MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO
|
|
- Fabian Stasiak
- 8 lat temu
- Przeglądów:
Transkrypt
1 KIERZKOWSKI Arur 1 Transpor loniczy, szeregi czasowe, eksploaacja, modelowanie MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO W referacie przedsawiono probabilisyczny model czasu obsługi naziemnej saku powierznego w porcie loniczym. Model en zosanie zaimplemenowany w symulacji kompuerowej odzwierciedlającej proces eksploaacji saków powierznych, kórego zadaniem będzie minimalizacja czasu obsługi echnicznej saków powierznych. MODEL FOR GROUNG HANDLING TIME OF AIRCRAFT The paper presens probabilisic model ime ground handling of aircraf. The model will be implemened in a kompuer simulaion process ha reflecs he operaion of aircraf, whose ask will be o minimize he ime mainenence aircraf. 1. WSTĘP Proces modelowania siaki połączeń przewoźnika loniczego jes niezwykle skomplikowany. Z punku widzenia pasaŝera loniczego isone jes erminowe wykonanie połączenia lub by czas opóźnienia był minimalny, a z punku widzenia linii loniczej isone jes by koszy związane z wykonaniem połączenia były minimalne. Kluczowe jes więc wcześniejsze zamodelowanie siaki połączeń oraz symulacyjne sprawdzenie poprawności jej funkcjonowania. Rysunek 1 przedsawia przykładowy cykl procesu uŝykowania saku powierznego. Rys.1. Cykl procesu uŝykowania saku powierznego. 1 Poliechnika Wrocławska, Wydział Mechaniczny, Insyu Konsrukcji i Eksploaacji Maszyn Wyb. Wyspiańskiego 27, Wrocław, arur.kierzkowski@pwr.wroc.pl
2 1620 Arur KIERZKOWSKI W zaprezenowanym przykładzie procesu uŝykowania saku powierznego przewoźnik posiadający pojedyncze cykle (połączenia zamodelował sekwencje loów składającą się z rzech roacji. W przypadku isnienia dokładnych danych z procesu eksploaacji saków powierznych, agencji Ŝeglugi powierznej przydane jes zbudowanie modelu czasu pomiędzy połączeniami (rys. 2). Rys.2. Dwie roacje saku powierznego z oznaczeniem czasu obsługi naziemnej. W celu dokładnego oszacowania czasu obsługi naziemnej, kóry wykonuje się w celu sprawdzenia poprawności rozkładowego planu loów, zasosować moŝna eorie szeregów czasowych. Zagadnienie rozparywane było juŝ w laach 70 XX wieku, kiedy o A. Levin sprecyzował zagadnienie problemu odpowiedniego modelowania połączeń loniczych oraz roacji saków powierznych. Zagadnienie o zosało opisane w [1]. Podobnym zagadnieniem w laach 90 XX wieku zajmował się G. Desaulniers, kóry zaprezenował niezwykle ciekawy model dziennego harmonogramowania procesu eksploaacji saków powierznych [2]. Model opymalizacji procesu eksploaacji uwzględniający konieczność wykonywania przeglądów echnicznych zaprezenowany zosał przez Sriram C. oraz Haghani A. w [3]. 2. ANALIZA ORAZ MODELOWANIE SZEREGÓW CZASOWYCH Isnieje wiele ogólnych modeli szeregów. Do najczęściej spoykanych zalicza się nasępujące rzy modele: X = m + s + e X = m s e X = m s + e gdzie m s, e, : m składowa rendu (deerminisyczna funkcja rendu) s składowa sezonowości (deerminisyczna funkcja sezonowości) e błąd losowy (proces sacjonarny o średniej zero)
