2. Wprowadzenie. Obiekt
|
|
- Laura Kaźmierczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 POLITECHNIKA WARSZAWSKA Insyu Elekroenergeyki, Zakład Elekrowni i Gospodarki Elekroenergeycznej Bezpieczeńswo elekroenergeyczne i niezawodność zasilania laoraorium opracował: prof. dr ha. inż. Józef Paska, mgr inż. Pior Marchel Ćwiczenie nr. Budowa modeli niezawodności i analiza właściwości podsawowych rozkładów zmiennych losowych sosowanych w eorii niezawodności. Cel ćwiczenia Celem ćwiczenia jes zaznajomienie się z podsawowymi pojęciami z zakresu niezawodności, poznanie podsawowych cech elemenów niezawodnościowych i ich klasyfikacji oraz poznanie podsawowych wielkości charakeryzujących modele niezawodnościowe. 2. Wprowadzenie a Podsawowe pojęcia Niezawodność (urządzenia / sysemu jes o zdolność do poprawnego wykonywania zadań przez urządzenie/sysem w określonym czasie i warunkach eksploaacyjnych. Oiek jes o pojęcie pierwone określające w zależności od porze: niepodzielny elemen (ez uwzględnienia jego srukury wewnęrznej ziór elemenów worzących sysem. Oiek Prosy (elemen Złożony (sysem Rys.. Klasyfikacja oieków Elemen jes o aki oiek, kóry podczas analizy niezawodności jes rakowany jako niepodzielna całość. Klasyfikacje elemenów zosała przedsawiona na rys. 2. Sysem jes o grupa niezależnych elemenów, połączonych ze soą w celu wykonywania określonego zadania i worzących określoną srukurę niezawodnościową. sr.
2 Rozparywany elemen T Czy elemen podlega odnowie? N Elemen odnawialny Elemen nieodnawialny T Czy odnowa polega na naprawie? N Elemen remonowalny Elemen odnawialny nieremonowalny Rys. 2. Klasyfikacja elemenów Wskaźniki niezawodności elemenów nieodnawialnych Elemen nieodnawialny jes w pełni scharakeryzowany przez rozkład czasu funkcjonowania τ (ezawaryjnej pracy. Podsawowe charakerysyki (wskaźniki niezawodności elemenu nieodnawialnego o: F( = P{τ < } = Q( funkcja zawodności (dysryuana rozkładu; ( = P{τ } = F( funkcja niezawodności; (2 df( f ( gęsość prawdopodoieńswa, (3 d gdzie: F( dysryuana zmiennej losowej; prawdopodoieńswo funkcjonowania elemenu (niezawodność elemenu; f( gęsość prawdopodoieńswa rozkładu. Względną gęsość prawdopodoieńswa zmiennej losowej τ nazywa się inensywnością niesprawności awaryjnych (uszkodzeń zwana jes ona również funkcją ryzyka: f ( F'( d ( (4 F( d sr. 2
3 Poza powyższymi charakerysykami (wskaźnikami niezawodności elemenu nieodnawialnego (, λ( są podawane: Skumulowana inensywność niesprawności awaryjnych (uszkodzeń, zwana eż skumulowaną funkcją ryzyka: Λ( ( d (5 Zachodzi związek: ep ( d ep Λ( (6 Najczęściej zakłada się, że w chwili rozpoczęcia eksploaacji = elemen jes w sanie zdaności, czyli że =. Wedy: ep Λ( Λ( ln Średnia warość funkcji ryzyka (inensywności uszkodzeń w przedziale [, ]: Λ( ( (8 Pozosały oczekiwany czas poprawnej pracy (do uszkodzenia r( E[ ] d d, (9 gdzie: E[τ] jes oczekiwanym czasem funkcjonowania (poprawnej pracy do uszkodzenia. Pozosały oczekiwany czas poprawnej pracy lepiej charakeryzuje niezawodność elemenu od oczekiwanego czasu funkcjonowania E[τ]. Dla = : r( = r( = E[τ], zaś dla > : r( ma zwykle przeieg malejący, gdyż w rzeczywisych urządzeniach zachodzą procesy sarzeniowe. c Wskaźniki niezawodności elemenów odnawialnych Elemen odnawialny ma w ogólnym przypadku czery sany podsawowe: funkcjonowania, remonu awaryjnego, remonu profilakycznego, rezerwy. Jeśli pominie się sany remonu profilakycznego i rezerwy o modelem procesu eksploaacji elemenu odnawialnego jes proces odnowy o skończonym nie zerowym czasie odnowy. Przykład akiego procesu przedsawiono na rys. 3. (7 sr. 3
