Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz
|
|
- Tadeusz Orzechowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 233 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Porównanie jakości nieliniowych modeli ekonomerycznych na podsawie esów rafności prognoz Sreszczenie. Arykuł przedsawia porównanie jakości modeli o różnych posaciach analiycznych (nieliniowych i liniowych) oparych na koncepcji modelowania zgodnego. Elemenem porównawczym są różnice w rafności prognoz orzymanych na podsawie różnych modeli. Analizy różnic rafności prognoz dokonano na podsawie esu Diebolda- -Mariano, a cała analiza zosała przeprowadzona na podsawie danych symulacyjnych. Słowa kluczowe: analiza porównawcza, różnice rafności prognoz, es Diebolda- -Mariano, modelowanie zgodne Wprowadzenie Celem arykułu jes zbadanie jakości modeli nieliniowych oparych na koncepcji modelowania zgodnego w konekście rafności prognoz orzymanych na podsawie ych modeli. W badaniu zosały porównane błędy prognoz ex pos modeli o różnych posaciach analiycznych: liniowy zgodny, poęgowy zgodny, wykładniczy zgodny,
2 234 model progowy TAR opary na koncepcji modelowania zgodnego. Rzeczywise zależności ekonomiczne mogą wykazywać charaker liniowy albo nieliniowy. Badacz nie posiada dokładnej wiedzy na ema rzeczywisej zależności między wykorzysywanymi w badaniu procesami ekonomicznymi. Różne eorie ekonomiczne dają pewne wskazówki posaci zależności, jednakże w eoriach ych przyjmuje się wiele założeń, kóre nie muszą być spełnione w rzeczywisości. Dlaego już na eapie specyfikacji modelu przyjmowane są subiekywne założenia badacza. Ponado bardzo częso na dane zjawisko ekonomiczne ma wpływ wiele czynników, kóre nie są uwzględniane w modelu ekonomerycznym z powodu np. braku odpowiednich danych empirycznych, braku możliwości lub znaczących rudności w mierzeniu ych czynników lub innych. Kolejne ważne czynniki, jakie muszą być brane pod uwagę w rakcie modelowania ekonomerycznego, o odpowiednie własności esymaorów, poprawna weryfikacja modelu oraz zadbanie o zależności o charakerze czyso saysycznym. W badaniu posawiono nasępujące hipoezy badawcze: 1. Modele ze srukurami auoregresyjnymi mogą być wykorzysane do opisu nieliniowych zależności. 2. Trafność prognozy nie zależy od przyjęej posaci analiycznej modelu. Niniejsze badanie zosało przeprowadzone na podsawie symulacji Mone Carlo. Scenariusz eksperymenu zakładał wygenerowanie pewnych zależności nieliniowych, a nasępnie opisanie i wykonanie prognozy na podsawie modeli o różnych posaciach analiycznych (liniową, poęgową, wykładniczą i progową). Wykorzysując es Diebolda-Mariano, porównano różnice w rafnościach ych prognoz, a wyniki zosały przedsawione w posaci wykresów oraz abel. 1. Scenariusz przeprowadzonego badania symulacyjnego W badaniu przeprowadzono 3 eksperymeny numeryczne. Scenariusze eksperymenów są nasępujące. Wygenerowano dwa procesy o srukurze auoregresyjnej pierwszego rzędu o posaciach:,. Na podsawie powyższych procesów wygenerowano 3 procesy o zadanych posaciach nieliniowych: eksperymen 1, eksperymen 2,
