ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
|
|
- Maciej Andrzejewski
- 7 lat temu
- Przeglądów:
Transkrypt
1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea, w poszczególnych kwarałach, począwszy od I kwarału 2009 roku kszałowała się nasępująco: Kwarał Ilość wyprodukowanego produku X [ys. sz.] ) Swórz model prognosyczny oraz wyznacz prognozę na I kwarał 2012 roku korzysając z modelu Browna. 2) Swórz wykres ? Ad 1) Swórz model prognosyczny oraz wyznacz prognozę na I kwarał 2012 roku korzysając z modelu Browna. Model Browna - prosy model wygładzania wykładniczego Wzór na obliczanie prognozy na jeden okres w przód * * y y 1 ( 1) y 1 1
2 W przypadku prosego modelu wygładzania wykładniczego niezbędne do wyznaczenia prognozy jes usalenie warości począkowej y * 1. Zazwyczaj przyjmuje się: pierwszą warość rzeczywisą zmiennej prognozowanej lub średnią arymeyczną rzeczywisych warości zmiennej z przyjęej próbki wsępnej. Nasępnie można dokonać prognozy według modelu Browna korzysając ze wzoru: y * y 1 * ( 1) y 1 2
3 Ad 2). Swórz wykres Zasosowanie dodaku Solver Oceń rafność prognozy korzysając ze średniego kwadraowego błędu prognozy. Wyznaczenie błędu prognozy przedsawiono na poniższych rysunkach. 3
4 Zbudowany model Browna, z przyjęą wcześniej warością parameru wygładzania α, nie musi być najlepszy do prognozowania danego szeregu czasowego. Za model najlepszy uznaje się model z aką warością parameru α, dla kórego błędy ex pos prognoz wygasłych będą najmniejsze. Dużym uławieniem w celu obliczenia średniego kwadraowego błędu prognozy jes zasosowanie funkcji maemaycznej SUMA.XMY.2. W celu znalezienia najlepszego modelu powinno się ak zmienić warości parameru α, aby uzyskać jak najmniejszą warość funkcji SUMA.XMY.2. Bardzo pomocny do rozwiązania ego zadania jes dodaek Solver. Okno dialogowe paramerów Solvera zosało przedsawione na poniższym rysunku. Warość najlepszej warości α dla badanego szeregu czasowego wynosi 0,15. Średni kwadraowy błąd prognozy uległ zmniejszeniu do 6,04 ys. sz. 4
5 Zadanie 2 Ilość przeransporowanych jednosek paleowych [sz.] przez przedsiębiorswo XYZ realizujące usługi ransporowo-spedycyjne w poszczególnych miesiącach 2011 roku wynosi: Miesiąc Ilość jednosek paleowych [sz.] Zbuduj model prognosyczny oraz wyznacz prognozę dla przedsiębiorswa XYZ na syczeń oraz luy 2012 roku korzysając z: modelu Hola, przyjmując: F 1 = y 1, S 1 = y 2 y 1 modelu funkcji liniowej, modelu funkcji poęgowej. Wzór na obliczenie prognozy według modelu Hola: y * F 1 S 1 Do budowy liniowego modelu wygładzania wykładniczego Hola porzebne są począkowe warości F i S czyli F 1 i S 1. Jeden z możliwych warianów o: F 1 = y 1, S 1 = y 2 y 1 5
6 6 Po wyznaczeniu warości począkowych można zasosować wzory: Prognoza: S F y F S F F S
7 Dla modelu Hola, wykorzysujemy dodaek Solver oraz funkcję maemayczną SUMA.XMY.2 w celu znalezienia najlepszego modelu. Dodaek Solver zosał omówiony również w: Zasosowanie dodaku Solver na sronie 3 i 4 niniejszego opracowania. Okno dialogowe paramerów Solvera zosało przedsawione na poniższym rysunku. Wcześniej jednak należy wyznaczyć funkcję maemayczną SUMA.XMY.2 kórej formułę można odczyać z nasępnego rys. 7
8 Wyniki uzyskane po zasosowaniu dodaku Solver dla wyznaczenia najlepszego modelu. (oraz formuła dla funkcji SUMA.XMY.2) MODEL LINIOWY y gdzie: kolejna jednoska czasu α, β esymowane paramery W celu uzyskania warości esymowanych paramerów oraz parameru dopasowania R 2 (współczynnik deerminacji) można posłużyć się poleceniem: Dodaj linię rendu. Linię rendu dodaje się do wcześniej zbudowanego wykresu. 8
9 Okno dialogowe: Wykres / Dodaj linię rendu - Typ Okno dialogowe: Wykres / Dodaj linię rendu Opcje 9
10 Okno dialogowe w zależności od posiadanej wersji pakieu Microsof Office może również wyglądać ak: Dzięki emu uzyskujemy wykres wraz z linią rendu / wykres poniżej. jednoski paleowe y = 228,83x + 934,7 R 2 = 0, miesiące dane rzeczywise Liniowy (dane rzeczywise) 10
11 Znając warości paramerów wiemy, iż oszacowany model przyjmuje posać :. Na jego podsawie możliwe jes dokonanie prognoz: MODEL FUNKCJI POTĘGOWEJ y W celu uzyskania warości esymowanych paramerów oraz parameru dopasowania R 2 (współczynnik deerminacji), podobnie jak dla modelu funkcji liniowej, można posłużyć się poleceniem: Dodaj linię rendu. Linię rendu dodaje się do wcześniej zbudowanego wykresu. 11
