Stanisław Cichocki Natalia Nehrebecka. Wykład 5
|
|
- Joanna Bednarska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Sanisław Cichocki Naalia Nehrebecka Wkład 5
2 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 2
3 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 3
4 Proces auoregresjn (auoregressive) rzędu p: AR(p) gdzie jes białm szumem. Przkładowo AR(): 4 p p
5 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 5
6 Proces średniej ruchomej (moving average) rzędu q: MA(q) gdzie jes białm szumem. Przkładowo MA(): 6 q q
7 . Proces AR 2. Proces MA 3. Model ARMA 4. Prognozowanie za pomocą modelu ARMA 7
8 Modele auoregresjne ze średnią ruchomą (auoregressive moving average) ARMA(p,q): dla 8 q q p p ), ( ) ( 0 ) ( 2 s Cov Var E s
9 Modele auoregresjne ze średnią ruchomą ARMA(p,q) nie są opare na eorii ekonomicznej są o modele aeoreczne. W przpadku ch modeli analizowane są włącznie własności sasczne danego szeregu czasowego. Modele e są użecznm narzędziem prognoscznm. 9
10 Modele e są szacowane za pomocą Meod Największej Wiargodności (MNW) lub Nieliniowej Meod Najmniejszch Kwadraów (NMNK). 0
11 San równowagi długookresowej w modelu ARMA(p,q): 0 ) (... ) ( ) ( ) (... ) ( ) ( * q p E E E E E E
12 San równowagi długookresowej w modelu ARMA(p,q): 2 p p p... )... (... * * * * *
13 Model ARIMA(p,d,q) o odpowiednik modelu ARMA (p,q) dla zmiennej niesacjonarnej. d określa sopień zinegrowania zmiennej. ARIMA(p,0,q) o inaczej ARMA(p,q). 3 q q p d p d d d
14 Idenfikacja rzędów p i q: a) Funkcje ACF i PACF; b) meoda od ogólnego do szczególnego; c) kreria informacjne. 4
15 Funkcja auokorelacji (Auocorrelaion Funcion) o współcznnik korelacji międz dwoma realizacjami oddalonmi w czasie o k okresów. k (, Cov Var ( ) k ) [,] 5
16 Funkcja auokorelacji cząskowej (Parial Auocorrelaion Funcion) mierz korelację międz obserwacjami oddalonmi od siebie o k okresów bez uwzględnienia wpłwu k, k 2,..., Funkcja a jes równa wesmowanemu współcznnikowi w modelu auoregresjnm k ego rzędu: k... k k 6
17 ACF dla białego szumu 7
18 PACF dla białego szumu 8
19 ACF i PACF dla białego szumu 9
20 - 0-0 LAG AC PAC Q Prob>Q [Auocorrelaion] [Parial Auocor]
21 ACF dla AR() gd 2
22 PACF dla AR() gd 22
23 ACF i PACF dla AR() gd 23
24 - 0-0 LAG AC PAC Q Prob>Q [Auocorrelaion] [Parial Auocor]
25 ACF dla AR(2) 25
26 PACF dla AR(2) 26
27 ACF i PACF dla AR(2) 27
28 - 0-0 LAG AC PAC Q Prob>Q [Auocorrelaion] [Parial Auocor]
29 ACF dla MA() 29
30 PACF dla MA() 30
31 ACF i PACF dla MA() 3
32 ACF dla MA(2) 32
33 PACF dla MA(2) 33
34 ACF i PACF dla MA(2) 34
35 ACF dla błądzenia przpadkowego 35
36 PACF dla błądzenia przpadkowego 36
37 ACF i PACF dla błądzenia przpadkowego 37
38 - 0-0 LAG AC PAC Q Prob>Q [Auocorrelaion] [Parial Auocor]
39 AR(p) MA(q) ARMA(p,q) ACF Funkcja ACF wgasa do 0 Dla ACF isonch jes q pierwszch opóźnień Dla ACF isonch jes q pierwszch opóźnień i wgasa ona do 0 PACF Dla PACF isonch jes p pierwszch opóźnień Funkcja PACF wgasa do 0 Dla PACF isonch jes p pierwszch opóźnień i wgasa ona do 0. 39
40 Uwaga: w przpadku zmiennej niesacjonarnej funkcja ACF nie wgasa a warości ej funkcji pozosają duże. 40
41 Idenfikacja: meoda od ogólnego do szczególnego. Idenfikacja: kreria informacjne. 4
42 Esmacja Diagnoska: esowanie cz resz z modelu są białm szumem. Wkorzsujem do ego es Ljunga-Boxa: Q T m 2 k 2 ( T 2) ~ m k T k Hipoeza zerowa: resz są białm szumem. 42
43 . Proces AR 2. Proces MA 3. Model ARMA 4. Prognozowanie za pomocą modelu ARMA 43
44 T o osani okres, dla kórego mam obserwacje w próbce. Po oszacowaniu paramerów można sformułować prognozę: q T q T T p T p T T q T q T T p T p T T T e e e q T q T p T p T T e e
45 W en sposób możem rekurencjnie uzskać prognozę T s Jednak prognozowanie dla dłuższego horzonu czasowego w przpadku modeli ARMA(p,q) nie ma sensu ponieważ prognoz zbiegają do równowagi długookresowej. Sensowne jes prognozowanie na max{p,q} okresów. 45
46 . Podać ogólną posać modelu ARMA(p,q). 2. Jaką hipoezę badam za pomocą esu Ljunga-Boxa? 3. Wjaśnić w jaki sposób worzone są prognoz za pomocą modelu ARMA(p,q). 4. Wjaśnić w jaki sposób użwa się funkcji ACF i PACF do usalania paramerów p i q w modelu ARMA(p,q).