4 T T 2 T Θ Θ 2 Rys. 3. Przykład procesu odnowy z niezerowym czasem odnowy Ciąg, 3,, 2k+, worzą chwile kolejnych uszkodzeń, naomias ciąg 2, 4,, 2k, chwile odnowień. Są u również dwa ciągi zmiennych losowych T, T2,, Tk, oraz Θ, Θ 2,, Θ k, określające czasy funkcjonowania (pracy i czasy odnowy. Ciągi e worzą dwa srumienie zdarzeń: srumień niesprawności (uszkodzeń i srumień odnów. Rzeczywisy proces odnowy można zaem analizować za pomocą dwóch procesów losowych: {N(, }, wyrażającego liczę uszkodzeń w przedziale czasowym [, ]; {m(, }, wyrażającego liczę odnowień w przedziale czasowym [, ]. W związku z ym można rozparywać dwie funkcje: H( = E[N(] ( wyrażającą oczekiwana liczę uszkodzeń w przedziale [, ] i zwaną funkcją odnowy, oraz I( = E[m(] ( określającą oczekiwaną w danym przedziale czasowym liczę odnów i mającą analogiczne jak funkcja odnowy właściwości. Gdy zmienne losowe T k mają en sam rozkład o paramerach E[T] i σ T oraz zmienne losowe Θ k o paramerach E[Θ] i σ Θ (srumienie rekurenne, wówczas przy oszacowaniu funkcji można wykorzysać zw. elemenarne wierdzenie odnowy: H ( lim, (2 E[ T ] zaś zmienna losowa H( ma rozkład asympoycznie normalny o warości oczekiwanej: lim E[ m( ] i wariancji E[ T ] E[ Θ] (3 sr. 4
5 2 2 ( T Θ lim Var[ m( ] (E[ T ] E[ Θ] 3 (4 Wskaźnikiem niezawodności elemenu, kórego modelem niezawodnościowym procesu eksploaacji jes rzeczywisy proces odnowy z niezerowym czasem odnowy, jes współczynnik goowości. Definiuje się go jako prawdopodoieńswo, że w chwili oiek znajduje się w sanie funkcjonowania (zdaności i i K ( P( Tk Θk ( Tk Θk Ti (5 i k k Gdy warość jes dosaecznie duża można posługiwać się asympoycznym współczynnikiem goowości E[ T ] K lim K( E[ T] E[ Θ] (6 Dla przypadku, gdy czas funkcjonowania i czas odnowy mają rozkłady wykładnicze, mamy: ep[ ( ] K lim gdzie: μ - inensywność odnowy, λ - inensywność uszkodzeń. (7 sr. 5
6 d Najczęściej sosowane rozkłady w eorii niezawodności Taela. Charakerysyki najczęściej sosowanych rozkładów Rozkład R ( ( ( r ( Wykładniczy EXP( T, +, > Weiulla WEI(, T, +, >, > Warości najmniejszych MIV(, >, Poęgowy POW (, T,, >, > Gamma GAM(, p T, +, >, p > Normalny NO,, > ep / / / ν ep(-( / / ep - ep / ( - ep ( / ep - ( / / δ ( / [ ( / ] ln p, / p p / / ep / p p, ln p, / / p,5 Φ,5 Φ / / ln,5 Φ ep ( / ( / [ ( / i ( δ ( / [ p i / ] i ( / i!( iν ( / p i, / / p i p, / / p ]
7 Rozkład R ( ( ( r ( Logarymo normalny LNO, T, +,, > ln,5 Φ ln,5 ln Φ ln,5 ln Φ (p funkcja gamma Eulera: p p d ep( ( ; (p, niekomplena (niepełna funkcja gamma Eulera: p p d ep(, ( ; ( funkcja Gaussa: 2 ep( 2 ( 2, ( całka Laplace a: z z Φ d ( (
8 Rys. 4. Przeiegi funkcji, Λ(, λ( i r( w przypadku rozkładu EXP( 3. Zadania do wykonania Poniższe zadania należy wykonać używając arkusza kalkulacyjnego Ecel z pakieu MS Office oraz programu Srukura. Inensywność niesprawności pewnego urządzenia jes sała i wynosi λ = -5 [/h]. Może yć ono zasąpione innym urządzeniem o inensywności uszkodzeń λ( = -8. Kóre z urządzeń jes ardziej niezawodne po pierwszych: a h; h; c h? Przedsawić graficznie funkcję niezawodności ych urządzeń. 2 Przy pomocy programu Srukura wykonaj oliczenia funkcji niezawodności nasępujących urządzeń: a o sałej inensywności uszkodzeń λ = 2-4 [/h], o rozkładzie jednosajnym z paramerami a = 2 4 h oraz = 7 4 h. Wykonaj oliczenia meodami: analiyczną oraz symulacyjną przy,, symulacji. Porównaj wyniki. Załącz odpowiednie wykresy. 3 Na podsawie danych saysycznych swierdzono, że rwałość pewnego urządzenia elekroenergeycznego ma rozkład wykładniczy. W przeciągu 5 la użykowania 25 egzemplarzy ych urządzeń zanoowano 5 awarii. Oliczyć i przedsawić wykres funkcji niezawodności ego urządzenia. Jakie jes prawdopodoieńswo wysąpienia uszkodzenia ego urządzenia w przeciągu pierwszych dwóch la funkcjonowania? Jaki jes czas użykowania ego urządzenia, podczas kórego warość jego funkcji niezawodności ędzie nie mniejsza niż,995? sr. 8
