Wykład 6. Badanie dynamiki zjawisk
|
|
- Nina Popławska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wykład 6 Badanie dynamiki zjawisk
2 TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie ruchome scenrowane
3 Krzywa wieża w Pizie y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (przedziałach) czasu. Oznaczając przez 1,..., n momeny (przedziały) czasu, w kórych obserwowano warości pewnej zmiennej, a przez y wyniki obserwacji, szereg czasowy zapisujemy jako zbiór {y ; =1,...n}
4 laa Ekspor , , , , , , , , , , , ,5 Ekspor owarów i usług w Polsce w mln zł w laach , , , , , , ,0 Ekspor w Polsce w laach (mln zł) , ,0 0, Ekspor
5 SKŁADNIKI SZEREGU CZASOWEGO endencja rozwojowa (rend) - ogólny kierunek zmian zjawiska w czasie będący wynikiem sysemaycznych, jednokierunkowych zmian (spadek lub wzros) poziomu badanego zjawiska wahania okresowe - rymiczne wahania poziomu badanego zjawiska o określonym cyklu (okresie przebiegu) (regularne odchylenia warości cechy od rendu) wahania koniunkuralne - sysemowe wahania poziomu badanego zjawiska obserwowane w dłuższych od roku okresach wahania przypadkowe - nieregularne, nieprzewidywalne zarówno co do kierunku jak i siły zmiany poziomu badanego zjawiska
6 METODA ANALITYCZNA Modele endencji rozwojowej sosujemy do prognozowania na podsawie szeregów czasowych, w kórych wysępują rend oraz wahania przypadkowe. Rolę zmiennej objaśniającej odgrywa zmienna czasowa. Nie jes ona bezpośrednią przyczyną zmian zachodzących w warościach zmiennej prognozowanej, ale syneyzuje wpływ bliżej nie znanych czynników, swarza możliwość opisu ych zmian w sposób ilościowy.
7 METODA NAJMNIEJSZYCH KWADRATÓW METODA ANALITYCZNA Posać liniowego modelu endencji rozwojowej 0 ), ( ), cov( ) ( 0 ) ( 2 2 s s E D E Y ) 1,2,..., ( n s dla
8 MNK Zakładając, że do opisu endencji rozwojowej (rendu) sosujemy funkcję liniową dobieramy ak warości współczynników równania linii prosej, aby jej wykres możliwie dobrze "pasował" do punków reprezenujących na wykresie poszczególne obserwacje z próby: S ˆ ˆ n 1 0 n n y y 2 y ˆ y 2 2 min 1 n n 1
9 Ekspor w Polsce w laach (w mln zł) , , , , , , , , ,0 0,0 MNK y 30412, , 74 Ekspor R² = 0,9629 Liniowy (Ekspor)
10 Prognoza (predykcja) Żeby użyć modelu do budowy prognoz rzeba założyć: a) sabilność relacji srukuralnych w czasie = posać analiyczna modelu i warość ocen jego paramerów nie ulegną zmianie w przedziale czasu, dla kórego wyznacza się prognozę, b) sabilność rozkładu składnika losowego (umożliwia ocenę błędu ex ane prognozy).
11 Predykcja dla 2009 (=15) ˆ p y 30412, , Średni błąd predykcji S ˆ 1 Y S 1 n p e n i1 p i ( ,5)
12 1 )) ˆ ( ˆ ) ˆ ( ˆ ( 2, 2, p n p p p n p Y S Y Y Y S Y P Predykcja na podsawie rendu Przedział ufności dla 2009 (=15) sopnie swobody v = n 2 => v=10, współczynnik ufności 1-α=0, ,94 < < ,94 p Y
13 średnie ruchome zwykłe - oblicza się z nieparzysej liczby sąsiadujących ze sobą wyrazów szeregu, ak aby uzyskany wynik móc przyporządkować całkowiej warości znajdującej się w środku uwzględnionego w obliczeniach przedziału czasowego:
14
15 Ekspor Ekspor w Polsce w w Polsce laach w laach (mln zł) , , , , , , , , ,0 0, Ekspor średnie Ekspor ruchome 3-okresowe TREND
16 ,0 Ekspor Ekspor w Polsce w w Polsce laach w laach (mln zł) Trend- średnie ruchome 3-3-okresowe i 5-okresowe , , , , , , , ,0 0, średnie ruchome 3-okresowe średnie ruchome 5-okresowe średnie ruchome Ekspor 3-okresowe TREND
17 średnie ruchome scenrowane - oblicza się z parzysej liczby sąsiadujących ze sobą wyrazów szeregu, uwzględniając połowę warości pierwszego wyrazu z danego cyklu wahań, nasępnie wszyskie pozosałe wyrazy składające się na pełny cykl wahań oraz połowy warości pierwszego wyrazu z nasępnego cyklu wahań:
18 q q q r r q k y y y q y q n q q,..., 2, 1 gdzie: q d 2, przy czym d jes liczbą podokresów w cyklu wahań
19 Produk krajowy bruo w Polsce w laach (w(mln ys zł) 310,0 290,0 270,0 250,0 230,0 PKB 210,0 190,0 170,0 150, I 2000-III 2001-I 2001-III 2002-I 2002-III 2003-I 2003-III 2004-I 2004-III 2005-I 2005-III 2006-I 2006-III
20 czerookresowym cyklu wahań 310,0 290,0 270,0 Produk krajowy bruo w Polsce w laach (mln zł); rend średnie ruchome TREND 250,0 230,0 210,0 190,0 170,0 150,0 średnie ruchome
21 WSKAŹNIKI WAHAŃ OKRESOWYCH DLA SZEREGU CZASOWEGO Z TRENDEM dla sezonowości addyywnej: ampliuda wahań w kolejnych okresach nie będzie rosła wraz ze wzrosem średniego poziomu (nie będzie z nim dodanio skorelowana) dla sezonowości muliplikaywnej: ampliuda wahań w kolejnych okresach będzie rosła wraz ze wzrosem średniego poziomu (będzie z nim dodanio skorelowana) y = T + S + e y = T O e
22 WSKAŹNIKI WAHAŃ OKRESOWYCH DLA SZEREGU CZASOWEGO Z TRENDEM WAHANIA OKRESOWE ADDYTYWNE d i1 S i 0
23 25,0 20,0 15,0 10,0 5,0 0,0-5,0-10,0-15,0-20,0 Indywidualne wskaźniki okresowości PKB w laach (w ys (w zł) mln zł) Indywidualne wskaźniki okresowości w jednoskach absolunych y y Indywidualne wskaźniki okresowości Wahania okresowe w jednoskach absolunych S ' i 1 ni N i y y (i=1,2,,d)
24 kwarały S' i S i I -11,992-11,903 II -4,132-4,044 III -3,449-3,360 IV 19,219 19,307 suma -0,354 0,000 d i1 S i 0 Skorygowane wahania okresowe (suma odchyleń okresowych w obrębie cyklu wahań równa zeru) k 1 d d i1 ' ' Si i 1,2,..., d S S k i 1,2,..., i i d
25 WAHANIA OKRESOWE MULTIPLIKATYWNE d 0 i1 i d Turyści zagraniczni w Krakowie w laach uryści zagraniczni 4 okr. śr. ruch. (uryści zagraniczni)
26 1,600 1,400 1,200 1,000 0,800 0,600 0,400 0,200 0,000 Indywidualne wskaźniki okresowości Indywidualne wskaźniki okresowości w jednoskach względnych y y Indywidualne wskaźniki okresowości 1 y 0 i - surowy wskaźnik wahań okresowych n 1 y i N i
27 kwarały O' i O i I 0,527 0,530 II 1,210 1,217 III 1,503 1,512 IV 0,737 0,742 suma 3,977 4,000 d 0 i1 i d k d d 0 i1 i - wskaźnik korygujący 0 i 0 i k
28 2000-I 2000-II 2000-III 2000-IV 2001-I 2001-II 2001-III 2001-IV 2002-I 2002-II 2002-III 2002-IV 2003-I 2003-II 2003-III 2003-IV 2004-I 2004-II 2004-III 2004-IV 2005-I 2005-II 2005-III 2005-IV 2006-I 2006-II 2006-III 2006-IV ELIMINACJA WAHAŃ SEZONOWYCH Z SZEREGU CZASOWEGO Wahania okresowe addyywne ~ y y S ; N i i 310,00 PKB w Polsce w laach (w ys zł) 290,00 270,00 250,00 230,00 210,00 190,00 170,00 150,00 PKB szereg oczyszczony z z wahań okresowych
