOWY
D. Miszczńska, M.Miszczński, Maeriał do wkładu 5 ze Saski, 29/ [] ANALZA DYNAMK ZJAWSK. szereg czasow, chronologiczn (momenów, okresów) 2. średni oziom zjawiska w czasie (średnia armeczna, średnia chronologiczna)
Bardziej szczegółowoStatystyka. Wykład 10. Magdalena Alama-Bućko. 15 maja Magdalena Alama-Bućko Statystyka 15 maja / 32
Statystyka Wykład 10 Magdalena Alama-Bućko 15 maja 2017 Magdalena Alama-Bućko Statystyka 15 maja 2017 1 / 32 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
Bardziej szczegółowoMotto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.
Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą
Bardziej szczegółowoStatystyka. Wykład 11. Magdalena Alama-Bućko. 21 maja Magdalena Alama-Bućko Statystyka 21 maja / 31
Statystyka Wykład 11 Magdalena Alama-Bućko 21 maja 2018 Magdalena Alama-Bućko Statystyka 21 maja 2018 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
Bardziej szczegółowoAnaliza dynamiki zjawisk STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 28 września 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 28 września 2018 1 Pojęcie szeregów czasowych i ich składowych SZEREGIEM CZASOWYM nazywamy tablicę, która zawiera ciag wartości cechy uporzadkowanych
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE INDEKSY STATYSTYCZNE Absolutny przyrost t = y t y t 1 Względny przyrost δ t = t y t Indeks indywidualny jednopodstawowy
Bardziej szczegółowoSTATYSTYKA. Na egzamin należy przynieść:
[1] STATYSTYKA Na egzamin należy przynieść: 1. kalkulator 2. wzory na kartce (bez komentarzy!!!) UWAGA!!! wzory muszą być napisane odręcznie (kserokopie będą zabierane) Na kolejnych stronach zamieszczono
Bardziej szczegółowoPODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK
PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK Założena Nech oznacza ozom (warość) badanego zjawska (zmennej) w kolejnch momenach czasu T0, gdze T 0 0,1,..., n 1 oznacza worz szereg czasow. zbór numerów czasu. Cąg
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Bardziej szczegółowoZad. 1. Wartość pożyczki ( w tys. zł) kształtowała się następująco w pewnym banku:
Zad. 1. Wartość pożyczki ( w tys. zł) kształtowała się następująco w pewnym banku: Kwota Liczba pożyczek pożyczki 0 4 0 4 8 8 12 40 12 16 16 Zbadać asymetrię rozkładu kwoty pożyczki w tym banku. Wynik
Bardziej szczegółowoAnaliza Zmian w czasie
Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Zmian w czasie Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
Bardziej szczegółowoZajęcia 1. Statystyki opisowe
Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,
Bardziej szczegółowoEkstrema funkcji dwóch zmiennych
Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu
Bardziej szczegółowoAnaliza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
Bardziej szczegółowoAgata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.