47 Dziękuję za uwagę 47
Stanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje
Stanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 2 1. Zmienne sacjonarne
Stanisław Cichocki Natalia Nehrebecka. Wykład 4
Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne
1. Szereg niesezonowy 1.1. Opis szeregu
kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany
FINANSOWE SZEREGI CZASOWE WYKŁAD 3
FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).
Wygładzanie metodą średnich ruchomych w procesach stałych
Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja
Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego
Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb
Modele ARIMA prognoza, specykacja
Modele ARIMA prognoza, specykacja Wst p do ekonometrii szeregów czasowych wiczenia 3 5 marca 2010 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Funkcja autokorelacji
Cechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
PROCESY AUTOREGRESYJNE ZE ZMIENNYM PARAMETREM 1. Joanna Górka. Wydział Nauk Ekonomicznych i Zarządzania UMK w Toruniu Katedra Ekonometrii i Statystyki
PROCESY AUTOREGRESYJNE ZE ZMIENNYM PARAMETREM Joanna Górka Wdział Nauk Ekonomicznch i Zarządzania UMK w Toruniu Kaedra Ekonomerii i Saski WSTĘP Niesacjonarne proces o średniej zero mogą bć reprezenowane
Modelowanie i analiza szeregów czasowych
Modelowanie i analiza szeregów czasowych Małgorzaa Doman Plan zajęć Część. Modelowanie szeregów jednowymiarowych.. Szeregi jednowymiarowe własności i diagnozowanie. Modele auoregresji i średniej ruchomej
Szeregi czasowe, analiza zależności krótkoi długozasięgowych
Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t
Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych)
Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) (studium przypadku) Nazwa przedmiotu: ekonometria finansowa I (22204), analiza szeregów czasowych
WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego
WYKŁAD: Szeregi czasowe I Zaawansowane Metody Uczenia Maszynowego Szereg czasowy (X t ) - ciąg zmiennych losowych indeksowany parametrem t (czas). Z reguły t N lub t Z. Dotąd rozpatrywaliśmy: (X t )- ciąg
licencjat Pytania teoretyczne:
Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie
Prognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
Stanisław Cihcocki. Natalia Nehrebecka
Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
Analiza Szeregów Czasowych. Egzamin
Analiza Szeregów Czasowych Egzamin 12-06-2018 Zadanie 1: Zadanie 2: Zadanie 3: Zadanie 4: / 12 pkt. / 12 pkt. / 12 pkt. / 14 pkt. Projekt zaliczeniowy: Razem: / 100 pkt. / 50 pkt. Regulamin egzaminu 1.
Stacjonarność Integracja. Integracja. Integracja
Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:
Konspekty wykładów z ekonometrii
Konspek wkładów z ekonomerii Budowa i werfikaca modelu - reść przkładu W wniku ssemacznch badań popu na warzwa w pewnm mieście, orzmano nasępuące szeregi czasowe: przros (zmian) popu na warzwa (w zł. na
Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13
Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych
Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk
Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1
PROGNOZY I SYMULACJE
orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/
Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe?