9 4 Populacja jednego z elemenów pompy liczy 6 egzemplarzy. Na podsawie adań eksperymenalnych, przeprowadzonych na próce saysycznej ej populacji swierdzono, że główną przyczyną uszkodzeń ych elemenów są ich pęknięcia zmęczeniowe. Rozkład rwałości zmęczeniowej T jes zliżony do rozkładu normalnego o warości oczekiwanej m = 25 h i odchyleniu sandardowym σ = 3 h. Należy wyznaczyć, ile elemenów spośród populacji, liczącej 6 egzemplarzy, ulegnie uszkodzeniu w okresie pomiędzy = 2 h i 2 = 26 h ich funkcjonowania w pompach. 5 Warość oczekiwana długości okresów zdaności pewnego urządzenia wynosi E[T] = 2 h, zaś warość oczekiwana okresów odnowy E[Θ] = 2 h. Oliczyć dla chwil odległych od począku eksploaacji prawdopodoieńswo przeywania urządzenia w sanie zdaności w dowolnej chwili. 4. Sprawozdanie Sprawozdanie powinno zawierać: Taelę yułową (nazwa i numer ćwiczenia, nazwiska i imiona wykonujących ćwiczenie, daa wykonania ćwiczenia oraz daa oddania sprawozdania; 2 Rozwiązania zadań wraz z opisem oraz koniecznymi wykresami i schemaami; 3 Wnioski i oserwacje z wykonanego ćwiczenia. 5. Lieraura [] Paska J.: Niezawodność sysemów elekroenergeycznych. Oficyna Wydawnicza PW. Warszawa 25 [2] Szopa T.: Niezawodność i ezpieczeńswo. Oficyna Wydawnicza PW. Warszawa 29 sr. 9
Niezawodność elementu nienaprawialnego. nienaprawialnego. 1. Model niezawodnościowy elementu. 1. Model niezawodnościowy elementu
Niezawodność elemenu nienarawialnego. Model niezawodnościowy elemenu nienarawialnego. Niekóre rozkłady zmiennych losowych sosowane w oisie niezawodności elemenów 3. Funkcyjne i liczbowe charakerysyki niezawodności
Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski
Funkcje charakteryzujące proces eksploatacji Dr inż. Robert Jakubowski Niezawodność Niezawodność Rprawdopodobieństwo, że w przedziale czasu od do t cechy funkcjonalne statku powietrznego Ubędą się mieścić
Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1
Podsawowe charakerysyki niezawodności sem. 8. Niezawodność elemenów i sysemów, Kompuerowe sysemy pomiarowe 1 Wsęp Niezawodność o prawdopodobieńswo pewnych zdarzeń Inensywność uszkodzeń λ wyraŝa prawdopodobieńswo
Nr zadania Σ Punkty:
Kolokwim z krs Modele saysyczne niezawodności sysemów ROZWIĄZANIA Do wykonania jes 5 zadań. W smie, można zyskać 5 pnków. Na napisanie kolokwim mają Pańswo 7 min. Proszę wykonywać każde zadanie na osobnej
Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych
Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II
POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
Pobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE
SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne
Badanie funktorów logicznych TTL - ćwiczenie 1
adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami
E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
Temat: Weryfikacja nienaruszalności bezpieczeństwa SIL struktury sprzętowej realizującej funkcje bezpieczeństwa
1 Lab3: Bezpieczeńswo funkcjonalne i ochrona informacji Tema: Weryfikacja nienaruszalności bezpieczeńswa SIL srukury sprzęowej realizującej funkcje bezpieczeńswa Kryeria probabilisyczne bezpieczeńswa funkcjonalnego
Cechy eksploatacyjne statku. Dr inż. Robert Jakubowski
Cechy eksploatacyjne statku powietrznego Dr inż. Robert Jakubowski Własności i właściwości SP Cechy statku technicznego, które są sformułowane w wymaganiach taktyczno-technicznych, konkretyzują się w jego
DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH
Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Dobór przekroju żyły powrotnej w kablach elektroenergetycznych
Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego
PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach
ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika
ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH
Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV
Elektroenergetyczne linie napowietrzne i kablowe wysokich i najwyższych napięć PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV Wisła, 18-19 października 2017
TEORIA PRZEKSZTAŁTNIKÓW. Kurs elementarny Zakres przedmiotu: ( 7 dwugodzinnych wykładów :) W4. Złożone i specjalne układy przekształtników sieciowych
EORA PRZEKSZAŁNKÓW W1. Wiadomości wsępne W. Przekszałniki sieciowe 1 W3. Przekszałniki sieciowe Kurs elemenarny Zakres przedmiou: ( 7 dwugodzinnych wykładów :) W4. Złożone i specjalne układy przekszałników
PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.
7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie
Niezawodność i Diagnostyka
Katedra Metrologii i Optoelektroniki Wydział Elektroniki Telekomunikacji i Informatyki Politechnika Gdańska Niezawodność i Diagnostyka Ćwiczenie laboratoryjne nr 3 Struktury niezawodnościowe Gdańsk, 2012
KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
Rys.1. Podstawowa klasyfikacja sygnałów
Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich
dr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG
dr inż. MARCIN MAŁACHOWSKI Insyu Technik Innowacyjnych EMAG Wykorzysanie opycznej meody pomiaru sężenia pyłu do wspomagania oceny paramerów wpływających na możliwość zaisnienia wybuchu osiadłego pyłu węglowego
W4 Eksperyment niezawodnościowy
W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i
Analiza niezawodności lokomotywy spalinowej serii SM48
SZKODA Maciej 1 Analiza niezawodności lokomoywy spalinowej serii SM48 Analiza niezawodności, Wskaźniki niezawodnościowe, Lokomoywa SM48 Sreszczenie W arykule przedsawiono wyniki analizy niezawodności lokomoywy
N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:
Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )
Marża zakupu bid (pkb) Marża sprzedaży ask (pkb)
Swap (IRS) i FRA Przykład. Sandardowy swap procenowy Dealer proponuje nasępujące sałe sopy dla sandardowej "plain vanilla" procenowej ransakcji swap. ermin wygaśnięcia Sopa dla obligacji skarbowych Marża
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
TEORIA PRZEKSZTAŁTNIKÓW. Kurs elementarny Zakres przedmiotu: ( 7 dwugodzinnych wykładów :)
W1. Wiadomości wsępne EORA PRZEKSZAŁNKÓW W. Przekszałniki sieciowe 1 W3. Przekszałniki sieciowe Kurs elemenarny Zakres przedmiou: ( 7 dwugodzinnych wykładów :) W4. Złożone i specjalne układy przekszałników
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 4 Modelowanie niezawodności prostych struktur sprzętowych Prowadzący: mgr inż. Marcel Luzar Cel
OCENA BEZPIECZEŃSTWA EKSPLOATACJI TRANSPORTOWYCH SYSTEMÓW BEZPIECZEŃSTWA UŻYTKOWANYCH NA ROZLEGŁYM OBSZARZE KOLEJOWYM
Jacek Paś Wojskowa Akademia Techniczna, Wydział Elekroniki Janusz Dyduch Poliechnika Radomska, Wydział Transporu i Elekroechniki Tadeusz Dąbrowski Wojskowa Akademia Techniczna, Wydział Elekroniki OCENA
Modelowanie niezawodności zasilaczy buforowych
Dr inż. Adam Rosiński Poliechnika Warszawska Wydział Transporu Zakład Telekomunikacji w Transporcie ul. Koszykowa 75, 00-66 Warszawa, Polska E-mail: adro@w.pw.edu.pl Dr hab. inż. Tadeusz Dąbrowski Wojskowa
dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.
Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *
Model logistycznego wsparcia systemu eksploatacji środków transportu
Poliechnika Wrocławska Insyu Konsrukcji i Eksploaacji Maszyn Zakład Logisyki i Sysemów Transporowych Rozprawa dokorska Model logisycznego wsparcia sysemu eksploaacji środków ransporu Rapor serii: PRE nr
Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie
Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska
METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO
PROBLEY NIEONWENCJONALNYCH ŁADÓW ŁOŻYSOWYCH Łódź, 4 maja 999 r. Jadwiga Janowska, Waldemar Oleksiuk Insyu ikromechaniki i Fooniki, Poliechnika Warszawska ETROLOGICZNE WŁASNOŚCI SYSTE BADAWCZEGO SŁOWA LCZOWE:
PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ
Andrzej Purczyński PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Materiały szkolenia technicznego, Jakość energii elektrycznej i jej rozliczanie, Poznań Tarnowo Podgórne II/2008, ENERGO-EKO-TECH
W3 - Niezawodność elementu nienaprawialnego
W3 - Niezawodność elementu nienaprawialnego Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Niezawodność elementu nienaprawialnego 1. Model niezawodności elementu nienaprawialnego
Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU
Modelowanie ryzyka kredyowego MODELOWANIE ZA POMOCA PROCESU HAZARDU Mariusz Niewęgłowski Wydział Maemayki i Nauk Informacyjnych, Poliechniki Warszawskiej Warszawa 2014 hazardu Warszawa 2014 1 / 18 Proces
Wykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
UWARUNKOWANIA DIAGNOSTYCZNE STEROWANIA PROCESEM EKSPLOATACJI OKRĘTOWYCH SILNIKÓW GŁÓWNYCH
UWARUNKOWANIA DIAGNOSTYCZNE STEROWANIA PROCESEM EKSPLOATACJI OKRĘTOWYCH SILNIKÓW GŁÓWNYCH Jacek Rudnicki Poliechnika Gdańska ul. Naruowicza 11/12, 8-233 Gdańsk el.: +48 58 3472973 e-mail:jacekrud@pg.edu.pl
ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym
ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami
Cechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 5.0.00 r. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej µ wariancji oraz momencie centralnym µ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X
Zmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.
Ćwiczenia 3 (22.04.2013) Współczynnik przyrosu nauralnego. Koncepcja ludności zasojowej i usabilizowanej. Prawo Loki. Współczynnik przyrosu nauralnego r = U Z L gdzie: U - urodzenia w roku Z - zgony w
Niezawodność i Diagnostyka
Katedra Metrologii i Optoelektroniki Wydział Elektroniki Telekomunikacji i Informatyki Politechnika Gdańska Niezawodność i Diagnostyka Ćwiczenie laboratoryjne nr 3 Struktury niezawodnościowe 1. Struktury
C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD
POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD 3 dr inż. Kamila Kustroń Warszawa, 10 marca 2015 24 lutego: Wykład wprowadzający w interdyscyplinarną tematykę eksploatacji statków
4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego
4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W
Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH
SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów
Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz
Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia
DYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika
( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =
ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:
imei 1. Cel ćwiczenia 2. Zagadnienia do przygotowania 3. Program ćwiczenia
CYFROWE PRZEWARZANIE SYGNAŁÓW Laboraorium Inżynieria Biomedyczna sudia sacjonarne pierwszego sopnia ema: Wyznaczanie podsawowych paramerów okresowych sygnałów deerminisycznych imei Insyu Merologii Elekroniki
licencjat Pytania teoretyczne:
Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie
Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.
Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego
Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f
Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody
Niezawodność w energetyce Reliability in the power industry
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Różnica bilansowa dla Operatorów Systemów Dystrybucyjnych na lata (którzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności)
Różnica bilansowa dla Operaorów Sysemów Dysrybucyjnych na laa 2016-2020 (kórzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności) Deparamen Rynków Energii Elekrycznej i Ciepła Warszawa 201 Spis
Sprawność pompy ciepła w funkcji temperatury górnego źródła ciepła
POLITECHNIKA BIAŁOSTOCKA Wydział Budownicwa i Inżynierii Środowiska Kaedra Ciepłownicwa, Ogrzewnicwa i Wenylacji Insrukcja do zajęć laboraoryjnych Ćwiczenie nr 6 Laboraorium z przedmiou Alernaywne źródła
( ) ( ) ( τ) ( t) = 0
Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany
BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERUNKOWEGO MiCOM P Przeznaczenie i zastosowanie przekaźników kierunkowych
Ćwiczenie 6 BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERNKOWEGO MiCOM P127 1. Przeznaczenie i zasosowanie przekaźników kierunkowych Przekaźniki kierunkowe, zwane eż kąowymi, przeznaczone
System zielonych inwestycji (GIS Green Investment Scheme)
PROGRAM PRIORYTETOWY Tyuł programu: Sysem zielonych inwesycji (GIS Green Invesmen Scheme) Część 6) SOWA Energooszczędne oświelenie uliczne. 1. Cel programu Ograniczenie lub uniknięcie emisji dwulenku węgla
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3
ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)
PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz
233 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Porównanie jakości nieliniowych modeli ekonomerycznych na podsawie esów rafności prognoz Sreszczenie.
WNIOSKOWANIE STATYSTYCZNE
Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml
Excel: niektóre rozkłady ciągłe (1)
MS Ecel niektóre rozkłady ciągłe (1) Ecel: niektóre rozkłady ciągłe (1) 1. ROZKŁAD.BETA (tylko dystrybuanta)...1 2. ROZKŁAD.BETA.ODW (kwantyl w rozkładzie beta)...3 3. ROZKŁAD.LIN.GAMMA (to nie jest żaden
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.
Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile
AMD. Wykład Elektrotechnika z elektroniką
Andrzej M. Dąbrowski AGH Universiy of Science and Technology Kaedra Elekroechniki i Elekroenergeyki e-mail: amd@agh.edu.pl Wykład Elekroechnika z elekroniką Wykład. Informacje wsępne i organizacyjne, zaliczenie
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
ANALIZA BIPOLARNEGO DYNAMICZNEGO MODELU DIAGNOSTYCZNEGO MONITOROWANIA WYPOSAśENIA ELEKTRYCZNEGO SAMOCHODU
LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Radosław GAD 1 Moniorowanie diagnosyczne, model dynamiczny, diagnosyka pojazdowa ANALIZA BIPOLARNEGO
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
Elektrotechnika I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) Kierunkowy (podstawowy / kierunkowy / inny HES)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Niezawodność zasilania energią elektryczną
J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006).
Większość zadań pochodzi z podręcznika: J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006). Elementy nieodnawialne. Wskaźniki,
DYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Rozdział 4 Instrukcje sekwencyjne
Rozdział 4 Insrukcje sekwencyjne Lisa insrukcji sekwencyjnych FBs-PLC przedsawionych w niniejszym rozdziale znajduje się w rozdziale 3.. Zasady kodowania przy zasosowaniu ych insrukcji opisane są w rozdziale
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH
POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:
Teoria kolejek w zastosowaniu do opisu procesu transportowego
Jolana śak 1 Wydział Transporu Poliechniki Warszawskiej Teoria kolejek w zasosowaniu do opisu procesu ransporowego WPROWADZENIE Opisując rzeczywisy proces ransporowy rudno wyobrazić sobie sieć ransporową
Agata Boratyńska Statystyka aktuarialna... 1
Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej
Podstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320