1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004
Bardziej szczegółowoStatystyka. Wykład 13. Magdalena Alama-Bućko. 18 czerwca Magdalena Alama-Bućko Statystyka 18 czerwca / 36
Statystyka Wykład 13 Magdalena Alama-Bućko 18 czerwca 2018 Magdalena Alama-Bućko Statystyka 18 czerwca 2018 1 / 36 Agregatowy (zespołowy) indeks wartości określonego zespołu produktów np. jak zmianiała
Bardziej szczegółowoĆwiczenia 13 WAHANIA SEZONOWE
Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009
Bardziej szczegółowoZasady budowania prognoz ekonometrycznych
Zasad budowania prognoz ekonometrcznch Klasczne założenia teorii predkcji 1. Znajomość modelu kształtowania się zmiennej prognozowanej Znajomość postaci analitcznej wstępującch zależności międz zmiennmi
Bardziej szczegółowoPrognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 3
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma
Bardziej szczegółowoDefinicja wartości bezwzględnej. x < x y. x =
1.9. WARTOŚĆ BEZWZGLĘDNA Definicja wartości bezwzględnej... gd... 0 =... gd... < 0 Własności wartości bezwzględnej 0 = = = n a n = a, gd n jest liczbą parzstą Przkład 1.9.1. Oblicz: a) b) c) 1 d) 0 e)
Bardziej szczegółowoEkonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006
Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap
Bardziej szczegółowoStatystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 5
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje
Bardziej szczegółowoROZDZIAŁ 10 DEKOMPOZYCJA STRUKTURALNA ZMIAN OSZCZĘDNOŚCI SEKTORÓW INSTYTUCJONALNYCH W POLSCE
Joanna Trębska ROZDZIAŁ 10 DEKOMPOZYCJA STRUKTURALNA ZMIAN OSZCZĘDNOŚCI SEKTORÓW INSTYTUCJONALNYCH W POLSCE Wprowadzenie Dekompozcja strukturalna definiowana jest jako metoda pozwalająca na wróżnienie
Bardziej szczegółowoPrognozowanie popytu. mgr inż. Michał Adamczak
Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej
Bardziej szczegółowoRachunki narodowe ćwiczenia, 2015
Obliczanie (zmian) wolumenów (na przykładzie PKB). Przykład opracowany na podstawie Understanding, ćwiczenie 3, str. 40. PKB, podobnie jak wiele innych wielkości makroekonomicznych, może być przedstawiany
Bardziej szczegółowoWykład 5: Analiza dynamiki szeregów czasowych
Wykład 5: Analiza dynamiki szeregów czasowych ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie tego procesu
Bardziej szczegółowoAnaliza dynamiki. Sesja Cena akcji 1 42,9 2 41, ,5 5 41, , ,5
Analiza dynamiki Zadanie 1 Dynamikę produkcji samochodów osobowych przez pewną fabrykę w latach 2007-2013 opisuje następujący ciąg indeksów łańcuchowych: 1,1; 1,2; 1,3; 1,4; 0,8; 0,9. a) Jak zmieniała
Bardziej szczegółowoStatystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF
Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.
Bardziej szczegółowoŚrednie. Średnie. Kinga Kolczyńska - Przybycień
Czym jest średnia? W wielu zagadnieniach praktycznych, kiedy mamy do czynienia z jakimiś danymi, poszukujemy liczb, które w pewnym sensie charakteryzują te dane. Na przykład kiedy chcielibyśmy sklasyfikować,
Bardziej szczegółowo25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx
5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.
Bardziej szczegółowoWykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki
Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie
Bardziej szczegółowof x f y f, jest 4, mianowicie f = f xx f xy f yx
Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją
Bardziej szczegółowoA.Światkowski. Wroclaw University of Economics. Working paper
A.Światkowski Wroclaw University of Economics Working paper 1 Planowanie sprzedaży na przykładzie przedsiębiorstwa z branży deweloperskiej Cel pracy: Zaplanowanie sprzedaży spółki na rok 2012 Słowa kluczowe:
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoMłodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA
Młodzieżowe Uniwerstet Matematczne Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu połecznego REGUŁA GULDINA dr Bronisław Pabich Rzeszów marca 1 Projekt realizowan przez Uniwerstet
Bardziej szczegółowot y x y'y x'x y'x x-x śr (x-x śr)^2
Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw
Bardziej szczegółowoZawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.20 2011 Zawartość Zawartość 1. Tworzenie szeregu rozdzielczego przedziałowego (klasowego)... 3 2. Podstawowy opis struktury... 3 3. Opis rozkładu jednej cechy szereg
Bardziej szczegółowoANALIZA SPRZEDAŻY: - struktura
KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - struktura - koncentracja - kompleksowa analiza - dynamika Spis treści Wstęp 3 Analiza struktury 4 Analiza koncentracji 7 Kompleksowa
Bardziej szczegółowoInformacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej III kwartał 2016 r.