3 MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO 1621 Pierwszy model nazywa się modelem addyywnym, drugi muliplikaywnym, naomias rzeci modelem mieszanym. Odpowiednia ransformacja (Boxa-Coxa) umoŝliwia sprowadzenie modelu muliplikaywnego i mieszanego do modelu addyywnego. W modelach eksploaacji saków powierznych najczęściej funkcja rendu jes wielomianem sopnia nie większego niŝ 1, naomias sezonowość ma okres 1 roku. Zdarzają się jednak procesy mające wielkości inne niŝ wyŝej wskazane. Taka syuacja ma miejsce w przypadku procesów czasów opóźnienia saku powierznego w porcie loniczym gdzie sezonowość jes ygodniowa poniewaŝ zaleŝy od naęŝenia ruchu w danym porcie loniczym. Procedura analizy i dopasowania jednowymiarowego szeregu czasowego składa się z nasępujących kroków: 1. Dokonuje się klasyfikacji szeregu czasowego na podsawie jego wykresu (czy jes addyywny czy muliplikaywny). Jeśli jes muliplikaywny sprowadza się go do posaci addyywnej, jeśli jes addyywny pozosawia się bez zmian. Ponado przeprowadza się wizualną analizę wykresu szeregu czasowego pod kąem isnienia funkcji rendu i funkcji sezonowej oraz ich ogólnej charakerysyki. 2. Dokonuje się esymacji funkcji rendu (po wcześniejszym sprowadzeniu modelu do posaci addyywnej) mˆ i funkcji sezonowej ŝ (jeŝeli isnieją). MoŜliwe jes eŝ usunięcie ych składowych meodą róŝnicowania. Po esymacji ych funkcji worzy się proces eˆ = e mˆ sˆ. Proces en nazywany jes procesem residuów. JeŜeli prawidłowo zosała wykonana esymacja funkcji mˆ, ŝ, o proces ê jes sacjonarny, w innym przypadku zabieg esymacji funkcji rendu i sezonowości naleŝy powórzyć. 3. Mając proces residuów esuje się czy jes on ciągiem niezaleŝnych jednakowo rozłoŝonych zmiennych losowych (IID szumem) jedną z meod: - sprawdzający czy warość funkcji auokorelacji cząskowej naleŝy do przedziału ± 1,96 / n, gdzie n jes liczbą obserwacji - esem Junga-Boxa, gdzie warość saysyki wynosi: Q = n 2 ˆ ρ ( j) jes funkcja auokorelacji cząskowej. JeŜeli Q ( ) χ1 α h h j= 1 2 ˆρ ( j), > hipoezę Ŝe proces residuów jes ciągiem niezaleŝnych jednakowo rozłoŝonych zmiennych losowych (IID szumem) odrzucamy w odwronym przypadku przyjmujemy 2 ( ( ) - jes kwanylem rozkładu chi kwadra z h sopniami swobody). χ1 α h - esem rang - sprawdzając czy proces ma rozkład normalny. JeŜeli nie odrzuca się hipoezy zerowej, zn. Ŝe proces residuów jes ciągiem niezaleŝnych jednakowo rozłoŝonych zmiennych losowych (IID- szumem), o przyjmuje się, Ŝe esymowany proces ma posać { } Xˆ mˆ + sˆ + eˆ =, gdzie ê jes IID szumem. NaleŜy jeszcze wyznaczyć jego wariancję.