12 jednoski paleowe y = 1058,5x 0,4626 R 2 = 0, miesiące dane rzeczywise Poęg. (dane rzeczywise) 12
13 13
PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
Bardziej szczegółowoPROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
Bardziej szczegółowoANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK
1 ANALIZA, PROGNOZOWANIE I SYMULACJA 2 POBRAĆ Z INTERNETU Plaforma WSL on-line Nazwisko prowadzącego Maryna Kupczyk Folder z nazwą przedmiou - Analiza, prognozowanie i symulacja Plik o nazwie Baza do ćwiczeń
Bardziej szczegółowoPolitechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych
Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II
Bardziej szczegółowoE k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
Bardziej szczegółowoAnaliza rynku projekt
Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes
Bardziej szczegółowoWykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
Bardziej szczegółowoWykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest
Bardziej szczegółowoPrognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
Bardziej szczegółowoMetody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?
Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych
Bardziej szczegółowoWYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH
SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów
Bardziej szczegółowoPrognozowanie średniego miesięcznego kursu kupna USD
Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
Bardziej szczegółowoPROGNOZY I SYMULACJE
orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/
Bardziej szczegółowoKombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz
Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia
Bardziej szczegółowolicencjat Pytania teoretyczne:
Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie
Bardziej szczegółowo( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =
ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:
Bardziej szczegółowoWskazówki projektowe do obliczania nośności i maksymalnego zanurzenia statku rybackiego na wstępnym etapie projektowania
CEPOWSKI omasz 1 Wskazówki projekowe do obliczania nośności i maksymalnego zanurzenia saku rybackiego na wsępnym eapie projekowania WSĘP Celem podjęych badań było opracowanie wskazówek projekowych do wyznaczania
Bardziej szczegółowoFOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Sein., Oeconomica 2014, 313(76)3, 137 146 Maria Szmuksa-Zawadzka, Jan Zawadzki MODELE WYRÓWNYWANIA WYKŁADNICZEGO W PROGNOZOWANIU
Bardziej szczegółowoPOLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH
POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:
Bardziej szczegółowoĆWICZENIE NR 43 U R I (1)
ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości
Bardziej szczegółowoPOMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
Bardziej szczegółowoC d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Bardziej szczegółowoKURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
Bardziej szczegółowoCopyright by Politechnika Białostocka, Białystok 2017
Recenzenci: dr hab. Sanisław Łobejko, prof. SGH prof. dr hab. Doroa Wikowska Redakor naukowy: Joanicjusz Nazarko Auorzy: Ewa Chodakowska Kaarzyna Halicka Arkadiusz Jurczuk Joanicjusz Nazarko Redakor wydawnicwa:
Bardziej szczegółowo( ) ( ) ( τ) ( t) = 0
Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany
Bardziej szczegółowoZajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego
Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb
Bardziej szczegółowoPobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Bardziej szczegółowoPrognoza scenariuszowa poziomu oraz struktury sektorowej i zawodowej popytu na pracę w województwie łódzkim na lata
Projek Kapiał ludzki i społeczny jako czynniki rozwoju regionu łódzkiego współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Prognoza scenariuszowa poziomu oraz srukury
Bardziej szczegółowoPROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody
Bardziej szczegółowoPROGNOZOWANIE. Ćwiczenia 3. mgr Dawid Doliński
Ćwiczenia 3 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
Bardziej szczegółowoPROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM
PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany
Bardziej szczegółowoRównania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
Bardziej szczegółowo4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego
4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W
Bardziej szczegółowoCałka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona
Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu
Bardziej szczegółowoĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym
ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami
Bardziej szczegółowoROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach
ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika
Bardziej szczegółowoWygładzanie metodą średnich ruchomych w procesach stałych
Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja
Bardziej szczegółowoWydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas
Wydatki [zł] Zestaw zadań z Zastosowania metod progn. Zadanie 1 Dany jest następujący szereg czasowy: t 1 2 3 4 5 6 7 8 y t 11 14 13 18 17 25 26 28 Dokonaj jego dekompozycji na podstawowe składowe. Wykonaj
Bardziej szczegółowoZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XV/4, 214, sr. 181 194 ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH
Bardziej szczegółowoCechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
Bardziej szczegółowoBadanie funktorów logicznych TTL - ćwiczenie 1
adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami
Bardziej szczegółowoStatystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego
Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez
Bardziej szczegółowoZapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:
Bardziej szczegółowoPROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
Bardziej szczegółowoAnaliza szeregów czasowych uwagi dodatkowe
Analiza szeregów czasowch uwagi dodakowe Jerz Sefanowski Poliechnika Poznańska Zaawansowana Eksploracja Danch Prognozowanie Wbór i konsrukcja modelu o dobrch własnościach predkcji przszłch warości zmiennej.
Bardziej szczegółowoZarządzanie Projektami. Wykład 3 Techniki sieciowe (część 1)
Zarządzanie Projekami Wykład 3 Techniki sieciowe (część ) Przedsięwzięcie wieloczynnościowe Przedsięwzięcie wieloczynnościowe skończona liczba wzajemnie ze sobą powiązanych czynności (eapów). Powiązania
Bardziej szczegółowoDYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
Bardziej szczegółowoSZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU
B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu
Bardziej szczegółowoĆWICZENIE Z PRZEDMIOTU OCHRONA ŚRODOWISKA W BUDOWNICTWIE WODNYM
ĆWICZENIE Z PRZEDMIOTU OCHRONA ŚRODOWISKA W BUDOWNICTWIE WODNYM Tema: Określenie czas i przebieg zamulenia małego zbiornika wodnego Projekowana objęość zbiornika V =.. [ys m 3 ] Powierzchnia zlewni do
Bardziej szczegółowoEKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.
EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b
Bardziej szczegółowoSygnały zmienne w czasie
Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne
Bardziej szczegółowoDobór przekroju żyły powrotnej w kablach elektroenergetycznych
Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego
Bardziej szczegółowoInstytut Logistyki i Magazynowania
Insu Logiski i Magaznowania Ćwiczenia 1 mgr Dawid Doliński Dawid.Dolinski@ilim.poznan.pl lub Dawid.Dolinski@wsl.com.pl Tel. 0(61) 850 49 45 ZALICZENIE PRZEDMIOTU 5 punków Blok zajęć z Panem mgr D.Dolińskim
Bardziej szczegółowoWYKORZYSTANIE TEORII CHAOSU ZDETERMINOWANEGO W PROGNOZOWANIU KROKOWYM ROCZNEGO ZUŻYCIA ENERGII ELEKTRYCZNEJ PRZEZ ODBIORCÓW WIEJSKICH
INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH Nr 2/2005, POLSKA AKADEMIA NAUK, Oddział w Krakowie, s. 121 128 Komisja Technicznej Infrasrukury Wsi Małgorzaa Trojanowska WYKORZYSTANIE TEORII CHAOSU ZDETERMINOWANEGO
Bardziej szczegółowoMODEL TENDENCJI ROZWOJOWEJ
MODEL TENDENCJI ROZWOJOWEJ Model endencji rozwojowej o konsrukcja eoreczna (równanie lub układ równań) opisująca kszałowanie się określonego zjawiska jako funkcji: zmiennej czasowej wahań okresowch (sezonowe
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
Bardziej szczegółowo2. Wprowadzenie. Obiekt
POLITECHNIKA WARSZAWSKA Insyu Elekroenergeyki, Zakład Elekrowni i Gospodarki Elekroenergeycznej Bezpieczeńswo elekroenergeyczne i niezawodność zasilania laoraorium opracował: prof. dr ha. inż. Józef Paska,
Bardziej szczegółowoI. KINEMATYKA I DYNAMIKA
piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne
Bardziej szczegółowoMatematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.
Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile
Bardziej szczegółowoDopasowywanie modelu do danych
Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;
Bardziej szczegółowoJacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.
DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury
Bardziej szczegółowoRegulatory. Zadania regulatorów. Regulator
Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej
Bardziej szczegółowoWNIOSKOWANIE STATYSTYCZNE
Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml
Bardziej szczegółowoPROGNOZOWANIE BRAKUJĄCYCH DANYCH DLA SZEREGÓW O WYSOKIEJ CZĘSTOTLIWOŚCI OCZYSZCZONYCH Z SEZONOWOŚCI
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-8611 Nr 289 2016 Maria Szmuksa-Zawadzka Zachodniopomorski Uniwersye Technologiczny w Szczecinie Sudium Maemayki Jan Zawadzki
Bardziej szczegółowoPraca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,
Praca domowa nr. Meodologia Fizyki. Grupa. Szacowanie warości wielkości fizycznych Zad... Soisz na brzegu oceanu, pogoda jes idealna, powierze przeźroczyse; proszę oszacować jak daleko od Ciebie znajduje
Bardziej szczegółowoSilniki cieplne i rekurencje
6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać
Bardziej szczegółowoAnaliza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Bardziej szczegółowoE5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy
Bardziej szczegółowoPOLITECHNIKA BIAŁOSTOCKA
DODATEK A POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI ĆWICZENIE NR 1 CHARAKTERYSTYKI CZASOWE I CZĘSTOTLIWOŚCIOWE PROSTYCH UKŁADÓW DYNAMICZNYCH PRACOWNIA SPECJALISTYCZNA
Bardziej szczegółowoUkłady sekwencyjne asynchroniczne Zadania projektowe
Układy sekwencyjne asynchroniczne Zadania projekowe Zadanie Zaprojekować układ dwusopniowej sygnalizacji opycznej informującej operaora procesu o przekroczeniu przez konrolowany paramer warości granicznej.
Bardziej szczegółowoWYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.
7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie
Bardziej szczegółowo5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Bardziej szczegółowoPrognozowanie popytu. mgr inż. Michał Adamczak
Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej
Bardziej szczegółowoOCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ
Tadeusz Czernik Daniel Iskra Uniwersye Ekonomiczny w Kaowicach Kaedra Maemayki Sosowanej adeusz.czernik@ue.kaowice.pl daniel.iskra@ue.kaowice.pl OCEN TRKCYJNOŚCI INWESTYCYJNEJ KCJI N PODSTWIE CZSU PRZEBYWNI
Bardziej szczegółowoTWIERDZENIE FRISCHA-WAUGHA-STONE A A PYTANIE RUTKAUSKASA
Uniwersye Szczecińsi TWIERDZENIE FRISCHA-WAUGHA-STONE A A PYTANIE RUTKAUSKASA Zagadnienia, óre zosaną uaj poruszone, przedsawiono m.in. w pracach [], [2], [3], [4], [5], [6]. Konferencje i seminaria nauowe
Bardziej szczegółowoSystem zielonych inwestycji (GIS Green Investment Scheme)
PROGRAM PRIORYTETOWY Tyuł programu: Sysem zielonych inwesycji (GIS Green Invesmen Scheme) Część 6) SOWA Energooszczędne oświelenie uliczne. 1. Cel programu Ograniczenie lub uniknięcie emisji dwulenku węgla
Bardziej szczegółowoZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH
Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów
Bardziej szczegółowoTemat VIII. Drgania harmoniczne
Tema VIII Drgania harmoniczne Równanie ruchu F k Siła k m Równanie ruchu sin cos Położenie równowagi w ruchu drgającym Położenie równowagi o akie położenie, w kórym siły wymuszające ruch równoważą się