3 Porównanie jakości nieliniowych modeli ekonomerycznych 235 eksperymen 3. Powyższe nieliniowe procesy były opisywane za pomocą 4 ypów modeli: 1) liniowego zgodnego: 2) poęgowego zgodnego: 3) wykładniczego zgodnego:, 4) progowego TAR oparego na koncepcji modelowania zgodnego W nasępnym kroku, na podsawie powyższych modeli objaśniających wykonano prognozy na 20 okresów. Wyznaczono błędy ex pos prognoz, a nasępnie zbadano isoność różnic pomiędzy błędami prognoz za pomocą esu Diebolda- -Mariano. Porównano nasępujące pary błędów prognoz: liniowy zgodny z poęgowym zgodnym, liniowy zgodny z wykładniczym zgodnym, liniowy zgodny z progowym zgodnym. W każdym ze scenariuszy zmianie ulegały nasępujące paramery: liczba obserwacji n = {20, 60, 120, 300} oraz warość zakłócenia u ~ N(0, 1), N(0, 2), N(0, 3). Wyniki eksperymenów zaprezenowane są w formie abel oraz wykresów.,., 3. Koncepcja modelowania zgodnego 1 Koncepcja dynamicznego modelowania zgodnego 2, kóra uwzględnia w budowie zależności przyczynowo-skukowe oraz wewnęrzną srukurę wykorzysanych procesów, jes auorswa Profesora Zygmuna Zielińskiego. Przez zgodność 1 Opracowano na podsawie: P. Kufel, Błędy prognoz w ocenie jakości modeli analiza symulacyjna, Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu 2010, nr 18, s ; M. Błażejowski, P. Kufel, T. Kufel, Auomayczna procedura budowy specyfikacji zgodnego dynamicznego modelu ekonomerycznego w oprogramowaniu grel, Aca Universiais Nicolai Copernici, Ekonomia XXXIX, zeszy 389, Wydawnicwo UMK, Toruń 2009, s Por. Z. Zieliński, Zmienność w czasie srukuralnych paramerów modelu ekonomerycznego, Przegląd Saysyczny 1984, R. XXXI, z. 1/2, s ; L Talaga, Z. Zieliński, Analiza spekralna w modelowaniu ekonomerycznym, PWN, Warszawa 1986.
4 236 rozumie się zgodność harmonicznej srukury procesu objaśnianego z łączną harmoniczną srukurą procesów objaśniających oraz procesu reszowego, kóry jes niezależny od procesów objaśniających. Inaczej mówiąc: funkcja gęsości spekralnej procesu objaśnianego oraz łączna funkcja gęsości spekralnej procesów objaśniających oraz procesu reszowego są równe lub równoległe względem osi częsości. Model jes zawsze zgodny, gdy wszyskie wykorzysywane procesy mają własności białoszumowe: Funkcja gęsości spekralnej procesu o własnościach białego szumu jes sała względem osi częsości. Również funkcja gęsości spekralnej dla kombinacji liniowej procesów o własnościach białego szumu jes sała względem osi częsości, zaem obie e funkcje będą równoległe względem osi częsości, czyli aki model jes zgodny. Niech Y i X i (i = 1,..., k) oznaczają odpowiednio proces endogeniczny i wekor procesów objaśniających, dla kórych modele podsawowe, opisujące ich wewnęrzną srukurę, są nasępujące: modele opisujące składniki niesacjonarne: Y = P y + S y + η y, X i = P xi + S x i + η x i, (2) gdzie: P y, P xi wielomianowe funkcje zmiennej czasowej dla odpowiednich procesów, S y, S xi składniki sezonowe o sałej lub zmiennej ampliudzie wahań dla odpowiednich procesów, η y, η xi sacjonarne auoregresyjne procesy odnoszące się do odpowiednich procesów; modele auoregresyjne: (1) B(u)η y = ε y, A i (u)η xi = ε x i, (3) gdzie: B(u), A i (u) sacjonarne auoregresyjne operaory, dla kórych wszyskie pierwiaski równania B(u) = 0 i A i (u) = 0 leżą poza okręgiem jednoskowym, ε y, ε xi białe szumy dla odpowiednich procesów. Rzeczywise procesy ekonomiczne można przedsawić za pomocą srukur auoregresyjnych, ponieważ świadczy o ym ich charaker i przebieg 3. Znajomość wewnęrznej srukury wszyskich badanych procesów umożliwia budowę dynamicznego modelu zgodnego na podsawie zależności dla białoszumowych składników opisanej modelem (1). Model zgodny dla rzeczywisych procesów Y i X i uzyskuje się przez nasępujące podsawienia: do równania (1) podsawia się białe szumy z równań (3), nasępnie z równań (2) wyznacza się auoregresyjne procesy η y, η xi i wsawia się je 3 Por. C. Granger, The Typical Specral Shape of Economic Variable, Economerica 1966, nr 34, s
