ZASTOSOWANIE MODELI EKONOMETRYCZNYCH DO BADANIA SKŁONNOŚCI

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZASTOSOWANIE MODELI EKONOMETRYCZNYCH DO BADANIA SKŁONNOŚCI"

Transkrypt

1 Zasosowanie modeli ekonomerycznych do badania skłonności STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 2 39 MARIUSZ DOSZYŃ Uniwersye Szczeciński ZASTOSOWANIE MODELI EKONOMETRYCZNYCH DO BADANIA SKŁONNOŚCI Między zdarzeniami a liczbą możliwych zdarzeń zazwyczaj zachodzą relacje współisnienia. Można przyjąć, że siłami, kóre nadają sabilność ym relacjom, są skłonności. W związku z ym nasuwa się wniosek, że narzędziem umożliwiającym analizowanie skłonności ludzkich może być odpowiednio skonsruowany model ekonomeryczny 1. Według K. Poppera: Tendencja średnich saysycznych do sabilizowania się, przy założeniu, że sabilne pozosają warunki zachodzenia danego rodzaju zdarzenia, jes jedną z najbardziej zdumiewających własności naszego wszechświaa. Można (...) wyjaśnić ją wyłącznie za pomocą eorii skłonności, o znaczy za pomocą eorii, według kórej isnieją możliwości»obciążone«, kóre są czymś więcej niż zwykłe możliwości (kursywa K. Poppera M.D.), o znaczy są endencjami lub skłonnościami do wydarzania się czegoś. Są o endencje lub skłonności do wydarzania się, kóre są zaware we wszyskich możliwościach w różnym sopniu i kóre są czymś w rodzaju sił nadających sabilność średnim saysycznym (podkreślenie M.D.) 2. Jak widać, K. Popper uznaje skłonności za siły nadające sabilność średnim saysycznym 3. 1 W arykule jes mowa o modelach ekonomerycznych związków. Należy również zweryfikować hipoezę, że do badania skłonności mogą być wykorzysywane pozosałe rodzaje modeli ekonomerycznych (modele rozkładu, dynamiki i wahań). 2 Por. [12], s Ibidem.

2 40 Mariusz Doszyń Nawiązując do swierdzenia K. Poppera, można powiedzieć, że skłonności nadają sabilność również paramerom rozkładu zmiennych 4 i określonym relacjom współisnienia, a ym samym paramerom modeli związków. W związku z ym skłonności można wyznaczać za pomocą odpowiednio wyspecyfikowanych modeli ekonomerycznych. Zgodnie z penagonem źródeł sił sprawczych prof. J. Hozera, zdarzenia powsają na skuek oddziaływania czasu, miejsca, człowieka, innych zdarzeń i przyczyn losowych: empus locus homo casus e foruna regi facum 5. Wyznaczanie skłonności na podsawie modelu ekonomerycznego może pozwolić na usalenie, jak na skłonność wpływają pozosałe źródła sił sprawczych. Skłonność można zdefiniować jako nachylenie posawy kogoś lub czegoś w kierunku czegoś lub kogoś, zwiększające prawdopodobieńswo określonych zdarzeń 6. Skłonność można rakować jako właściwość osobowości, kóra deerminuje działania człowieka, przy czym sopień zdeerminowania zależy od siły skłonności. Skłonności można mierzyć meodami częsościową i rygonomeryczną 7. Zgodnie z meodą częsościową, skłonność można przedsawić nasępująco 8 : S Y = (1) X gdzie S analizowana skłonność w okresie, Y liczba zajść danego zdarzenia w okresie, X liczba wszyskich możliwych zdarzeń w okresie. Zależność (1) można przedsawić (po uwzględnieniu pozosałych źródeł sił sprawczych) w formie liniowego modelu ekonomerycznego: 4 Problemaykę ę przedsawiono w arykule [8]. 5 Por. np. [7]. 6 Auorem definicji jes prof. J. Hozer. Por. [5]; [6]; [7]. 7 W meodzie częsościowej skłonność wyznacza się jako częsość względną wysępowania zdarzeń. W meodzie rygonomerycznej skłonność jes rozumiana jako nachylenie. Szczegółowe omówienie ych meod zawierają prace [3]; [5]; [6]; [7]. 8 Jes o zapis dla danych czasowych. Analogicznie można zapisać zależność (1) dla danych przekrojowych i panelowych.