Listopad 216 r. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej III kwartał 216 r. NBP Oddział Okręgowy w Katowicach Katowice, 216 r. Synteza Synteza Informację
Bardziej szczegółowoRuch po równi pochyłej
Sławomir Jemielit Ruch po równi pochłej Z równi pochłej o kącie nachlenia do poziomu α zsuwa się ciało o masie m. Jakie jest przspieszenie ciała, jeśli współcznnik tarcia ciała o równię wnosi f? W jakich
Bardziej szczegółowoStatystyka. Wykład 10. Magdalena Alama-Bućko. 14 maja Magdalena Alama-Bućko Statystyka 14 maja / 31
Statystyka Wykład 10 Magdalena Alama-Bućko 14 maja 2018 Magdalena Alama-Bućko Statystyka 14 maja 2018 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
Bardziej szczegółowoInformacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej II kwartał 2016 r.
Sierpień 216 r. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej II kwartał 216 r. NBP Oddział Okręgowy w Katowicach Katowice, 216 r. Synteza Synteza Informację
Bardziej szczegółowoProjekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
Bardziej szczegółowoImię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr
SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr /4 Specjalność Bez specjalności Kod katedry/zakładu w
Bardziej szczegółowoPomiar bezpośredni przyrządem wskazówkowym elektromechanicznym
. Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego
Bardziej szczegółowo12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej
1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm
Bardziej szczegółowoPDF stworzony przez wersje demonstracyjna pdffactory Pro
Zestaw A Ćwiczenie 1 Koszty zużycia energii elektrycznej stosowanej bezpośrednio do produkcji wyniosły w okresie 1 25.000 zł, zaś w okresie 2 32.000 zł. Wielkość produkcji w tych okresach: 1-15.000 szt,
Bardziej szczegółowoINFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W II KWARTALE 2010 R.
Narodowy Bank Polski Departament Systemu Płatniczego INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W II KWARTALE 2010 R. Warszawa, sierpień 2010 r. SPIS TREŚCI Informacja o rozliczeniach
Bardziej szczegółowoInformacja o rozliczeniach pieniężnych i rozrachunkach międzybankowych w I kwartale 2015 r.
Informacja o rozliczeniach pieniężnych i rozrachunkach międzybankowych w I kwartale r. Departament Systemu Płatniczego NBP Warszawa, czerwiec r. Spis treści Wprowadzenie 2 1. System SORBNET2 4 2. System
Bardziej szczegółowoWYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS
WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS Nazwa przedmiotu: Statystyka opisowa Profil 1 : ogólnoakademicki Cel przedmiotu: Zapoznanie studentów
Bardziej szczegółowoMetody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2)
euler-przkl_.xmcd Metod Eulera i Eulera-Cauch'ego rozwiązwania równań różniczkowch zwczajnch ' ( x, ) : x () + Rozwiązanie dokładne równania () ( x, C) : + C exp( atan( x) ) () Sprawdzenie: d dx ( x, C)
Bardziej szczegółowoPrzedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji)
Wkład 1: Prosta regresja liniowa Statstczn model regresji liniowej Dane dla prostej regresji liniowej Przedział ufności i test parametrów Przedział ufności dla średniej odpowiedzi Interwał prognoz (dla
Bardziej szczegółowoZmiany cen nieruchomości w czasie
Inwestycje i ryzyko na rynku nieruchości Ewa Kusideł 1 Zmiany cen nieruchomości w czasie Dr Ewa Kusideł Inwestycje i ryzyko na rynku nieruchości 2 Analiza średnich zmian cen nieruchomości w czasie za pomocą
Bardziej szczegółowoRównania różniczkowe
Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz
Bardziej szczegółowoWielowymiarowe bazy danych
Wielowmiarowe baz danch Wielowmiarowe baz danch Dziedzin zastosowań Multimedialne baz danch dane medialne przechowwane jako wielowmiarowe wektor danch Sstem geograficzne, sstem wspomagania projektowania
Bardziej szczegółowoOTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów
OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów Tomasz Gruszczyk Informatyka i Ekonometria I rok, nr indeksu: 156012 Sopot, styczeń
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoPROJEKCJE MAKROEKONOMICZNE EKSPERTÓW EUROSYSTEMU DLA OBSZARU EURO
PROJEKCJE MAKROEKONOMICZNE EKSPERTÓW EUROSYSTEMU DLA OBSZARU EURO Eksperci Eurosystemu opracowali projekcje rozwoju sytuacji makroekonomicznej w obszarze euro na podstawie informacji dostępnych na dzień
Bardziej szczegółowo3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.
WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja
Bardziej szczegółowoEgzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007
Egzamin ze statystyki, Studia Licencjackie Stacjonarne TEMAT C grupa 1 Czerwiec 2007 (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i
Bardziej szczegółowoMacierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A)
Macierze normalne Twierdzenie: Macierz można zdiagonalizować za pomocą unitarnej transformacji podobieństwa wted i tlko wted gd jest normalna (AA A A). ( ) D : Dowolną macierz kwadratową można zapisać
Bardziej szczegółowoWarsztat pracy matematyka
Warsztat prac matematka Izabela Bondecka-Krzkowska Marcin Borkowski Jęzk matematki Teoria Jednm z podstawowch pojęc matematki jest pojęcie zbioru. Teorię opisującą zbior nazwa sie teorią mnogości. Definicja
Bardziej szczegółowoMODEL TENDENCJI ROZWOJOWEJ
MODEL TENDENCJI ROZWOJOWEJ Model endencji rozwojowej o konsrukcja eoreczna (równanie lub układ równań) opisująca kszałowanie się określonego zjawiska jako funkcji: zmiennej czasowej wahań okresowch (sezonowe
Bardziej szczegółowoINFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W IV KWARTALE 2012 R.
Narodowy Bank Polski Departament Systemu Płatniczego INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W IV KWARTALE 2012 R. Warszawa, marzec 2013 r. SPIS TREŚCI Wprowadzenie strona
Bardziej szczegółowoBarometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym
Jacek Batóg Uniwersytet Szczeciński Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym Jednym z ważniejszych elementów każdej gospodarki jest system bankowy. Znaczenie
Bardziej szczegółowoW kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
Bardziej szczegółowoZapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:
Bardziej szczegółowoEgzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A
(imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i współczynnik ufności 0,95. Zadanie 1 W 005 roku przeprowadzono badanie ankietowe, którego
Bardziej szczegółowoCechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
Bardziej szczegółowoczerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90
Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 czerwiec 2013 Zadanie 1 Poniższe tabele przestawiają dane dotyczące umieralności dzieci
Bardziej szczegółowoFinanse i Rachunkowość studia stacjonarne lista nr 9 zastosowania metod teorii funkcji rzeczywistych w ekonomii (część II)
dr inż. Ryszard Rębowski 1 FUNKCJA KOSZTU Finanse i Rachunkowość studia stacjonarne lista nr 9 zastosowania metod teorii funkcji rzeczywistych w ekonomii (część II) 1 Funkcja kosztu Z podstaw mikroekonomii
Bardziej szczegółowoProjekcja wyników ekonomicznych produkcji mleka na 2020 rok. Seminarium, IERiGŻ-PIB, r. mgr Konrad Jabłoński
Projekcja wyników ekonomicznych produkcji mleka na 2020 rok Seminarium, IERiGŻ-PIB, 02.09.2016 r. mgr Konrad Jabłoński Plan prezentacji 1. Cel badań 2. Metodyka badań 3. Projekcja wyników ekonomicznych
Bardziej szczegółowoCharakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
Bardziej szczegółowoInformacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej IV kwartał 2018 r.
luty 219 r. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej IV kwartał 218 r. NBP Oddział Okręgowy w Katowicach Katowice, 219 r. Synteza Synteza Informację
Bardziej szczegółowoINFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W I KWARTALE 2013 R.