4 1622 Arur KIERZKOWSKI 4. JeŜeli proces residuów nie pochodzi z IID szumu o dopasowuje się do niego proces sacjonarny ypu AR(p) auoregresji rzędu p, lub proces MA(q) średniej ruchomej rzędu q, lub proces ARMA(p,q) proces mieszany auoregresji i średniej ruchomej rzędu p i q odpowiednio. Meoda dopasowania ych procesów do danych jes opisana w rozdziale 5 [4]. Meoda dopasowania procesu do danych jes wielosopniowa. Końcowym eapem jes dopasowanie procesu do danych meodą największej wiarygodności. Jakość dopasowania procesu charakeryzowana jes przez wiele wskaźników. Jednym z nich jes wskaźnik AICC (rozdział 5.5. [4]). Im mniejszy jes en wskaźnik ym lepszy jes sopień dopasowania procesu do danych. 5. Po dopasowaniu procesu do danych ponownie dokonuje się esowania residuów zgodnie z meodami zawarymi w rozdziale 1.6 [4]. JeŜeli proces residuów nie pochodzi z białego szumu, o znaczy Ŝe źle zosały wyesymowane mˆ, ŝ lub niepoprawnie zosał dobrany jeden z procesów AR(p), MA(q), ARMA (p,q). Wedy procedurę dopasowania szeregu czasowego naleŝy powórzyć. 3. MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO Isonym elemenem odwzorowania procesu eksploaacji saku powierznego jes sworzenie modelu czasu obsługi naziemnej i posoju w ransporcie loniczym. Zagadnienie o moŝna rozparywać na kilka sposobów. Pierwszym jes analiza przyczyn powsania zakłóceń w ruchu oraz wyznaczenie modelu z uwzględnieniem moŝliwych zdarzeń oraz skuków. Opóźnienie saku powierznego w porcie loniczym moŝe być spowodowane kilkoma czynnikami: - dłuŝszym czasem wykonania obsługi naziemnej - brakiem moŝliwości wykonania procedury sarowej w porcie loniczym - brakiem moŝliwości wykonania procedury podejścia do lądowania - brakiem wolnej przesrzeni powierznej koniecznej do wykonania połączenia loniczego. Drugim ze sposobów jes esymacja szeregu czasowego, kóry w swojej naurze będzie zawierał wszyskie moŝliwe przyczyny powsania zakłóceń naomias dosarczał nam informacje doyczące oczekiwanego czasu pomiędzy połączeniami loniczymi. Kolejnym sposobem określenia czasu pomiędzy połączeniami loniczymi jes wyznaczenie funkcji gęsości prawdopodobieńswa na podsawie hisorycznych danych. 3.1 Model czasu obsługi naziemnej saku powierznego z wykorzysaniem eorii szeregów czasowych Rysunek 3 przedsawia czas pomiędzy połączeniami loniczymi, gdy saek powierzny przylauje z poru A i odlauje do poru B. Dane e zosały zgromadzone w czasie jednego okresu isnienia leniej siaki połączeń przewoźnika loniczego. Przewoźnik wykonywał połączenia na danej rasie raz dziennie, kaŝdego dnia ygodnia.
5 MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO 1623 Rys. 3 Wykres czasu pomiędzy połączeniami loniczymi dla połączenia z poru A do B. Funkcja rendu dla akiego procesu będzie miała posać: mˆ = 0, ,47567 i zosała ona wyznaczona zgodnie z procedurami przedsawionymi w rozdziale 1.5 [4]. Rysunek 4 przedsawia zmodyfikowany proces liczby przewiezionych pasaŝerów z usunięym rendem X = ( m mˆ ) + s + e Rys. 4. Zmodyfikowany proces liczby przewiezionych pasaŝerów z usunięym rendem. Funkcji auokorelacji cząskowej procesu na rysunku 5. X = m mˆ ) + s + e ( jes przedsawiona
6 1624 Arur KIERZKOWSKI Rys. 5. Funkcja auokorelacji cząskowej dla procesu X = m mˆ ) + s + e (. Z wykresu funkcji auokorelacji cząskowej wynika, Ŝe proces posiada wyraźną składową sezonową o okresie równym 7. W ransporcie loniczym jes o dość nauralne zjawisko poniewaŝ siaka połączeń powarza się cyklicznie co ydzień. Wyesymowana funkcja sezonowa zosała przedsawiona na rysunku 6. Rys. 6 Wyesymowana funkcja sezonowa.