5 Porównanie jakości nieliniowych modeli ekonomerycznych 237 do poprzednio orzymanego równania. Po dalszych przekszałceniach orzymuje się nasępujący model: W modelu (4) proces reszowy ε jes aki sam jak w modelu (1). Oznacza o, że warunek zgodności srukur harmonicznych obu sron równania zosał spełniony. Model zgodny (4) zawiera wszyskie wewnęrzne składniki poszczególnych procesów, uwzględnione na eapie specyfikacji, do kórych zalicza się składniki sezonowe, rendowe oraz auoregresyjne. (4) 3. Tes Diebolda-Mariano W badaniu symulacyjnym do porównania różnic rafności prognoz wykorzysano es Diebolda-Mariano, zaprezenowany w roku W eście ym badane są prognozy opare na dwóch konkurujących ze sobą modelach. Niech będzie prognozą orzymaną z modelu pierwszego, a z modelu drugiego. Wówczas jes błędem ex pos prognozy modelu pierwszego, a jes błędem ex pos prognozy dla modelu drugiego. Ponado niech oraz będą warościami funkcji sray g, za kórą najczęściej przyjmuje się funkcję kwadraową lub warość bezwzględną. Hipoeza zerowa sawiana w eście Diebolda-Mariano jes nasępująca: H 0 : E[g(e 1 )] = E[g(e 2 )] lub równoważnie H 0 : E[d ] = 0, gdzie d = g(e 1 ) g(e 2 ). Hipoeza alernaywna może przyjmować jedną z rzech form, w zależności od rodzaju esu: dwusronnego, prawosronnego lub lewosronnego. Zakładając dodakowo, że szereg jes sacjonarny, orzymuje się asympoycznie rozkład normalny:, gdzie jes średnią różnic funkcji sra, naomias jes warością gęsości spekralnej dla częsoliwości równej 0, a γ d (τ) = E[(d µ)(d τ µ)] jes auokowariancją rzędu τ. W dużej próbie rozkład d _ jes w przybliżeniu rozkładem normalnym o średniej µ i wariancji 2 f d (0)/T. Oczywise jes wyznaczenie saysyki posiadającej rozkład N(0, 1)
6 238 o posaci, gdzie jes zgodnym esymaorem i jes równy sumie warości odpowiednich auokowariancji, zdefiniowanych jako. W przeprowadzonym badaniu wykorzysano kwadraową funkcję sray g. Implemenację esu Diebolda-Mariano wykonano w oprogramowaniu grel. 4. Wyniki przeprowadzonego badania Wyniki przeprowadzonego badania zaprezenowane są na wykresach oraz w abelach. Wykresy 1-3 przedsawiają rozkład empirycznego poziomu isoności dla esu Diebolda-Mariano dla prognoz orzymanych z modelu linowego zgodnego oraz modeli nieliniowych poęgowego, wykładniczego oraz progowego dla poszczególnych eksperymenów. Wykres 1. Warości empirycznego poziomu isoności dla esu Diebolda-Mariano pomiędzy prognozami orzymanymi z modelu liniowego i poęgowego (lewy), liniowego i wykładniczego (środkowy), liniowego i progowego (prawy) dla eksperymenu 1 Wykres 2. Warości empirycznego poziomu isoności dla esu Diebolda-Mariano pomiędzy prognozami orzymanymi z modelu liniowego i poęgowego (lewy), liniowego i wykładniczego (środkowy), liniowego i progowego (prawy) dla eksperymenu 2