3 Zasosowanie modeli ekonomerycznych do badania skłonności 41 Y = β + β X + β + u (2) Jak widać, model uwzględnia wpływ czasu (zmienna czasowa ), człowieka (wyraz wolny i krańcowa skłonność β 1 ), zdarzeń (zmienna X ) i przypadku (składnik losowy u ) 9. Zgodnie z wierdzeniem Frischa-Waugha-Sone a, innym sposobem na uwzględnianie wpływu czasu niż wprowadzanie do modelu zmiennej czasowej może być esymacja paramerów modelu (2) na podsawie odchyleń od rendów liniowych 10. W modelu (2) paramer β 1 pokazuje krańcowy wpływ zmiennej X na zmienną objaśnianą po wyeliminowaniu wpływu pozosałych źródeł sił sprawczych. Wyznaczając skłonność na podsawie modelu (2), należy odróżniać skłonność przecięną (S ) od skłonności krańcowej (β 1 ). Skłonność przecięna (S ) jes wyznaczana, po oszacowaniu modelu (2) jako iloraz warości eoreycznych i warości zmiennej objaśniającej: sˆ yˆ = (3) x Na podsawie modelu (2) można się zorienować, jaki wpływ na warość przecięnej skłonności ma ocena wyrazu wolnego, skłonność krańcowa, czas lub inne uwzględnione w modelu czynniki (zmienne). Wyznaczanie skłonności na podsawie modelu ekonomerycznego może zaem umożliwić ich dekompozycję. Skłonności, w ym skłonności krańcowe, mogą być analizowane zarówno za pomocą modeli liniowych, jak i modeli nieliniowych. Powierdzają o rozważania P.A. Samuelsona i W.D. Nordhausa. Auorzy ci, opisując sposób wyznaczania geomerycznej miary nachylenia funkcji, odwołują się do rójkąa przedsawionego na rysunku 1: Przez miarę nachylenia linii XY zawsze rozumiemy liczbowy sosunek długości odcinka ZY do odcinka XZ. Nachylenie jes więc sosunkiem «przyrosu w pionie do przesunięcia w poziomie». Jeżeli linia XY nie jes prosą, jak o się dzieje w przypadku wielu krzywych wysępujących w eorii ekonomii, nachylenie krzywej obliczamy jako nachylenie sycznej do krzywej w danym punkcie Wpływ miejsca można uwzględnić przez oszacowanie modelu (2) dla różnych jednosek eryorialnych. 10 Por. [9], s Por. [14], s. 208.

4 42 Mariusz Doszyń Y X Z Rys. 1. Geomeryczna miara nachylenia funkcji zaproponowana przez P.A. Samuelsona i W.D. Nordhausa Źródło: [14], s Geomeryczna miara nachylenia funkcji pozwala na wyznaczenie skłonności krańcowej (β 1 ) w modelu z jedną zmienną objaśniającą (X ). Można bowiem przyjąć, że: ZY β 1 = (4) XZ Wyznaczanie krańcowych skłonności za pomocą modelu ekonomerycznego z jedną zmienną objaśniającą sprowadza się zaem do wyznaczenia nachylenia funkcji, bądź obliczenia w modelach nieliniowych nachylenia sycznej do funkcji w danym punkcie. W związku z ym, że w modelu liniowym nie zmienia się Y γ Rys. 2. Krańcowa skłonność jako nachylenie funkcji liniowej ( β = γ) Źródło: opracowanie własne. 1 g X

5 Zasosowanie modeli ekonomerycznych do badania skłonności 43 nachylenie funkcji, krańcowa skłonność (β 1 ) jes sała dla każdej warości (X ) (por. rysunek 2). W akiej syuacji poziom zmiennej objaśniającej nie wpływa na analizowaną skłonność krańcową. Aby zidenyfikować nachylenie, w modelach nieliniowych, należy wyznaczyć syczną do funkcji w określonym punkcie (X 0, Y 0 ). Do wyznaczania sycznych sosuje się nasepującą zależność: ( )( ) Y Y = f ' X X X (5) Ponieważ zmienia się nachylenie sycznych do funkcji nieliniowych, więc krańcowe skłonności wyznaczone na podsawie modeli nieliniowych są zróżnicowane ze względu na warość zmiennej objaśniającej X. Y S γ Rys. 3. Krańcowa skłonność jako nachylenie sycznej do funkcji nieliniowej w punkcie S Źródło: opracowanie własne. X Uzupełnieniem geomerycznej miary nachylenia funkcji może być rygonomeryczna miara skłonności zaproponowana w pracy J. Hozera 12. Posawiono am ezę, że skłonności mogą być inerpreowane rygnomerycznie, jako nachylenie, kóre można mierzyć odpowiednim kąem między przeciwprosokąną a przyprosokąną (por. rysunek 4). Jedna przyprosokąna mierzy frakcję zdarzeń w próbie, gdzie wysępuje ineresujące nas zdarzenie (S ). Druga przypro- 12 Zob. [7].

6 44 Mariusz Doszyń sokąna mierzy frakcję zdarzeń w próbie, gdzie nie wysępuje ineresujące nas zdarzenie (1 S ). Miara a umożliwia wizualizację badanych skłonności. α Rys. 4. Trygonomeryczna inerpreacja skłonności (nachylenia) Źródło: opracowanie własne. S 1 S W meodzie ej miarą skłonności jes ką α, kórego angens wyznacza się nasepująco: 1 S gα = (5) S gdzie S frakcja zdarzeń (osób), wśród kórych wysępuje ineresujące nas zjawisko. Przykład empiryczny W przeprowadzonym badaniu wyznaczono skłonność do konsumpcji napojów alkoholowych i wyrobów yoniowych poszczególnych rodzajów gospodarsw domowych w Polsce w laach na podsawie modeli liniowych o posaci (2). Wyniki obliczeń zosały przedsawiono w abeli Wykorzysane do obliczeń dane znajdują się w Roczniku Saysycznym GUS za odpowiednie laa. Analizowane zmienne wyrażono w cenach z 2003 r. Do urealnienia dochodów rozporządzalnych oraz wydaków na napoje alkoholowe i wyroby yoniowe wykorzysano wskaźnik cen owarów i usług konsumpcyjnych publikowany przez GUS.

7 Zasosowanie modeli ekonomerycznych do badania skłonności 45 Tabela 1 Wyniki esymacji modelu (2) dla poszczególnych rodzajów gospodarsw domowych w Polsce w laach Gospodarswa domowe 0 ˆβ 1 ˆβ 2 ˆ β ( βˆ 0 ) ˆβ 1 ( ) ( ˆβ 2 ) S 2 e R DW Pracowników 7,568 0,040 3,002 10,931 1,041 0,894 1,501 Pracowników na sanowiskach roboniczych Pracowników na sanowiskach nieroboniczych Pracowników użykujących gospodarswo rolne 9,005 0,046 0,284 3,582 11,343 4,444 1,008 0,901 1,403 7,921 0,036 0,289 2,610 9,169 3,240 1,178 0,867 2,228 5,890 0,035 0,177-3,637 15,468 3,111 0,776 0,954 1,817 Rolników 0,148 0,030 0,114 13,642 1,081 0,930 2,106 Pracujących na własny rachunek Emeryów i rencisów 19,486 0,049 3,030 6,340 1,084 0,822 1,662 6,867 0,036 1,601 5,577 1,178 0,770 1,235 Kreska oznacza, że warości nie wysępują w danym modelu. Źródło: opracowanie własne. Dla gospodarsw domowych pracujących na własny rachunek oraz emeryów i rensisów, modele oszacowano meodą Cochrane a-orcua ze względu na auokorelację resz. Pozosałe modele wyznaczono klasyczną meodą najmniejszych kwadraów. Przy poziomie isoności równym 0,05 prawie we wszyskich przypadkach należało odrzucić hipoezę o nieisoności ocen paramerów (por. abelę 1). Nieisone okazały się jedynie oceny wyrazów wolnych w modelach opisujących wydaki konsumpcyjne gospodarsw domowych rolników oraz emeryów i rencisów.

8 46 Mariusz Doszyń Większość modeli charakeryzowało się bardzo dobrym dopasowaniem do warości empirycznych, o czym świadczą wysokie warości skorygowanego 2 współczynnika deerminacji ( R ). Na podsawie warości saysyki Durbina- -Wasona (DW) można swierdzić, że w niemal we wszyskich modelach nie było podsaw do odrzucenia hipoezy o braku auokorelacji resz pierwszego rzędu (poziom isoności α = 0,05) 14. W obszarze braku konkluzywności znalazły się saysyki Durbina-Wasona wyznaczone na podsawie resz uzyskanych z modeli oszacowanych dla gospodarsw domowych pracowników na sanowiskach roboniczych oraz emeryów i rencisów. Prawie we wszyskich modelach oceny wyrazu wolnego były ujemne, co może świadczyć z zby wysokiej krańcowej skłonności do konsumpcji produków danego ypu. Największą krańcową skłonnością do konsumpcji napojów alkoholowych i wyrobów yoniowych cechowały się gospodarswa domowe pracowników na sanowiskach roboniczych oraz pracujących na własny rachunek, a najmniejszą krańcową skłonność wykazywały gospodarswa domowe rolników oraz pracowników użykujących gospodarswo rolne. Waro zwrócić uwagę, że w rzech oszacowanych modelach isony okazał się wpływ zmiennej czasowej. W gospodarswach domowych pracowników na sanowiskach roboniczych oraz pracowników użykujących gospodarswo rolne widoczna była rosnąca endencja zmiennej objaśnianej, a więc można się spodziewać uaj wzrosu skłonności do konsumpcji analizowanej grupy owarów. Odmiennie kszałowała się syuacja w gospodarswach domowych pracowników na sanowiskach nieroboniczych. Ujemna ocena parameru przy zmiennej czasowej świadczyła o malejącej skłonności do konsumpcji. Na podsawie zależności (3) oszacowano przecięną skłonność do konsumpcji napojów alkoholowych i wyrobów yoniowych w Polsce w laach jako udział wydaków eoreycznych w dochodach do dyspozycji (por. rysunki 5 7). Na podsawie rysunków można swierdzić, że skłonność do konsumpcji napojów alkoholowych i wyrobów yoniowych, mierzoną jako udział wydaków eoreycznych w dochodach do dyspozycji, na ogół wykazywała niewielką en- 14 Warości kryyczne esu Durbina-Wasona przy liczebności n = 15 dla modelu z dwoma paramerami są równe odpowiednio 1,08 i 1,36, a dla modelu z rzema paramerami: 0,95 i 1,54 (poziom isoności 0,05).

9 Zasosowanie modeli ekonomerycznych do badania skłonności 47 0,040 0,038 0,036 0,034 skłonność 0,032 0,030 0,028 0,026 0,024 0,022 0, laa pracowników na sanowiskach roboniczych na sanowiskach nieroboniczych Rys. 5. Przecięna skłonność do konsumpcji napojów alkoholowych i wyrobów yoniowych gospodarsw domowych pracowników, pracowników na sanowiskach roboniczych i pracowników na sanowiskach nieroboniczych w Polsce w laach Źródło: opracowanie własne. 0,030 0,029 0,028 skłonność 0,027 0,026 0,025 0,024 0,023 0, laa pracowników użykujących gospodarswo rolne emeryów i rencisów pracujących na własny rachunek Rys. 6. Przecięna skłonność do konsumpcji napojów alkoholowych i wyrobów yoniowych gospodarsw domowych pracowników użykujących gospodarswo rolne, pracujących na własny rachunek oraz emeryów i rencisów w Polsce w laach Źródło:opracowanie własne.

10 48 Mariusz Doszyń 0,0307 0,0306 0,0306 skłonność 0,0305 0,0305 0,0304 0,0304 0, laa Rys. 7. Przecięna skłonność do konsumpcji napojów alkoholowych i wyrobów yoniowych gospodarsw domowych rolników w Polsce w laach Źródło: opracowanie własne. dencję wzrosową. Spadek skłonności w analizowanym okresie doyczył ylko gospodarsw domowych pracowników na sanowiskach nieroboniczych, dla kórych ocena parameru przy zmiennej czasowej była ujemna (por. rysunek 5). Największą skłonnością do konsumpcji charakeryzowały się gospodarswa domowe pracowników na sanowiskach roboniczych i rolników, a najmniejszą gospodarswa domowe pracowników na sanowiskach nieroboniczych i gospodarsw domowych osób pracujących na własny rachunek. Podsumowanie W arykule zweryfikowano hipoezę, że skłonności nadają sabilność określonym relacjom współisnienia w czasie i (lub) przesrzeni. W związku z ym przyjęo, że do badania skłonności mogą być użyeczne odpowiednio skonsruowane modele ekonomeryczne. Ich zasosowanie umożliwia usalenie jaki wpływ na określone zdarzenia mają poszczególne źródła sił sprawczych. Zaproponowane podejście pozwala na pomiar skłonności na podsawie modeli liniowych i modeli nieliniowych. Wyróżniono również skłonności przecięne i krańcowe.

11 Zasosowanie modeli ekonomerycznych do badania skłonności 49 W przedsawionym badaniu modele liniowe zasosowano do wyznaczenia skłonności do konsumpcji napojów alkoholowych i wyrobów yoniowych poszczególnych rodzajów gospodarsw domowych w Polsce w laach Ze względu na isoną auokorelację resz pierwszego rzędu część modeli oszacowano za pomocą meody Cochrene a-orcua. Największą skłonność do konsumpcji napojów alkoholowych i wyrobów yoniowych wykazywały gospodarswa domowe pracowników na sanowiskach roboniczych i rolników, a najmniejszą gospodarswa domowe pracowników na sanowiskach nieroboniczych i osób pracujących na własny rachunek. Lieraura 1. Doszyń M.: Analiza skłonności do konsumpcji dla poszczególnych rodzajów gospodarsw domowych w Polsce w laach Zeszyy Naukowe Uniwersyeu Szczecińskiego nr 394. Szczecin Doszyń M.: Skłonności a enropia. Przegląd Saysyczny 2002, nr Doszyń M.: Saysyczna analiza skłonności ludzkich w procesach gospodarowania. Praca dokorska. Szczecin Ekonomeria. Red. J. Hozer. Szczecin Hozer J.: Ekonomeryczna inerpreacja skłonności w ekonomii. Przegląd Saysyczny 2002, nr Hozer J.: Skłonności w ekonomii i ich mierzenie. Zeszyy Naukowe Uniwersyeu Szczecińskiego nr 365. Szczecin Hozer J., Doszyń M.: Ekonomeria skłonności. PWE, Warszawa Hozer J., Doszyń M.: Skłonności a całościowo-srukuralne badanie zjawisk. Przegląd Saysyczny 2004, nr Hozer J., Zawadzki J.: Zmienna czasowa i jej rola w badaniach ekonomerycznych. PWN, Warszawa Janaszak T.: O zasadzie wiązek sycznych. Przegląd Syysyczny 2005, nr Kufel T.: Ekonomeria. Rozwiązywanie problemów z wykorzysaniem programu Grel. PWN, Warszawa Popper K.: Świa skłonności. Znak, Kraków Theil H.: Zasady ekonomerii. PWN, Warszawa Samuelson P.A., Nordhaus W.: Ekonomia. PWN, Warszawa 1999.

12 50 Mariusz Doszyń IMPLEMENTATION OF ECONOMETRIC MODELS IN ANALYZING PROPENSITIES Summary In he aricle hypohesis ha propensiies makes coexisence ime (or spaial) relaion sable was verified. I was suggesed ha in his conex economeric models could be useful in researches involving propensiies. Definiion, concepions and mehods of measuring propensiies were discussed. Differeniaion on average and marginal propensiies was also proposed. In empirical example, propensiy o consumpion of alcoholic beverages and obacco of respecive kinds of households in Poland in years were analyzed. Average propensiy o consumpion of alcoholic beverages and obacco was highes in households of farmers and employees in manual labour posiions and lowes in households of self employed and employees in non manual labour posiions. Translaed by Mariusz Doszyń

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Mariusz Doszyń TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH Od pewnego czasu w lieraurze ekonomerycznej pojawiają się

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO NR 394 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 15 2004 JÓZEF HOZER Uniwersye Szczeci ski ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA 1. PYTANIE PROFESORA RAUTSKAUKASA

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

BAYESOWSKA ANALIZA KRAŃCOWEJ SKŁONNOŚCI DO KONSUMPCJI

BAYESOWSKA ANALIZA KRAŃCOWEJ SKŁONNOŚCI DO KONSUMPCJI Bayesowska analiza krańcowej skłonności do konsumpcji STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 9 MARIUSZ DOSZYŃ Uniwersytet Szczeciński BAYESOWSKA ANALIZA KRAŃCOWEJ SKŁONNOŚCI DO KONSUMPCJI

Bardziej szczegółowo

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb

Bardziej szczegółowo

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE.   Strona 1 KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych

Bardziej szczegółowo

Klasyfikacja modeli. Metoda najmniejszych kwadratów

Klasyfikacja modeli. Metoda najmniejszych kwadratów Konspek ekonomeria: Weryfikacja modelu ekonomerycznego Klasyfikacja modeli Modele dzielimy na: - jedno- i wielorównaniowe - liniowe i nieliniowe - sayczne i dynamiczne - sochasyczne i deerminisyczne -

Bardziej szczegółowo

TWIERDZENIE FRISCHA-WAUGHA-STONE A A PYTANIE RUTKAUSKASA

TWIERDZENIE FRISCHA-WAUGHA-STONE A A PYTANIE RUTKAUSKASA Uniwersye Szczecińsi TWIERDZENIE FRISCHA-WAUGHA-STONE A A PYTANIE RUTKAUSKASA Zagadnienia, óre zosaną uaj poruszone, przedsawiono m.in. w pracach [], [2], [3], [4], [5], [6]. Konferencje i seminaria nauowe

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Ocena płynności wybranymi metodami szacowania osadu 1

Ocena płynności wybranymi metodami szacowania osadu 1 Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym Jacek Baóg Uniwersye Szczeciński Srukuralne podejście w prognozowaniu produku krajowego bruo w ujęciu regionalnym Znajomość poziomu i dynamiki produku krajowego bruo wyworzonego w poszczególnych regionach

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 3

Stanisław Cichocki Natalia Nehrebecka. Wykład 3 Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje

Bardziej szczegółowo

Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych

Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu

Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Gdański Zasosowanie modelu

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

Natalia Iwaszczuk, Piotr Drygaś, Piotr Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE

Natalia Iwaszczuk, Piotr Drygaś, Piotr Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE Naalia Iwaszczuk, Pior Drygaś, Pior Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE Wyd-wo, Rzeszów 03 dr hab., prof. nadzw. Naalia Iwaszczuk, AGH Akademia Górniczo-Hunicza im. Sanisława Saszica w Krakowie

Bardziej szczegółowo

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

ANALIZA POWIĄZAŃ MIĘDZY INDEKSAMI GIEŁDY FRANCUSKIEJ, HOLENDERSKIEJ I BELGIJSKIEJ Z WYKORZYSTANIEM MODELU KOREKTY BŁĘDEM

ANALIZA POWIĄZAŃ MIĘDZY INDEKSAMI GIEŁDY FRANCUSKIEJ, HOLENDERSKIEJ I BELGIJSKIEJ Z WYKORZYSTANIEM MODELU KOREKTY BŁĘDEM Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 083-86 Nr 89 06 Uniwersye Ekonomiczny w Kaowicach Wydział Ekonomii Kaedra Meod Saysyczno-Maemaycznych w Ekonomii pawel.prenzena@edu.ueka.pl

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Macierz X ma wymiary: 27 wierszy (liczba obserwacji) x 6 kolumn (kolumna jednostkowa i 5 kolumn ze zmiennymi objaśniającymi) X

Macierz X ma wymiary: 27 wierszy (liczba obserwacji) x 6 kolumn (kolumna jednostkowa i 5 kolumn ze zmiennymi objaśniającymi) X ROZWIĄZANIA ZADAO Zadanie EKONOMETRIA_dw_.xls Na podsawie danych zamieszczonych w arkuszu Zadanie. Podad posad analiyczną modelu ekonomerycznego wielkości produkcji w przemyśle od PO - liczby pracujących

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 3

Stanisław Cichocki Natalia Nehrebecka. Wykład 3 Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 2 1. Zmienne sacjonarne

Bardziej szczegółowo

Prognoza scenariuszowa poziomu oraz struktury sektorowej i zawodowej popytu na pracę w województwie łódzkim na lata

Prognoza scenariuszowa poziomu oraz struktury sektorowej i zawodowej popytu na pracę w województwie łódzkim na lata Projek Kapiał ludzki i społeczny jako czynniki rozwoju regionu łódzkiego współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Prognoza scenariuszowa poziomu oraz srukury

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Elżbieta Szulc Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie zależności między przestrzennoczasowymi procesami ekonomicznymi

Elżbieta Szulc Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie zależności między przestrzennoczasowymi procesami ekonomicznymi DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyk Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy? Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

1. Szereg niesezonowy 1.1. Opis szeregu

1. Szereg niesezonowy 1.1. Opis szeregu kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany

Bardziej szczegółowo

Copyright by Politechnika Białostocka, Białystok 2017

Copyright by Politechnika Białostocka, Białystok 2017 Recenzenci: dr hab. Sanisław Łobejko, prof. SGH prof. dr hab. Doroa Wikowska Redakor naukowy: Joanicjusz Nazarko Auorzy: Ewa Chodakowska Kaarzyna Halicka Arkadiusz Jurczuk Joanicjusz Nazarko Redakor wydawnicwa:

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 4

Stanisław Cichocki Natalia Nehrebecka. Wykład 4 Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne

Bardziej szczegółowo

Dr hab. Jerzy Czesław Ossowski Wybrane elementy ekonometrii stosowanej cz. II Istotność zmiennych modelu, autokorelacja i modele multiplikatywne

Dr hab. Jerzy Czesław Ossowski Wybrane elementy ekonometrii stosowanej cz. II Istotność zmiennych modelu, autokorelacja i modele multiplikatywne Dr hab. Jerzy Czesław Ossowski Wybrane elemeny ekonomerii sosowanej cz. II Isoność zmiennych modelu, auokorelacja i modele muliplikaywne Ekonomeria-ćw.cz-SSW dr hab. Jerzy Czesław Ossowski Kaedra Nauk

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych do prognozowania szeregów czasowych

Zastosowanie sztucznych sieci neuronowych do prognozowania szeregów czasowych dr Joanna Perzyńska adiunk w Kaedrze Zasosowań Maemayki w Ekonomii Wydział Ekonomiczny Zachodniopomorski Uniwersye Technologiczny w Szczecinie Zasosowanie szucznych sieci neuronowych do prognozowania szeregów

Bardziej szczegółowo

Rzetelność komunikowania wyników egzaminów zewnętrznych w oparciu o metodę tendencji rozwojowej próba oceny

Rzetelność komunikowania wyników egzaminów zewnętrznych w oparciu o metodę tendencji rozwojowej próba oceny dr Maria Sasin Poliechnika Koszalińska Teraźniejszość i przyszłość oceniania szkolnego Rzeelność komunikowania wyników egzaminów zewnęrznych w oparciu o meodę endencji rozwojowej próba oceny Wprowadzenie

Bardziej szczegółowo

Wygładzanie metodą średnich ruchomych w procesach stałych

Wygładzanie metodą średnich ruchomych w procesach stałych Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja

Bardziej szczegółowo

Analiza szeregów czasowych w Gretlu (zajęcia 8)

Analiza szeregów czasowych w Gretlu (zajęcia 8) Analiza szeregów czasowych w Grelu (zajęcia 8) Grel jes dość dobrym narzędziem do analizy szeregów czasowych. Już w samej podsawie Grela znajdziemy sporo zaimplemenowanych echnik służących do obróbki danych

Bardziej szczegółowo

Jerzy Czesław Ossowski Politechnika Gdańska. Dynamika wzrostu gospodarczego a stopy procentowe w Polsce w latach

Jerzy Czesław Ossowski Politechnika Gdańska. Dynamika wzrostu gospodarczego a stopy procentowe w Polsce w latach DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Poliechnika Gdańska Dynamika wzrosu

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU KAPITAŁOWEGO WPROWADZENIE METODOLOGIA TESTOWANIA MODELU

STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU KAPITAŁOWEGO WPROWADZENIE METODOLOGIA TESTOWANIA MODELU GraŜyna Trzpio, Dominik KręŜołek Kaedra Saysyki Akademii Ekonomicznej w Kaowicach e-mail rzpio@sulu.ae.kaowice.pl, dominik_arkano@wp.pl STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU

Bardziej szczegółowo

Konspekty wykładów z ekonometrii

Konspekty wykładów z ekonometrii Konspek wkładów z ekonomerii Budowa i werfikaca modelu - reść przkładu W wniku ssemacznch badań popu na warzwa w pewnm mieście, orzmano nasępuące szeregi czasowe: przros (zmian) popu na warzwa (w zł. na

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

Metody analizy i prognozowania szeregów czasowych

Metody analizy i prognozowania szeregów czasowych Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe Pior Srożek * Kobiey w przedsiębiorswach usługowych prognozy nieliniowe Wsęp W dzisiejszym świecie procesy społeczno-gospodarcze zachodzą bardzo dynamicznie. W związku z ym bardzo zmienił się sereoypowy

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne

Bardziej szczegółowo

Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu. Własności procesów STUR w świetle metod z teorii chaosu 1

Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu. Własności procesów STUR w świetle metod z teorii chaosu 1 DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6-8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO

MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO KIERZKOWSKI Arur 1 Transpor loniczy, szeregi czasowe, eksploaacja, modelowanie MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO W referacie przedsawiono probabilisyczny model czasu obsługi naziemnej saku

Bardziej szczegółowo

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK Przemysław Jeziorski Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Zakład Demografii i Saysyki Ekonomicznej przemyslaw.jeziorski@ue.kaowice.pl WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

Wpływ przestępczości na wzrost gospodarczy

Wpływ przestępczości na wzrost gospodarczy Magdalena Paszkiewicz Uniwersye Łódzki magpasz@wp.pl Wpływ przesępczości na wzros gospodarczy Myśl o dobrobycie jes bliska każdemu z nas. Chcielibyśmy być obywaelami bogaego, praworządnego pańswa, w kórego

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

Wskazówki projektowe do obliczania nośności i maksymalnego zanurzenia statku rybackiego na wstępnym etapie projektowania

Wskazówki projektowe do obliczania nośności i maksymalnego zanurzenia statku rybackiego na wstępnym etapie projektowania CEPOWSKI omasz 1 Wskazówki projekowe do obliczania nośności i maksymalnego zanurzenia saku rybackiego na wsępnym eapie projekowania WSĘP Celem podjęych badań było opracowanie wskazówek projekowych do wyznaczania

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Sein., Oeconomica 2014, 313(76)3, 137 146 Maria Szmuksa-Zawadzka, Jan Zawadzki MODELE WYRÓWNYWANIA WYKŁADNICZEGO W PROGNOZOWANIU

Bardziej szczegółowo

Integracja zmiennych Zmienna y

Integracja zmiennych Zmienna y Inegracja zmiennych Zmienna y jes zinegrowana rzędu d jeśli jej różnice rzędu d są sacjonarne. Zapisujemy o y ~ I ( d ). Przyjmuje się również, że zmienna sacjonarna y (jako że nie rzeba jej różnicować,

Bardziej szczegółowo

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro Rozdział i. Srukura sekorowa finansowania wydaków na B+R w krajach srefy euro Rober W. Włodarczyk 1 Sreszczenie W arykule podjęo próbę oceny srukury sekorowej (sekor przedsiębiorsw, sekor rządowy, sekor

Bardziej szczegółowo

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa

Bardziej szczegółowo

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 1. Wojciech Waloszek. Teresa Zawadzka.

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 1. Wojciech Waloszek. Teresa Zawadzka. Eksploracja danych KLASYFIKACJA I REGRESJA cz. 1 Wojciech Waloszek wowal@ei.pg.gda.pl Teresa Zawadzka egra@ei.pg.gda.pl Kaedra Inżyrii Oprogramowania Wydział Elekroniki, Telekomunikacji i Informayki Poliechnika

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak E i E E i r r 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania Reguła poliyki monearnej

Bardziej szczegółowo

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego 4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W

Bardziej szczegółowo

Różnica bilansowa dla Operatorów Systemów Dystrybucyjnych na lata (którzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności)

Różnica bilansowa dla Operatorów Systemów Dystrybucyjnych na lata (którzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności) Różnica bilansowa dla Operaorów Sysemów Dysrybucyjnych na laa 2016-2020 (kórzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności) Deparamen Rynków Energii Elekrycznej i Ciepła Warszawa 201 Spis

Bardziej szczegółowo

PROGNOZOWANIE BRAKUJĄCYCH DANYCH DLA SZEREGÓW O WYSOKIEJ CZĘSTOTLIWOŚCI OCZYSZCZONYCH Z SEZONOWOŚCI

PROGNOZOWANIE BRAKUJĄCYCH DANYCH DLA SZEREGÓW O WYSOKIEJ CZĘSTOTLIWOŚCI OCZYSZCZONYCH Z SEZONOWOŚCI Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-8611 Nr 289 2016 Maria Szmuksa-Zawadzka Zachodniopomorski Uniwersye Technologiczny w Szczecinie Sudium Maemayki Jan Zawadzki

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 389 TORUŃ 2009

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 389 TORUŃ 2009 A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 389 TORUŃ 2009 Uniwersye Mikołaja Kopernika w Toruniu Kaedra Ekonomerii i Saysyki Jarosław

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2015, 323(81)4,

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2015, 323(81)4, FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Sein., Oeconomica 205, 323(8)4, 25 32 Joanna PERZYŃSKA WYBRANE MIERNIKI TRAFNOŚCI PROGNOZ EX POST W WYZNACZANIU PROGNOZ

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

ANALIZA SZEREGU CZASOWEGO CEN ŻYWCA BROJLERÓW W LATACH

ANALIZA SZEREGU CZASOWEGO CEN ŻYWCA BROJLERÓW W LATACH METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/1, 2012, sr. 224 233 ANALIZA SZEREGU CZASOWEGO CEN ŻYWCA BROJLERÓW W LATACH 1991-2011 Kaarzyna Unik-Banaś Kaedra Zarządzania i Markeingu w Agrobiznesie

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) E i E E i r r ν φ θ θ ρ ε ρ α 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

UMK w Toruniu ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSEM WIG A WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

UMK w Toruniu ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSEM WIG A WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE Pior Fiszeder UMK w Toruniu ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSEM WIG A WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE. Wprowadzenie Rynki kapiałowe na świecie są coraz silniej powiązane. Do najważniejszych

Bardziej szczegółowo

MODELOWANIE I PROGNOZOWANIE EKONOMETRYCZNE W LOGISTYCE PRZEDSIĘBIORSTWA MODELING AND ECONOMETRIC PREDICTION IN LOGISTICS COMPANY

MODELOWANIE I PROGNOZOWANIE EKONOMETRYCZNE W LOGISTYCE PRZEDSIĘBIORSTWA MODELING AND ECONOMETRIC PREDICTION IN LOGISTICS COMPANY Sysemy Logisyczne Wojsk nr 44/06 MODELOWANIE I PROGNOZOWANIE EKONOMETRYCZNE W LOGISTYCE PRZEDSIĘBIORSTWA MODELING AND ECONOMETRIC PREDICTION IN LOGISTICS COMPANY Agnieszka DUDA a.duda@aon.edu.pl Akademia

Bardziej szczegółowo