7 MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO 1625 Wykres funkcji auokorelacji dla danych procesu przedsawiony na rysunku 7. X = m mˆ ) + ( s sˆ ) + e ( zosał Rys. 7. Funkcja auokorelacji procesu X = ( m mˆ ) + ( s sˆ ) + e. Warość saysyki dla esu Ljunga Boxa wynosi Q LB = 12, 694, naomias prawdopodobieńswo Ŝe jes o ciąg niezaleŝnych zmiennych losowych wynosi 0,89. Proces en, zakładając 90% poziom prawdopodobieńswa, nie jes ciągiem niezaleŝnych zmiennych losowych. Proces en nie jes białym szumem więc dopasowuje się do niego jeden z procesów AR(p), MA(q), ARMA(p,q). Procedurę e wykonuje się zgodnie z rozdziałem 5.2. [1]. X() = X(-1) X(-2) Proces najlepiej dopasowany do danych (zgodnie z kryerium AICC) o proces AR(2) X 0,07528X + 0, X + Z. Residua procesu przedsawione są na = rysunku 8. Rys. 8. Residua procesu X 0 + Z. =,07528X 1 + 0, 1150X 1
8 1626 Warość funkcji auokorelacji dla procesu przedsawiona na rysunku 9. =,07528X 1 + 0, 1150X 1 Arur KIERZKOWSKI X + Z 0 zosała Rys. 9 Funkcja auokorelacji procesu X + Z = 0,07528X 1 + 0, 1150X 1 Warość saysyki dla esu Ljunga Boxa wynosi Q LB = 10, 923, naomias prawdopodobieńswo Ŝe jes o ciąg niezaleŝnych zmiennych losowych wynosi 0, Proces en więc jes ciągiem niezaleŝnych zmiennych losowych Weryfikacja modelu szeregu czasowego czasu obsługi naziemnej Dane zgromadzone na porzeby modelu czasu pomiędzy połączeniami loniczymi pochodziły z roku Weryfikacja ych danych wykonana zosanie za pomocą esu Chikwadra porównując prognozowane wyniki (z modelu) z danymi rzeczywisymi uzyskanymi w 2009 roku. (rysunek 10) Rys. 10 Porównanie prognozowanych danych z modelu z danymi rzeczywisymi
9 MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO 1627 Jak moŝna zauwaŝyć na rysunku sopien zbieŝności dla pierwszych 30 obserwacji jes bardzo wysoki, podobna syuacja ma miejsce dla całego rozparywanego okresu. Dla poziomu isoności α=0,95 es zgodności Chi-kwadra wykazuje Ŝe model posiada odpowiednie paramery. 4. WNIOSKI Zaprezenowany model będzie jednym z części modelu eksploaacji saków powierznych. Celem referau było wskazanie słuszności uŝycia modelu szeregu czasowego dla rozparywanego problemu. Dalsze prace prowadzone będą w kierunku budowy programu kompuerowego będącego inegralną częścią zaproponowanego modelu szeregu czasowego. Przy zadanych paramerach operacyjnych porów loniczych: dosępna przepusowość w danych przedziałach czasu, prawdopodobieńswo powsania zakłóceń ruchu w porcie loniczym, jak równieŝ w srefach doloowych lonisk wynikających ze względów operacyjnych lub pogodowych, moŝliwe będzie przeprowadzenie symulacji procesu eksploaacji. Symulacja a umoŝliwi wyznaczenie chwil powsawania zakłóceń. UŜycie aplikacji umoŝliwi weryfikacje planowanej siaki połączeń umoŝliwiając minimalizację pojawienia się zakłóceń przy jednoczesnej maksymalizacji popyu na usługi lonicze. Do powsania arykułu przyczynił się udział w Projekcie Przedsiębiorczy dokoran- inwesycja w innowacyjny rozwój regionu. Projek współfinansowany ze środków Unii Europejskiej w ramach Europejskiego funduszu społecznego. 5. BIBLIOGRAFIA [1] Levin A., Scheduling and flee rouing models for ransporaion sysem. Transporaion Science 5, [2] Desaulniers. G., Daily aircraf rouing and scheduling. Managemen Science 43, [3] Sriram C., Haghani A., An opimizaion model for aircraf mainenance scheduling and re-assignmen. Transporaion Research Par A 37, [4] Peer J. Brockwell, Richard A. Davis Inroducion o Time Series and Forecasing, Springer, 1996.
MODELOWANIE PROCESU OBSŁUGI STATKÓW POWIETRZNYCH
LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Arur KIERZKOWSKI 1 Saek powierzny, proces obsługi, modelownie procesów ransporowych MODELOWANIE
Bardziej szczegółowo1. Szereg niesezonowy 1.1. Opis szeregu
kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany
Bardziej szczegółowoWYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK
Przemysław Jeziorski Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Zakład Demografii i Saysyki Ekonomicznej przemyslaw.jeziorski@ue.kaowice.pl WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 5
Sanisław Cichocki Naalia Nehrebecka Wkład 5 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 2 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika
Bardziej szczegółowoStatystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego
Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez
Bardziej szczegółowoPROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
Bardziej szczegółowoJacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.
DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje
Bardziej szczegółowoESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków
Bardziej szczegółowoPolitechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych
Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II
Bardziej szczegółowolicencjat Pytania teoretyczne:
Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie
Bardziej szczegółowoMetody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?
Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Gdański Zasosowanie modelu
Bardziej szczegółowoStudia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii
Bardziej szczegółowospecyfikacji i estymacji modelu regresji progowej (ang. threshold regression).
4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 2 1. Zmienne sacjonarne
Bardziej szczegółowoWNIOSKOWANIE STATYSTYCZNE
Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml
Bardziej szczegółowoOcena efektywności procedury Congruent Specyfication dla małych prób
243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji
Bardziej szczegółowoWykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
Bardziej szczegółowoModelowanie i analiza szeregów czasowych
Modelowanie i analiza szeregów czasowych Małgorzaa Doman Plan zajęć Część. Modelowanie szeregów jednowymiarowych.. Szeregi jednowymiarowe własności i diagnozowanie. Modele auoregresji i średniej ruchomej
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 4
Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne
Bardziej szczegółowoPobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika
Bardziej szczegółowoZarządzanie Projektami. Wykład 3 Techniki sieciowe (część 1)
Zarządzanie Projekami Wykład 3 Techniki sieciowe (część ) Przedsięwzięcie wieloczynnościowe Przedsięwzięcie wieloczynnościowe skończona liczba wzajemnie ze sobą powiązanych czynności (eapów). Powiązania
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
Bardziej szczegółowoElżbieta Szulc Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie zależności między przestrzennoczasowymi procesami ekonomicznymi
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyk Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
Bardziej szczegółowoWitold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
Bardziej szczegółowoWykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Bardziej szczegółowoAnaliza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1
Analiza danych Drzewa decyzyjne. Enropia. Jakub Wróblewski jakubw@pjwsk.edu.pl hp://zajecia.jakubw.pl/ DRZEWA DECYZYJNE Meoda reprezenacji wiedzy (modelowania ablic decyzyjnych). Pozwala na przejrzysy
Bardziej szczegółowoWYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH
SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów
Bardziej szczegółowoPROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 69 Elecrical Engineering 0 Janusz WALCZAK* Seweryn MAZURKIEWICZ* PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO W arykule opisano meodę generacji
Bardziej szczegółowoEwa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
Bardziej szczegółowoFINANSOWE SZEREGI CZASOWE WYKŁAD 3
FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).
Bardziej szczegółowoEKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.
EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b
Bardziej szczegółowoDYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
Bardziej szczegółowoAlicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza
Bardziej szczegółowoPREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY
B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW
Bardziej szczegółowoModel logistycznego wsparcia systemu eksploatacji środków transportu
Poliechnika Wrocławska Insyu Konsrukcji i Eksploaacji Maszyn Zakład Logisyki i Sysemów Transporowych Rozprawa dokorska Model logisycznego wsparcia sysemu eksploaacji środków ransporu Rapor serii: PRE nr