29 ELIMINACJA WAHAŃ SEZONOWYCH Z SZEREGU CZASOWEGO Wahania okresowe muliplikaywne ~ y y / 0 ; N i i Turyści zagraniczni w Krakowie w laach uryści zagraniczni szereg oczyszczony z wahań Szereg oczyszczony z wahań okresowych
30 ADDYTYWNY, LINIOWY MODEL TENDENCJI ROZWOJOWEJ PRZY UWZGLĘDNIENIU WAHAŃ OKRESOWYCH Y X X X X n,,...,, gdzie X i i 1 4,..., są zmiennymi zero-jedynkowymi reprezenującymi poszczególne podokresy cyklu: X i 1, dla obserwacji doyczących i-ego kwarału, 0, dla obserwacji doyczących pozosałych kwarałów.
31 ANALIZA WAHAŃ OKRESOWYCH WSKAŹNIKI WAHAŃ OKRESOWYCH DLA SZEREGU CZASOWEGO BEZ TRENDU Turyści krajowi w Krakowie w laach (w ys) I 2001-II 2001-III 2001-IV 2002-I 2002-II 2002-III 2002-IV 2003-I 2003-II 2003-III 2003-IV 2004-I 2004-II 2004-III 2004-IV uryści krajowi Liniowy (uryści krajowi)
32 =100,9 ys. kwarały średnie I 81 II 126,5 III 103,5 IV 92,5 ogólna 100,9 średnia liczba urysów krajowych w Krakowie na kwarał w laach
33 względny wskaźnik wahań okresowych: y i 0i ; i 1, 2,..., d y % kwarały Warość wyrażenia i suma 4,000 mówi, o ile procen warości zjawiska obserwowane w i-ym podokresie cyklu są, na skuek wahań okresowych, przecięnie wyższe (znak +) lub niższe (znak -) od średniego zjawiska określonego przez rend. O i I 0,803 II 1,254 III 1,026 IV 0,917 absoluny wskaźnik wahań okresowych Si yi y i 1,2,..., d S i kwarały I -19,875 II 25,625 III 2,625 IV -8,375 suma 0,000
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
Bardziej szczegółowoStatystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego
Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez
Bardziej szczegółowo3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Bardziej szczegółowoStatystyka. Wykład 13. Magdalena Alama-Bućko. 12 czerwca Magdalena Alama-Bućko Statystyka 12 czerwca / 30
Statystyka Wykład 13 Magdalena Alama-Bućko 12 czerwca 2017 Magdalena Alama-Bućko Statystyka 12 czerwca 2017 1 / 30 Co wpływa na zmiany wartości danej cechy w czasie? W najbardziej ogólnym przypadku, na
Bardziej szczegółowoEkonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006
Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap
Bardziej szczegółowoNa poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy
Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne
Bardziej szczegółowoĆwiczenia 13 WAHANIA SEZONOWE
Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009
Bardziej szczegółowoStatystyka. Wykład 13. Magdalena Alama-Bućko. 18 czerwca Magdalena Alama-Bućko Statystyka 18 czerwca / 36
Statystyka Wykład 13 Magdalena Alama-Bućko 18 czerwca 2018 Magdalena Alama-Bućko Statystyka 18 czerwca 2018 1 / 36 Agregatowy (zespołowy) indeks wartości określonego zespołu produktów np. jak zmianiała
Bardziej szczegółowoANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
Bardziej szczegółowoAnaliza dynamiki zjawisk STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 28 września 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 28 września 2018 1 Pojęcie szeregów czasowych i ich składowych SZEREGIEM CZASOWYM nazywamy tablicę, która zawiera ciag wartości cechy uporzadkowanych
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Bardziej szczegółowoSTATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w
Bardziej szczegółowoAnaliza rynku projekt
Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes
Bardziej szczegółowoAnaliza Zmian w czasie
Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Zmian w czasie Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoKURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
Bardziej szczegółowo5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Bardziej szczegółowoAnaliza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Bardziej szczegółowoRozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Bardziej szczegółowoMetody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?
Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych
Bardziej szczegółowoPrognozowanie popytu. mgr inż. Michał Adamczak
Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej
Bardziej szczegółowoMODEL TENDENCJI ROZWOJOWEJ
MODEL TENDENCJI ROZWOJOWEJ Model endencji rozwojowej o konsrukcja eoreczna (równanie lub układ równań) opisująca kszałowanie się określonego zjawiska jako funkcji: zmiennej czasowej wahań okresowch (sezonowe
Bardziej szczegółowo3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Bardziej szczegółowoStatystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Bardziej szczegółowoPolitechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych
Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II
Bardziej szczegółowoPROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
Bardziej szczegółowoZajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego
Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb
Bardziej szczegółowoTeoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr
Bardziej szczegółowo4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Bardziej szczegółowoK wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Bardziej szczegółowoRok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I
Bardziej szczegółowoParytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD
Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)
Bardziej szczegółowoĆwiczenie 5 PROGNOZOWANIE
Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,
Bardziej szczegółowoWprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Bardziej szczegółowoWykład 4 Związki i zależności
Wykład 4 Związki i zależności Rozważmy: Dane z dwiema lub więcej zmiennymi Zagadnienia do omówienia: Zmienne objaśniające i zmienne odpowiedzi Wykres punktowy Korelacja Prosta regresji Słownictwo: Zmienna
Bardziej szczegółowoE k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Bardziej szczegółowoZapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:
Bardziej szczegółowoAnaliza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
Bardziej szczegółowoPrognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
Bardziej szczegółowoRegresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Bardziej szczegółowolicencjat Pytania teoretyczne:
Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
Bardziej szczegółowoJEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest
Bardziej szczegółowoAnaliza współzależności zjawisk. dr Marta Kuc-Czarnecka
Analiza współzależności zjawisk dr Marta Kuc-Czarnecka Wprowadzenie Prawidłowości statystyczne mają swoje przyczyny, w związku z tym dla poznania całokształtu badanego zjawiska potrzebna jest analiza z
Bardziej szczegółowoZajęcia 1. Statystyki opisowe
Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE INDEKSY STATYSTYCZNE Absolutny przyrost t = y t y t 1 Względny przyrost δ t = t y t Indeks indywidualny jednopodstawowy
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
Bardziej szczegółowoEkonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych
Bardziej szczegółowoZagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA
Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na
Bardziej szczegółowoAnaliza zależności cech ilościowych regresja liniowa (Wykład 13)
Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny
Bardziej szczegółowoAnaliza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny
Analiza sezonowości Wiele zjawisk charakteryzuje się nie tylko trendem i wahaniami przypadkowymi, lecz także pewną sezonowością. Występowanie wahań sezonowych może mieć charakter kwartalny, miesięczny,
Bardziej szczegółowoparametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Bardziej szczegółowoKombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz
Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia
Bardziej szczegółowoPo co w ogóle prognozujemy?
Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym
Bardziej szczegółowoREGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 4
Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne
Bardziej szczegółowoRegresja i Korelacja
Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane
Bardziej szczegółowoPobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Bardziej szczegółowot y x y'y x'x y'x x-x śr (x-x śr)^2
Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,
Bardziej szczegółowoPrzykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
Bardziej szczegółowoEKONOMETRIA. Prof. dr hab. Eugeniusz Gatnar.