Bardziej szczegółowoAnaliza opłacalności inwestycji logistycznej Wyszczególnienie
inwesycji logisycznej Wyszczególnienie Laa Dane w ys. zł 2 3 4 5 6 7 8 Przedsięwzięcie I Program rozwoju łańcucha (kanału) dysrybucji przewiduje realizację inwesycji cenrum dysrybucyjnego. Do oceny przyjęo
Bardziej szczegółowoMetody badania wpływu zmian kursu walutowego na wskaźnik inflacji
Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki
Bardziej szczegółowodr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG
dr inż. MARCIN MAŁACHOWSKI Insyu Technik Innowacyjnych EMAG Wykorzysanie opycznej meody pomiaru sężenia pyłu do wspomagania oceny paramerów wpływających na możliwość zaisnienia wybuchu osiadłego pyłu węglowego
Bardziej szczegółowoNiestacjonarne zmienne czasowe własności i testowanie
Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:
Bardziej szczegółowoSTATYSTYKA EKONOMICZNA w LOGISTYCE. Metody statystyczne w analizie procesów produkcji
SAYSYKA EKONOMICZNA w LOGISYCE Meody saysyczne w analizie procesów produkcji Pomiar poziomu produkcji Produkcja jes maerialnym efekem działalności przedsiębiorswa przemysłowego. Do produkcji zalicza się
Bardziej szczegółowoWYKORZYSTANIE RACHUNKU WARIACYJNEGO DO ANALIZY WAHAŃ PRODUKCJI W PRZEDSIĘBIORSTWACH
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Sefan Grzesiak * WYKORZYSTANIE RACHUNKU WARIACYJNEGO DO ANALIZY WAHAŃ PRODUKCJI W PRZEDSIĘBIORSTWACH STRESZCZENIE W arykule podjęo problem
Bardziej szczegółowoWAHANIA NATĘśEŃ RUCHU DROGOWEGO NA SIECI DRÓG MIEJSKICH
dr hab. inŝ. Kazimierz Kłosek Prof. nzw. Poliechniki Śląskiej, Kierownik Kaedry Dróg i Mosów dr inŝ. Anna Olma Wydział Budownicwa Poliechniki Śląskiej Gliwice, Polska WAHANIA NATĘśEŃ RUCHU DROGOWEGO NA
Bardziej szczegółowoVII. ZAGADNIENIA DYNAMIKI
Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz
Bardziej szczegółowoPROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 69 Elecrical Engineering 0 Janusz WALCZAK* Seweryn MAZURKIEWICZ* PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO W arykule opisano meodę generacji
Bardziej szczegółowoRys.1. Podstawowa klasyfikacja sygnałów
Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich
Bardziej szczegółowoFORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS
FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION
Bardziej szczegółowoZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY POCIĄGU NA SZLAKU
PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 87 Transpor 01 Jarosław Poznański Danua Żebrak Poliechnika Warszawska, Wydział Transporu ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY
Bardziej szczegółowoĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
Bardziej szczegółowoOBLICZANIE TERMINU REALIZACJI PRZEDSIĘWZIĘĆ BUDOWLANYCH METODĄ CCPM NA PODSTAWIE MULTIPLIKATYWNEGO MODELU CZASU TRWANIA CZYNNOŚCI
Dane bibliograficzne o arykule: hp://mieczyslaw_polonski.users.sggw.pl/mppublikacje Mieczysław POŁOŃSKI 1 OBLICZANIE TERMIN REALIZACJI PRZEDSIĘWZIĘĆ BDOWLANYCH METODĄ CCPM NA PODSTAWIE MLTIPLIKATYWNEGO
Bardziej szczegółowoExcel - użycie dodatku Solver
PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym
Bardziej szczegółowoDendrochronologia Tworzenie chronologii
Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu
Bardziej szczegółowoWykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój
Bardziej szczegółowo2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Bardziej szczegółowo