Bardziej szczegółowo2. Wprowadzenie. Obiekt
POLITECHNIKA WARSZAWSKA Insyu Elekroenergeyki, Zakład Elekrowni i Gospodarki Elekroenergeycznej Bezpieczeńswo elekroenergeyczne i niezawodność zasilania laoraorium opracował: prof. dr ha. inż. Józef Paska,
Bardziej szczegółowoANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
Bardziej szczegółowoKURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
Bardziej szczegółowoZASTOSOWANIE MODELI EKONOMETRYCZNYCH DO BADANIA SKŁONNOŚCI
Zasosowanie modeli ekonomerycznych do badania skłonności STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 2 39 MARIUSZ DOSZYŃ Uniwersye Szczeciński ZASTOSOWANIE MODELI EKONOMETRYCZNYCH DO BADANIA
Bardziej szczegółowoCopyright by Politechnika Białostocka, Białystok 2017
Recenzenci: dr hab. Sanisław Łobejko, prof. SGH prof. dr hab. Doroa Wikowska Redakor naukowy: Joanicjusz Nazarko Auorzy: Ewa Chodakowska Kaarzyna Halicka Arkadiusz Jurczuk Joanicjusz Nazarko Redakor wydawnicwa:
Bardziej szczegółowoĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym
ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami
Bardziej szczegółowoPrzykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
Bardziej szczegółowoMETODY STATYSTYCZNE W FINANSACH
METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny
Bardziej szczegółowoZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH
Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów
Bardziej szczegółowoKombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz
Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia
Bardziej szczegółowoCechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
Bardziej szczegółowoFOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Sein., Oeconomica 2014, 313(76)3, 137 146 Maria Szmuksa-Zawadzka, Jan Zawadzki MODELE WYRÓWNYWANIA WYKŁADNICZEGO W PROGNOZOWANIU
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna
Bardziej szczegółowoHeteroskedastyczność szeregu stóp zwrotu a koncepcja pomiaru ryzyka metodą VaR
Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Heeroskedasyczność szeregu sóp zwrou a koncepcja pomiaru ryzyka meodą VaR Wsęp Spośród wielu rodzajów ryzyka
Bardziej szczegółowoPOMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Bardziej szczegółowoNiestacjonarne zmienne czasowe własności i testowanie
Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:
Bardziej szczegółowoPROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody
Bardziej szczegółowoPodstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1
Podsawowe charakerysyki niezawodności sem. 8. Niezawodność elemenów i sysemów, Kompuerowe sysemy pomiarowe 1 Wsęp Niezawodność o prawdopodobieńswo pewnych zdarzeń Inensywność uszkodzeń λ wyraŝa prawdopodobieńswo
Bardziej szczegółowoMetody analizy i prognozowania szeregów czasowych
Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów
Bardziej szczegółowoWygładzanie metodą średnich ruchomych w procesach stałych
Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja
Bardziej szczegółowoANALIZA POWIĄZAŃ MIĘDZY INDEKSAMI GIEŁDY FRANCUSKIEJ, HOLENDERSKIEJ I BELGIJSKIEJ Z WYKORZYSTANIEM MODELU KOREKTY BŁĘDEM
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 083-86 Nr 89 06 Uniwersye Ekonomiczny w Kaowicach Wydział Ekonomii Kaedra Meod Saysyczno-Maemaycznych w Ekonomii pawel.prenzena@edu.ueka.pl
Bardziej szczegółowoZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG
Doroa Wikowska, Anna Gasek Kaedra Ekonomerii i Informayki SGGW dwikowska@mors.sggw.waw.pl ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYC INDEKSÓW GIEŁDOWYC: WIG, WIG2, MIDWIG I TECWIG Sreszczenie:
Bardziej szczegółowoE k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