Narodowy Bank Polski Departament Systemu Płatniczego INFORMACJA O ROZLICZENIACH PIENIĘŻNYCH I ROZRACHUNKACH MIĘDZYBANKOWYCH W I KWARTALE 2013 R. Warszawa, czerwiec 2013 r. SPIS TREŚCI Wprowadzenie strona
Bardziej szczegółowoZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO STATYSTYCZNA ANALIZA ZMIAN LICZBY HOTELI W POLSCE W LATACH 1995-2004
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 429 EKONOMICZNE PROBLEMY TURYSTYKI NR 7 2006 RAFAŁ CZYŻYCKI, MARCIN HUNDERT, RAFAŁ KLÓSKA STATYSTYCZNA ANALIZA ZMIAN LICZBY HOTELI W POLSCE W LATACH 1995-2004
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest
Bardziej szczegółowoParametry statystyczne
I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n
Bardziej szczegółowoIndeksy dynamiki (o stałej i zmiennej podstawie)
Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy
Bardziej szczegółowoĆwiczenia, Makrokonomia II, 4/11 października 2017
Ćwiczenia, Makrokonomia II, 4/11 października 2017 1. W gospodarce zamkniętej Francia produkowane i konsumowane są trzy produkty: Camembert, bagietki i czerwone wino. W poniższej tabeli przedstawiono ceny
Bardziej szczegółowoInformacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej III kwartał 2017 r.
Listopad 217 r. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej III kwartał 217 r. NBP Oddział Okręgowy w Katowicach Katowice, 217 r. Synteza Synteza Informację
Bardziej szczegółowoOpisowa analiza struktury zjawisk statystycznych
Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2
Bardziej szczegółowoDynamics of changes in the production of natural aggregates in Poland in years with a forecast up to 2020
30 PRZEGLĄD GÓRNICZY 2014 UKD 622.271: 622.271.338.3: 622.271.001.18 Dynamika zmian produkcji kruszyw naturalnych w Polsce w latach 1989 2012 wraz z prognozą do 2020 roku Dynamics of changes in the production
Bardziej szczegółowoBadanie zależności cech
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i element kombinatorki. Zmienne losowe i ich rozkład 3. Populacje i prób danch, estmacja parametrów 4. Testowanie hipotez 5. Test parametrczne (na przkładzie
Bardziej szczegółowoInformacja sygnalna. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej II kwartał 2018 r.
sierpień 218 r. Rynek nieruchomości mieszkaniowych w Katowicach oraz w niektórych miastach aglomeracji śląskiej II kwartał 218 r. NBP Oddział Okręgowy w Katowicach Katowice, 218 r. Synteza Synteza Informację
Bardziej szczegółowoPochodna funkcji wykład 5
Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren
Bardziej szczegółowoPrognoza nastrojów i działań przedsiębiorców w perspektywie najbliższego półrocza. Data badania: II kwartał 2015
Prognoza nastrojów i działań przedsiębiorców w perspektywie najbliższego półrocza. Data badania: II kwartał 2015 Informacje o badaniu 1/2 METODOLOGIA Badanie zostało przeprowadzone metodą CAWI (Computer
Bardziej szczegółowoCele badania Cel diagnostyczny zbadanie czy spółki o wskaźniku C/WK poniżej/powyżej wartości średniej dla branży przynosiły większą/mniejszą stopę zwr
Badanie statystyczne Wskaźnik C/WK a stopy zwrotu akcji Borys Drajczyk i Adam Rogaliński, Cele badania Cel diagnostyczny zbadanie czy spółki o wskaźniku C/WK poniżej/powyżej wartości średniej dla branży
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
Bardziej szczegółowo