7 Porównanie jakości nieliniowych modeli ekonomerycznych 239 Wykres 3. Warości empirycznego poziomu isoności dla esu Diebolda-Mariano pomiędzy prognozami orzymanymi z modelu liniowego i poęgowego (lewy), liniowego i wykładniczego (środkowy), liniowego i progowego (prawy) dla eksperymenu 3 Tabele 1-3 przedsawiają udział modeli, dla kórych brak jes podsaw do odrzucenia hipoezy zerowej esu Diebolda-Mariano, mówiącej o braku różnic między prognozami dla poszczególnych par prognoz z uwzględnieniem liczby obserwacji oraz sopnia zakłócenia. Tabela 1. Udział modeli, dla kórych brak jes podsaw do odrzucenia hipoezy zerowej esu Diebolda-Mariano dla par prognoz względem liczby obserwacji i sopnia zakłócenia dla eksperymenu 1 (w %) n σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3 n = 20 97,60 97,28 97,60 99,42 99,40 99,42 99,40 99,52 99,40 n = 60 96,18 95,54 96,18 99,52 99,48 99,52 99,82 99,72 99,82 n = ,28 94,48 94,28 99,40 99,58 99,40 99,94 99,90 99,94 n = ,94 93,90 93,94 99,62 99,50 99,62 100,00 100,00 100,00 Poęgowy zgodny Wykładniczy zgodny Progowy zgodny Tabela 2. Udział modeli, dla kórych brak jes podsaw do odrzucenia hipoezy zerowej esu Diebolda-Mariano dla par prognoz względem liczby obserwacji i sopnia zakłócenia dla eksperymenu 2 (w %) n σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3 n = 20 98,88 98,72 98,88 98,64 98,24 98,64 99,58 99,52 99,58 n = 60 98,74 98,74 98,74 98,64 98,50 98,64 99,94 99,92 99,94 n = ,64 98,78 98,64 98,34 98,72 98,34 100,00 100,00 100,00 n = ,18 98,54 98,18 98,30 98,32 98,30 100,00 100,00 100,00 Poęgowy zgodny Wykładniczy zgodny Progowy zgodny
8 240 Tabela 3. Udział modeli, dla kórych brak jes podsaw do odrzucenia hipoezy zerowej esu Diebolda-Mariano dla par prognoz względem liczby obserwacji i sopnia zakłócenia dla eksperymenu 3 (w %) n σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3 n = 20 98,10 98,08 98,10 98,16 98,08 98,16 99,64 99,78 99,64 n = 60 98,04 97,72 98,04 98,12 98,00 98,12 99,98 99,94 99,98 n = ,50 97,04 97,50 97,80 97,50 97,80 99,98 100,00 99,98 n = ,04 96,34 96,04 96,78 96,80 96,78 100,00 100,00 100,00 Poęgowy zgodny Wykładniczy zgodny Progowy zgodny Podsumowanie i wnioski Przeprowadzone badanie symulacyjne, polegające na opisie i prognozowaniu zależności nieliniowych wysępujące między zjawiskami ekonomicznymi za pomocą modeli oparych na różnych posaciach analiycznych, daje podsawy do wyciągnięcia nasępujących wniosków. Tes Diebolda-Mariano, badający różnice między prognozami oparymi na różnych modelach, wykazał w bardzo wysokim sopniu, że nie wysępują isone różnice prognoz między modelem liniowym a poęgowym, liniowym a wykładniczym oraz linowym a progowym. Należy u zaznaczyć, że nie jes brana pod uwagę rafność poszczególnych prognoz. Tes porównuje jedynie różnice między prognozami, czyli mogły one być ak samo dobre, jak i ak samo złe. Należy również podkreślić, że specyfikacja wszyskich modeli zosała opara na koncepcji modelowania zgodnego, kóra zapewnia reszy o własnościach białego szumu. Na podsawie przeprowadzonego badania oraz prac m.in. Kufla 4 można swierdzić, że isnieje dowolność wyboru posaci analiycznej modelu w celu prognozowania. Niewielkie różnice między rafnością prognoz skłaniają do wykorzysania modeli o prosszych i mniej skomplikowanych posaciach analiycznych. Rekomenduje się wykorzysanie auomaycznej procedury modelowania zgodnego zaimplemenowanej w oprogramowaniu grel 5 jako narzędzia do opisu i prognozowania rzeczywisych procesów ekonomicznych. 4 P. Kufel, Liniowy zgodny dynamiczny model ekonomeryczny jako predykor nieliniowych zależności, Współczesne problemy modelowania i prognozowania zjawisk społeczno-gospodarczych, Wydawnicwo UE w Krakowie, Kraków 2009; P. Kufel, wyd. cy. 5 Por. M. Błażejowski, P. Kufel, T. Kufel, wyd. cy.
9 Porównanie jakości nieliniowych modeli ekonomerycznych 241 Lieraura Błażejowski M., Kufel P., Kufel T., Auomayczna procedura budowy specyfikacji zgodnego dynamicznego modelu ekonomerycznego w oprogramowaniu grel, Aca Universiais Nicolai Copernici, Ekonomia XXXIX, zeszy 389, Wydawnicwo UMK, Toruń Diebold F., Mariano R., Comparing Predicive Accuracy, Journal of Business & Economic Saisics 1995, vol. 1, nr 3. Doornik J., Hendry D., Ineracive Mone Carlo Experimenaion in Economerics using. PcNaive 2, TCL, London Enders W., Applied Economeric Time Series, Wiley Series in Probabilisy and Saisics, wyd. 2, John Wiley & Sons, New York Granger C., The Typical Specral Shape of an Economic Variable, Economerica 1966, nr 34. Kufel P., Liniowy zgodny dynamiczny model ekonomeryczny jako predykor nieliniowych zależności, Współczesne problemy modelowania i prognozowania zjawisk społeczno-gospodarczych, Wydawnicwo UE w Krakowie, Kraków Kufel P., Błędy prognoz w ocenie jakości modeli analiza symulacyjna, Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu 2010, nr 18. Talaga L., Zieliński Z., Analiza spekralna w modelowaniu ekonomerycznym, PWN, Warszawa Zieliński Z., Zmienność w czasie srukuralnych paramerów modelu ekonomerycznego, Przegląd Saysyczny 1984, R. XXXI, z. 1/2. Zieliński Z., Liniowe modele ekonomeryczne jako narzędzie opisu i analizy przyczynowych zależności zjawisk ekonomicznych, Wydawnicwo UMK, Toruń 1991.
Ocena efektywności procedury Congruent Specyfication dla małych prób
243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji
Bardziej szczegółowoPROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika
Bardziej szczegółowoWNIOSKOWANIE STATYSTYCZNE
Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml
Bardziej szczegółowoE k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
Bardziej szczegółowoElżbieta Szulc Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie zależności między przestrzennoczasowymi procesami ekonomicznymi
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyk Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
Bardziej szczegółowoKURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
Bardziej szczegółowoEKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.
EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b
Bardziej szczegółowolicencjat Pytania teoretyczne:
Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie
Bardziej szczegółowoPolitechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych
Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II
Bardziej szczegółowospecyfikacji i estymacji modelu regresji progowej (ang. threshold regression).
4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi
Bardziej szczegółowo1. Szereg niesezonowy 1.1. Opis szeregu
kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Gdański Zasosowanie modelu
Bardziej szczegółowoStrukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym
Jacek Baóg Uniwersye Szczeciński Srukuralne podejście w prognozowaniu produku krajowego bruo w ujęciu regionalnym Znajomość poziomu i dynamiki produku krajowego bruo wyworzonego w poszczególnych regionach
Bardziej szczegółowoStudia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii
Bardziej szczegółowoTESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Mariusz Doszyń TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH Od pewnego czasu w lieraurze ekonomerycznej pojawiają się
Bardziej szczegółowoJacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.
DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 4
Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 2 1. Zmienne sacjonarne
Bardziej szczegółowoWitold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
Bardziej szczegółowoPobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Bardziej szczegółowoDYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
Bardziej szczegółowoWYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH
SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika
Bardziej szczegółowo2. Wprowadzenie. Obiekt
POLITECHNIKA WARSZAWSKA Insyu Elekroenergeyki, Zakład Elekrowni i Gospodarki Elekroenergeycznej Bezpieczeńswo elekroenergeyczne i niezawodność zasilania laoraorium opracował: prof. dr ha. inż. Józef Paska,
Bardziej szczegółowoANALIZA POWIĄZAŃ MIĘDZY INDEKSAMI GIEŁDY FRANCUSKIEJ, HOLENDERSKIEJ I BELGIJSKIEJ Z WYKORZYSTANIEM MODELU KOREKTY BŁĘDEM
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 083-86 Nr 89 06 Uniwersye Ekonomiczny w Kaowicach Wydział Ekonomii Kaedra Meod Saysyczno-Maemaycznych w Ekonomii pawel.prenzena@edu.ueka.pl
Bardziej szczegółowoNiestacjonarne zmienne czasowe własności i testowanie
Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:
Bardziej szczegółowoMetody analizy i prognozowania szeregów czasowych
Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów
Bardziej szczegółowoPrognozowanie średniego miesięcznego kursu kupna USD
Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska
Bardziej szczegółowoNatalia Iwaszczuk, Piotr Drygaś, Piotr Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE
Naalia Iwaszczuk, Pior Drygaś, Pior Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE Wyd-wo, Rzeszów 03 dr hab., prof. nadzw. Naalia Iwaszczuk, AGH Akademia Górniczo-Hunicza im. Sanisława Saszica w Krakowie
Bardziej szczegółowoWYKORZYSTANIE TESTU OSTERBERGA DO STATYCZNYCH OBCIĄŻEŃ PRÓBNYCH PALI
Prof. dr hab.inż. Zygmun MEYER Poliechnika zczecińska, Kaedra Geoechniki Dr inż. Mariusz KOWALÓW, adres e-mail m.kowalow@gco-consul.com Geoechnical Consuling Office zczecin WYKORZYAIE EU OERERGA DO AYCZYCH
Bardziej szczegółowoKlasyfikacja modeli. Metoda najmniejszych kwadratów
Konspek ekonomeria: Weryfikacja modelu ekonomerycznego Klasyfikacja modeli Modele dzielimy na: - jedno- i wielorównaniowe - liniowe i nieliniowe - sayczne i dynamiczne - sochasyczne i deerminisyczne -
Bardziej szczegółowoANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
Bardziej szczegółowoFOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Sein., Oeconomica 2014, 313(76)3, 137 146 Maria Szmuksa-Zawadzka, Jan Zawadzki MODELE WYRÓWNYWANIA WYKŁADNICZEGO W PROGNOZOWANIU
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
Bardziej szczegółowoĆWICZENIE NR 43 U R I (1)
ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości
Bardziej szczegółowoMetody badania wpływu zmian kursu walutowego na wskaźnik inflacji
Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki
Bardziej szczegółowoPROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM
PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany
Bardziej szczegółowoCopyright by Politechnika Białostocka, Białystok 2017
Recenzenci: dr hab. Sanisław Łobejko, prof. SGH prof. dr hab. Doroa Wikowska Redakor naukowy: Joanicjusz Nazarko Auorzy: Ewa Chodakowska Kaarzyna Halicka Arkadiusz Jurczuk Joanicjusz Nazarko Redakor wydawnicwa:
Bardziej szczegółowoZajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego
Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna
Bardziej szczegółowoParytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD
Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)
Bardziej szczegółowoPOMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
Bardziej szczegółowoPREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY
B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW
Bardziej szczegółowoWykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie
Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska
Bardziej szczegółowoWYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK
Przemysław Jeziorski Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Zakład Demografii i Saysyki Ekonomicznej przemyslaw.jeziorski@ue.kaowice.pl WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA
Bardziej szczegółowoC d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Bardziej szczegółowoKombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz
Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia
Bardziej szczegółowoψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Bardziej szczegółowoWitold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu. Własności procesów STUR w świetle metod z teorii chaosu 1
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6-8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
Bardziej szczegółowoStatystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego
Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez
Bardziej szczegółowoAnaliza rynku projekt
Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes
Bardziej szczegółowoEwa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
Bardziej szczegółowoimei 1. Cel ćwiczenia 2. Zagadnienia do przygotowania 3. Program ćwiczenia
CYFROWE PRZEWARZANIE SYGNAŁÓW Laboraorium Inżynieria Biomedyczna sudia sacjonarne pierwszego sopnia ema: Wyznaczanie podsawowych paramerów okresowych sygnałów deerminisycznych imei Insyu Merologii Elekroniki
Bardziej szczegółowoMagdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna
Bardziej szczegółowoMetody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?
Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych
Bardziej szczegółowoMariusz Plich. Spis treści:
Spis reści: Modele wielorównaniowe - mnożniki i symulacje. Podsawowe pojęcia i klasyfikacje. Czynniki modelowania i sposoby wykorzysania modelu 3. ypy i posacie modeli wielorównaniowych 4. Przykłady modeli
Bardziej szczegółowoWykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
Bardziej szczegółowoBadanie funktorów logicznych TTL - ćwiczenie 1
adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami
Bardziej szczegółowoMODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH
Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym
Bardziej szczegółowoFOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2015, 323(81)4,
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Sein., Oeconomica 205, 323(8)4, 25 32 Joanna PERZYŃSKA WYBRANE MIERNIKI TRAFNOŚCI PROGNOZ EX POST W WYZNACZANIU PROGNOZ
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
Bardziej szczegółowodr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG
dr inż. MARCIN MAŁACHOWSKI Insyu Technik Innowacyjnych EMAG Wykorzysanie opycznej meody pomiaru sężenia pyłu do wspomagania oceny paramerów wpływających na możliwość zaisnienia wybuchu osiadłego pyłu węglowego
Bardziej szczegółowoPOWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE
Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe
Bardziej szczegółowoKrzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20
Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH
Bardziej szczegółowoDaniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna we Wrocławiu Wykorzysanie
Bardziej szczegółowo2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Bardziej szczegółowoTestowanie współzależności w rozwoju gospodarczym
The Wroclaw School of Banking Research Journal ISSN 1643-7772 I eissn 2392-1153 Vol. 15 I No. 5 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu ISSN 1643-7772 I eissn 2392-1153 R. 15 I Nr 5 Tesowanie
Bardziej szczegółowoOeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu
OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE
Bardziej szczegółowoVII. ZAGADNIENIA DYNAMIKI
Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz
Bardziej szczegółowoZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG
Doroa Wikowska, Anna Gasek Kaedra Ekonomerii i Informayki SGGW dwikowska@mors.sggw.waw.pl ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYC INDEKSÓW GIEŁDOWYC: WIG, WIG2, MIDWIG I TECWIG Sreszczenie:
Bardziej szczegółowoŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, sr. 389 398 ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków Gospodarczych
Bardziej szczegółowoAlicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza
Bardziej szczegółowoPomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie strategii inwestycyjnej OFE - kotynuacja. Wojciech Otto Uniwersytet Warszawski
Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie sraegii inwesycyjnej OFE - koynuacja Wojciech Oo Uniwersye Warszawski Refera przygoowany na Ogólnopolską Konferencję Naukową Zagadnienia
Bardziej szczegółowoMetody i narzędzia ewaluacji
Meody i narzędzia ewaluacji wyników zdalnego esowania wiedzy (plaforma informayczna e-maura) Książka przygoowana w ramach projeku E-maura, współfinansowanego przez Unię Europejską w ramach Europejskiego
Bardziej szczegółowoHarmonogram czyszczenia z osadów sieci wymienników ciepła w trakcie eksploatacji instalacji na przykładzie destylacji rurowo-wieżowej
Mariusz Markowski, Marian Trafczyński Poliechnika Warszawska Zakład Aparaury Przemysłowe ul. Jachowicza 2/4, 09-402 Płock Harmonogram czyszczenia z osadów sieci wymienników ciepła w rakcie eksploaaci insalaci
Bardziej szczegółowoPROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
Bardziej szczegółowoPROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody
Bardziej szczegółowoPROGNOZOWANIE BRAKUJĄCYCH DANYCH DLA SZEREGÓW O WYSOKIEJ CZĘSTOTLIWOŚCI OCZYSZCZONYCH Z SEZONOWOŚCI
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-8611 Nr 289 2016 Maria Szmuksa-Zawadzka Zachodniopomorski Uniwersye Technologiczny w Szczecinie Sudium Maemayki Jan Zawadzki
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaa Kopernika w Toruniu Małgorzaa Borzyszkowska Uniwersye Gdański
Bardziej szczegółowoWYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.
7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie
Bardziej szczegółowoMODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW
Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem
Bardziej szczegółowo3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
Bardziej szczegółowoDOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH
Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego
Bardziej szczegółowoĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym
ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami
Bardziej szczegółowoMODELOWANIE I PROGNOZOWANIE EKONOMETRYCZNE W LOGISTYCE PRZEDSIĘBIORSTWA MODELING AND ECONOMETRIC PREDICTION IN LOGISTICS COMPANY
Sysemy Logisyczne Wojsk nr 44/06 MODELOWANIE I PROGNOZOWANIE EKONOMETRYCZNE W LOGISTYCE PRZEDSIĘBIORSTWA MODELING AND ECONOMETRIC PREDICTION IN LOGISTICS COMPANY Agnieszka DUDA a.duda@aon.edu.pl Akademia
Bardziej szczegółowoWykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Bardziej szczegółowoZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH
Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów
Bardziej szczegółowoPUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem
Bardziej szczegółowoTransakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.
Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki
Bardziej szczegółowoMagdalena Sokalska Szkoła Główna Handlowa. Modelowanie zmienności stóp zwrotu danych finansowych o wysokiej częstotliwości
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Szkoła Główna Handlowa Modelowanie zmienności
Bardziej szczegółowoEFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE
Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji
Bardziej szczegółowoProjekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Bardziej szczegółowoEfekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA
Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala
Bardziej szczegółowoAnaliza szeregów czasowych w Gretlu (zajęcia 8)
Analiza szeregów czasowych w Grelu (zajęcia 8) Grel jes dość dobrym narzędziem do analizy szeregów czasowych. Już w samej podsawie Grela znajdziemy sporo zaimplemenowanych echnik służących do obróbki danych
Bardziej szczegółowo