Bardziej szczegółowoPROGNOZOWANIE BRAKUJĄCYCH DANYCH DLA SZEREGÓW O WYSOKIEJ CZĘSTOTLIWOŚCI OCZYSZCZONYCH Z SEZONOWOŚCI
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-8611 Nr 289 2016 Maria Szmuksa-Zawadzka Zachodniopomorski Uniwersye Technologiczny w Szczecinie Sudium Maemayki Jan Zawadzki
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna
Bardziej szczegółowoUWARUNKOWANIA DIAGNOSTYCZNE STEROWANIA PROCESEM EKSPLOATACJI OKRĘTOWYCH SILNIKÓW GŁÓWNYCH
UWARUNKOWANIA DIAGNOSTYCZNE STEROWANIA PROCESEM EKSPLOATACJI OKRĘTOWYCH SILNIKÓW GŁÓWNYCH Jacek Rudnicki Poliechnika Gdańska ul. Naruowicza 11/12, 8-233 Gdańsk el.: +48 58 3472973 e-mail:jacekrud@pg.edu.pl
Bardziej szczegółowoKrzysztof Borowski, Paweł Skrzypczyński Szkoła Główna Handlowa. Analiza spektralna indeksów giełdowych DJIA i WIG. 1. Wprowadzenie
Krzyszof Borowski, Paweł Skrzypczyński Szkoła Główna Handlowa Analiza spekralna indeksów giełdowych DJIA i WIG 1 Wprowadzenie We współczesnych analizach ekonomicznych doyczących pomiaru cyklu koniunkuralnego
Bardziej szczegółowoRozdział 4 Instrukcje sekwencyjne
Rozdział 4 Insrukcje sekwencyjne Lisa insrukcji sekwencyjnych FBs-PLC przedsawionych w niniejszym rozdziale znajduje się w rozdziale 3.. Zasady kodowania przy zasosowaniu ych insrukcji opisane są w rozdziale
Bardziej szczegółowoWAHANIA NATĘśEŃ RUCHU DROGOWEGO NA SIECI DRÓG MIEJSKICH
dr hab. inŝ. Kazimierz Kłosek Prof. nzw. Poliechniki Śląskiej, Kierownik Kaedry Dróg i Mosów dr inŝ. Anna Olma Wydział Budownicwa Poliechniki Śląskiej Gliwice, Polska WAHANIA NATĘśEŃ RUCHU DROGOWEGO NA
Bardziej szczegółowoParytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD
Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)
Bardziej szczegółowoKrzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20
Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH
Bardziej szczegółowoStruktura sektorowa finansowania wydatków na B+R w krajach strefy euro
Rozdział i. Srukura sekorowa finansowania wydaków na B+R w krajach srefy euro Rober W. Włodarczyk 1 Sreszczenie W arykule podjęo próbę oceny srukury sekorowej (sekor przedsiębiorsw, sekor rządowy, sekor
Bardziej szczegółowoPorównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz
233 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Porównanie jakości nieliniowych modeli ekonomerycznych na podsawie esów rafności prognoz Sreszczenie.
Bardziej szczegółowoKONIUNKTURA W CIĘŻAROWYM TRANSPORCIE SAMOCHODOWYM. STAN W ROKU 2010 I PRZEWIDYWANIA NA ROK KOLEJNY
Sławomir Dorosiewicz Insyu Transporu Samochodowego KONIUNKTURA W CIĘŻAROWYM TRANSPORCIE SAMOCHODOWYM. STAN W ROKU 2010 I PRZEWIDYWANIA NA ROK KOLEJNY W arykule podsumowano wyniki badań koniunkury w ransporcie
Bardziej szczegółowoTeoria kolejek w zastosowaniu do opisu procesu transportowego
Jolana śak 1 Wydział Transporu Poliechniki Warszawskiej Teoria kolejek w zasosowaniu do opisu procesu ransporowego WPROWADZENIE Opisując rzeczywisy proces ransporowy rudno wyobrazić sobie sieć ransporową
Bardziej szczegółowoWprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Bardziej szczegółowoWitold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu. Własności procesów STUR w świetle metod z teorii chaosu 1
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6-8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
Bardziej szczegółowoMetody i narzędzia ewaluacji
Meody i narzędzia ewaluacji wyników zdalnego esowania wiedzy (plaforma informayczna e-maura) Książka przygoowana w ramach projeku E-maura, współfinansowanego przez Unię Europejską w ramach Europejskiego
Bardziej szczegółowoSZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU
B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu
Bardziej szczegółowoBayesowska analiza modeli ARFIMA i persystencji na przykładzie kursu jednostek uczestnictwa funduszu Pioneer.