EKONOMETRIA Prof. dr hab. Eugeniusz Gatnar egatnar@mail.wz.uw.edu.pl Sprawy organizacyjne Wykłady - prezentacja zagadnień dotyczących: budowy i weryfikacji modelu ekonometrycznego, doboru zmiennych, estymacji
Bardziej szczegółowoA.Światkowski. Wroclaw University of Economics. Working paper
A.Światkowski Wroclaw University of Economics Working paper 1 Planowanie sprzedaży na przykładzie przedsiębiorstwa z branży deweloperskiej Cel pracy: Zaplanowanie sprzedaży spółki na rok 2012 Słowa kluczowe:
Bardziej szczegółowoPROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody
Bardziej szczegółowoKORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Bardziej szczegółowoPrognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)
Bardziej szczegółowoStatystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14
Statystyka #6 Analiza wariancji Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2015/2016 1 / 14 Analiza wariancji 2 / 14 Analiza wariancji Analiza wariancji jest techniką badania wyników,
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje
Bardziej szczegółowoĆwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
Bardziej szczegółowoArkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw
Arkadiusz Manikowski Zbigniew Tarapata Prognozowanie i symulacja rozwoju przedsiębiorstw Warszawa 2002 Recenzenci doc. dr. inż. Ryszard Mizera skład i Łamanie mgr. inż Ignacy Nyka PROJEKT OKŁADKI GrafComp,
Bardziej szczegółowoEKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.
EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b
Bardziej szczegółowoDopasowywanie modelu do danych
Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;
Bardziej szczegółowoPUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem
Bardziej szczegółowoWykład 5: Analiza dynamiki szeregów czasowych
Wykład 5: Analiza dynamiki szeregów czasowych ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie tego procesu
Bardziej szczegółowoEkonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
Bardziej szczegółowoKrakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2015/2016
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 015/016 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Bardziej szczegółowoMAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) E i E E i r r ν φ θ θ ρ ε ρ α 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania
Bardziej szczegółowoZadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Bardziej szczegółowoStatystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Bardziej szczegółowoStatystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF
Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.
Bardziej szczegółowoCechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
Bardziej szczegółowoMAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa
Bardziej szczegółowoMODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Bardziej szczegółowo7.4 Automatyczne stawianie prognoz
szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 2 1. Zmienne sacjonarne
Bardziej szczegółowoANALIZA REGRESJI SPSS
NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek
Bardziej szczegółowoTestowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych
Bardziej szczegółowoMAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak E i E E i r r 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania Reguła poliyki monearnej
Bardziej szczegółowoC d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Bardziej szczegółowoZawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami
Bardziej szczegółowoSYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne
SYLABUS 1.Nazwa przedmiotu Prognozowanie i symulacje 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod przedmiotu E/I/A.16 4.Studia Kierunek studiów/specjalność
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Bardziej szczegółowoWYKŁAD 5 TEORIA ESTYMACJI II
WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak
Bardziej szczegółowoStatystyki opisowe i szeregi rozdzielcze
Statystyki opisowe i szeregi rozdzielcze - ćwiczenia ĆWICZENIA Piotr Ciskowski ramka-wąsy przykład 1. krwinki czerwone Stanisz W eksperymencie farmakologicznym analizowano oddziaływanie pewnego preparatu
Bardziej szczegółowoczerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90
Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 czerwiec 2013 Zadanie 1 Poniższe tabele przestawiają dane dotyczące umieralności dzieci
Bardziej szczegółowoEkonometryczna analiza popytu na wodę
Jacek Batóg Uniwersytet Szczeciński Ekonometryczna analiza popytu na wodę Jednym z czynników niezbędnych dla funkcjonowania gospodarstw domowych oraz realizacji wielu procesów technologicznych jest woda.
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Bardziej szczegółowo