Prognozowanie Co trzeba wiedzieć korzystając z modelu ARIMA Marta Płonka Predictive Solutions W trzecim już artykule dotyczącym szeregów czasowych przyjrzymy się modelom ARIMA. Dzisiaj skupimy się na metodzie
KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
Modele dynamiczne. Rozdział 2
Rozdział 2 Modele dynamiczne Modele dynamiczne są to modele, których celem jest opisanie procesu dostosowań do stanu równowagi. Modele takie szacowane są na szeregach czasowych. Własności dynamiczne systemu
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące
Niestacjonarne zmienne czasowe własności i testowanie
Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:
Sylabus Formularz opisu przedmiotu (formularz sylabusa) dla studiów I i II stopnia 1 wypełnia koordynator przedmiotu
Sylabus Formularz opisu przedmiotu (formularz sylabusa) dla studiów I i II stopnia 1 wypełnia koordynator przedmiotu A. Informacje ogólne Nazwa pola Nazwa przedmiotu Treść Analiza Szeregów Czasowych Jednostka
Analiza szeregów czasowych: 7. Liniowe modele stochastyczne
Analiza szeregów czasowych: 7. Liniowe modele stochastyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Liniowe modele stochastyczne Niech {y n } N n=1 będzie pewnym ciagiem danych
MODEL TENDENCJI ROZWOJOWEJ
MODEL TENDENCJI ROZWOJOWEJ Model endencji rozwojowej o konsrukcja eoreczna (równanie lub układ równań) opisująca kszałowanie się określonego zjawiska jako funkcji: zmiennej czasowej wahań okresowch (sezonowe
A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 390 TORUŃ 2009.
A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 390 TORUŃ 009 Uniwerse Mikołaja Kopernika w Toruniu Kaedra Ekonomerii i Saski WŁASNOŚCI
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
1 WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy): Matematyka Specjalność (jeśli
PROGNOZA WYSTĄPIENIA WSTRZĄSU ZA POMOCĄ SZEREGÓW CZASOWYCH. 1. Wprowadzenie. Zdzisław Iwulski* Górnictwo i Geoinżynieria Rok 31 Zeszyt 3/1 2007
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3/1 2007 Zdzisław Iwulski* PROGNOZA WYSTĄPIENIA WSTRZĄSU ZA POMOCĄ SZEREGÓW CZASOWYCH 1. Wprowadzenie Z szeregami czasowymi spotykamy się w inżynierii, geologii,
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
1 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy):
Stanisław Cichocki Natalia Nehrebecka. Wykład 7
Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności
MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 254 263 MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE Agnieszka Tłuczak Zakład Ekonometrii i Metod Ilościowych, Wydział Ekonomiczny
Stanisław Cichocki Natalia Neherbecka
Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza
Rozdziaª 4. Jednowymiarowe modele szeregów czasowych
Rozdziaª 4. Jednowymiarowe modele szeregów czasowych MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 4) Modele ARMA 1 / 24 Jednowymiarowe modele szeregów czasowych Jednowymiarowe modele szeregów czasowych:
7.4 Automatyczne stawianie prognoz
szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Analiza szeregów czasowych: 5. Liniowe modele stochastyczne
Analiza szeregów czasowych: 5. Liniowe modele stochastyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Dwa rodzaje modelowania 1. Modelowanie z pierwszych zasad. Znamy prawa
MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO
KIERZKOWSKI Arur 1 Transpor loniczy, szeregi czasowe, eksploaacja, modelowanie MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO W referacie przedsawiono probabilisyczny model czasu obsługi naziemnej saku
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego
Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez
Metody analizy i prognozowania szeregów czasowych
Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów
PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Analiza szeregów czasowych uwagi dodatkowe
Analiza szeregów czasowch uwagi dodakowe Jerz Sefanowski Poliechnika Poznańska Zaawansowana Eksploracja Danch Prognozowanie Wbór i konsrukcja modelu o dobrch własnościach predkcji przszłch warości zmiennej.