Jacek Kwiakowski Bayesowska analiza modeli ARFIMA i persysencji na przykładzie kursu jednosek uczesnicwa funduszu Pioneer.. Wsęp Celem prezenowanego arykułu jes analiza empiryczna modeli AR- FIMA oraz
Bardziej szczegółowoMetody ilościowe w systemie prognozowania cen produktów rolnych. Mariusz Hamulczuk Cezary Klimkowski Stanisław Stańko
Meody ilościowe w sysemie prognozowania cen produków rolnych nr 89 2013 Mariusz Hamulczuk Cezary Klimkowski Sanisław Sańko Meody ilościowe w sysemie prognozowania cen produków rolnych Meody ilościowe
Bardziej szczegółowoOPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR
Daniel Iskra Uniwersye Ekonomiczny w Kaowicach OPTYMALIZACJA PORTFELA IWESTYCYJEGO ZE WZGLĘDU A MIIMALY POZIOM TOLERACJI DLA USTALOEGO VaR Wprowadzenie W osanich laach bardzo popularną miarą ryzyka sała
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
Bardziej szczegółowoZastosowanie sztucznych sieci neuronowych do prognozowania szeregów czasowych
dr Joanna Perzyńska adiunk w Kaedrze Zasosowań Maemayki w Ekonomii Wydział Ekonomiczny Zachodniopomorski Uniwersye Technologiczny w Szczecinie Zasosowanie szucznych sieci neuronowych do prognozowania szeregów
Bardziej szczegółowoRys.1. Podstawowa klasyfikacja sygnałów
Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich
Bardziej szczegółowoSYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE
SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne
Bardziej szczegółowoIntegracja zmiennych Zmienna y
Inegracja zmiennych Zmienna y jes zinegrowana rzędu d jeśli jej różnice rzędu d są sacjonarne. Zapisujemy o y ~ I ( d ). Przyjmuje się również, że zmienna sacjonarna y (jako że nie rzeba jej różnicować,
Bardziej szczegółowo2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Bardziej szczegółowoŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, sr. 389 398 ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków Gospodarczych
Bardziej szczegółowoWskazówki projektowe do obliczania nośności i maksymalnego zanurzenia statku rybackiego na wstępnym etapie projektowania
CEPOWSKI omasz 1 Wskazówki projekowe do obliczania nośności i maksymalnego zanurzenia saku rybackiego na wsępnym eapie projekowania WSĘP Celem podjęych badań było opracowanie wskazówek projekowych do wyznaczania
Bardziej szczegółowoAnaliza rynku projekt
Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes
Bardziej szczegółowoAnaliza metod prognozowania kursów akcji
Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl
Bardziej szczegółowoWykorzystanie wielorównaniowych modeli AR-GARCH w pomiarze ryzyka metodą VaR
Krzyszof Pionek Daniel Papla Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wykorzysanie wielorównaniowych modeli AR-GARCH w pomiarze ryzyka meodą VaR Wsęp Wśród różnych meod
Bardziej szczegółowoWYKORZYSTANIE RACHUNKU WARIACYJNEGO DO ANALIZY WAHAŃ PRODUKCJI W PRZEDSIĘBIORSTWACH
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Sefan Grzesiak * WYKORZYSTANIE RACHUNKU WARIACYJNEGO DO ANALIZY WAHAŃ PRODUKCJI W PRZEDSIĘBIORSTWACH STRESZCZENIE W arykule podjęo problem
Bardziej szczegółowo4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego
4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W
Bardziej szczegółowoANALIZA BIPOLARNEGO DYNAMICZNEGO MODELU DIAGNOSTYCZNEGO MONITOROWANIA WYPOSAśENIA ELEKTRYCZNEGO SAMOCHODU
LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Radosław GAD 1 Moniorowanie diagnosyczne, model dynamiczny, diagnosyka pojazdowa ANALIZA BIPOLARNEGO
Bardziej szczegółowoTESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Mariusz Doszyń TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH Od pewnego czasu w lieraurze ekonomerycznej pojawiają się
Bardziej szczegółowoANALIZA WPŁYWU ROZWOJU ELEKTROMOBILNOŚCI NA ZAPOTRZEBOWANIE NA MOC I ENERGIĘ W KRAJOWYM SYSTEMIE ELEKTROENERGETYCZNYM
Pior MARCHEL, Józef PASKA, Łukasz MICHALSKI Poliechnika Warszawska, Insyu Elekroenergeyki ANALIZA WPŁYWU ROZWOJU ELEKTROMOBILNOŚCI NA ZAPOTRZEBOWANIE NA MOC I ENERGIĘ W KRAJOWYM SYSTEMIE ELEKTROENERGETYCZNYM
Bardziej szczegółowo