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
1.1 Opis danych Dekompozycja szeregu ARIMA Prognoza Podsumowanie Opis danych...
1 Szereg niesezonowy... 3 1.1 Opis danych... 3 1.2 Dekompozycja szeregu... 3 1.3... 3 1.4 ARIMA... 10 1.5 Prognoza... 12 1.6 Podsumowanie... 15 2 Szereg sezonowy... 15 2.1 Opis danych... 15 2.2 Dekompozycja
I. Szereg niesezonowy
Spis I. Szereg niesezonowy 1.1. Opis danych 1.2. Dekompozycja szeregu w programie Demetra 1.3. Analiza szeregu w STATA 1.4. Model ekstrapolacyjny 1.5. Model ARIMA 1.6. P II Szereg sezonowy 2.1. Opis danych
Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD
Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)
Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji)
Wkład 1: Prosta regresja liniowa Statstczn model regresji liniowej Dane dla prostej regresji liniowej Przedział ufności i test parametrów Przedział ufności dla średniej odpowiedzi Interwał prognoz (dla
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne
Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Warunki stacjonarności modelu AR(p) y n = β 1 y n 1 + β 2 y n 2 + + β
WNIOSKOWANIE STATYSTYCZNE
Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml
ZASTOSOWANIA EKONOMETRII
ZASTOSOWANIA EKONOMETRII Budowa, esmacja, werfikacja i inerpreacja modelu ekonomercznego. dr Doroa Ciołek Kaedra Ekonomerii Wdział Zarządzania UG hp://wzr.pl/~dciolek doroa.ciolek@ug.edu.pl Lieraura Osińska
PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk
Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 5 & 6 Szaeregi
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and
MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek
Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie
Wprowadzenie do szeregów czasowych i modelu ARIMA
Wprowadzenie do szeregów czasowych i modelu ARIMA 25.02.2011 Plan 1 Pojęcie szeregu czasowego 2 Stacjonarne szeregi czasowe 3 Model autoregresyjny - AR 4 Model średniej ruchomej - MA 5 Model ARMA 6 ARIMA
Finansowe szeregi czasowe
24 kwietnia 2009 Modelem szeregu czasowego jest proces stochastyczny (X t ) t Z, czyli rodzina zmiennych losowych, indeksowanych liczbami całkowitymi i zdefiniowanych na pewnej przestrzeni probabilistycznej
Prognozowanie popytu. mgr inż. Michał Adamczak
Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej
Analiza rynku projekt
Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
DYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Gdański Zasosowanie modelu
EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.
EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b
Analiza szeregów czasowych bezrobocia i inflacji w Danii
Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Analiza szeregów czasowych bezrobocia i inflacji w Danii Projekt zaliczeniowy z przedmiotu: Analiza Szeregów Czasowych
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii
Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz
Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia
Ekonometria I materiały do ćwiczeń
lp daa wkładu ema Wkład dr Doroa Ciołek Ćwiczenia mgr inż. - Rodzaje danch sascznch - Zmienne ekonomiczne jako zmienne losowe 1a) Przkład problemów badawczch hipoeza, propozcja modelu ekonomercznego, zmienne
Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce
Zeszyy Naukowe Uniwersyeu Szczecińskiego nr 862 Finanse, Rynki Finansowe, Ubezpieczenia nr 75 (2015) DOI: 10.18276/frfu.2015.75-16 s. 193 204 Nie(efekywność) informacyjna giełdowego rynku konraków erminowych
Analiza szeregów czasowych w Gretlu (zajęcia 8)
Analiza szeregów czasowych w Grelu (zajęcia 8) Grel jes dość dobrym narzędziem do analizy szeregów czasowych. Już w samej podsawie Grela znajdziemy sporo zaimplemenowanych echnik służących do obróbki danych
Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.
Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 1-2
Stanisław Cichocki Natalia Nehreecka Zajęcia - . Model liniow Postać modelu liniowego Zapis macierzow modelu liniowego. Estmacja modelu Przkład Wartość teoretczna (dopasowana) Reszt 3. MNK - przpadek wielu
PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY
Joanna Chrabołowska Joanicjusz Nazarko PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY NA PRZYKŁADZIE PRZEDSIĘBIORSTWA HANDLOWEGO TYPU CASH & CARRY Wprowadzenie Wśród wielu prognoz szczególną rolę w zarządzaniu
Pobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Magdalena Osińska, Joanna Górka Uniwersytet Mikołaja Kopernika w Toruniu
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 5 w Toruniu Kaedra Ekonomerii i Saski, Uniwerse Mikołaja Kopernika w Toruniu Uniwerse Mikołaja Kopernika w Toruniu Idenfikacja
PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE
Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe
MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY***
ZAGADNIENIA TECHNICZNO-EKONOMICZNE Tom 48 Zeszyt 3 2003 Joanna Chrabołowska*, Joanicjusz Nazarko** MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY*** W artykule przedstawiono metodykę budowy modeli ARIMA oraz ich
( ) ( ) ( τ) ( t) = 0
Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Integracja zmiennych Zmienna y
Inegracja zmiennych Zmienna y jes zinegrowana rzędu d jeśli jej różnice rzędu d są sacjonarne. Zapisujemy o y ~ I ( d ). Przyjmuje się również, że zmienna sacjonarna y (jako że nie rzeba jej różnicować,
DYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Współliniowość 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji Metody radzenia sobie z heteroskedastycznością
Modele warunkowej heteroscedastyczności
Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty
Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.
Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą
Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada
Stanisław Cichocki Natalia Nehrebecka Katarzyna Rosiak-Lada 1. Sprawy organizacyjne Zasady zaliczenia 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie