DYNAMICZNE MODELE EKONOMETRYCZNE
|
|
- Rafał Tomczak
- 7 lat temu
- Przeglądów:
Transkrypt
1 DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Ryzyko modelu w wycenie opcji indeksowych 1. Wprowadzenie Celem arykułu zwrócenie uwagi na wykorzysanie modelu wyceny w usalaniu warości opcji indeksowych. W arykule przedsawiona zosanie isoa ryzyka modelu, rodzaje i źródła jego powsawania. Pokazane zosaną przykłady empiryczne. 2. Ryzyko modelu Ogólnie, w procesie budowy modelu nie ylko w przypadku modelu wyceny opcji indeksowych) wyróżnia się nasępujące czery podsawowe eapy: 1. Specyfikacja. 2. Określenie zbioru danych. 3. Esymacja paramerów. 4. Weryfikacja. Na każdym z ych eapów może powsać ryzyko modelu, jednak jeśli chodzi o model wyceny opcji indeksowych, eapami najbardziej narażonym na powsanie ryzyka modelu jes eap esymacji paramerów i eap specyfikacji. W ym przypadku największym problemem jes oszacowanie parameru zmienności ceny indeksu podsawowego indeksu giełdowego). Wykorzysując do wyceny opcji indeksowej klasyczny model Blacka-Scholesa-Merona można uprościć wycenę do zagadnienia oszacowania parameru zmienności. Model Blacka-Scholesa- Merona zakłada rozkład normalny sóp zwrou indeksu, zaem paramer zmienności jes szacowany jako odchylenie sandardowe. Jeśli jednak proces sopy zwrou nie podlega rozkładowi normalnemu, a ma o częso miejsce, wówczas wyznaczenie warości opcji z ego modelu jes obarczone błędem.
2 76 Kaarzyna Kuziak Ryzyko modelu może być różnie definiowane jes o poencjalna możliwość poniesienia sray w wyniku zasosowania złego modelu do wyceny insrumenu finansowego lub pomiaru ryzyka zakładamy, że model wykorzysywany jes w sposób poprawny) D. Gąarek, 2002). Bardziej ogólnie możemy swierdzić, że pojawia się wówczas, gdy opisywany w sposób formalny i poprawny fragmen rzeczywisości model oddala się od rzeczywisości generując sray. Dla porzeb ego arykułu przyjmiemy, że ryzyko modelu będzie ym ryzykiem, kóre powsaje w procesie budowy modelu. Zaem elemenarny błąd w wykorzysaniu modelu, będzie zw. ryzykiem operacyjnym, a nie ryzykiem modelu. Grupy źródeł ryzyka modelu można podzielić na: 1) finansowe, 2) echniczne, 3) saysyczne. W grupie źródeł finansowych można wyróżnić brak płynności, nieuwzględnienie koszów ransakcyjnych, nieuwzględnienie bid-ask spredów, wybór ceny do analiz cena zamknięcia, cena ransakcji, średnia cena). Naomias wśród źródeł echnicznych można wyróżnić niewysarczającą liczbę powórzeń w symulacjach, błędy przybliżeń, ograniczone przedziały ważności rozwiązań. W niniejszym arykule zwrócimy uwagę jedynie na saysyczne źródła ryzyka modelu. Do ych źródeł zaliczyć można przede wszyskim: 1) Błędy esymacji modelu pojawiające się wskuek, np.: - różnych echnik esymacji, - błędów w esymacji paramerów, - błędów wynikających z dyskreyzacji, - isnienia obserwacji nieypowych, - nieodpowiedniej liczby obserwacji, - wykorzysania danych o nieodpowiedniej częsoliwości; 2) Błędną specyfikację modelu, będącą wynikiem, np.: - błędów w rozwiązaniu analiycznym, - błędnej specyfikacji procesu kszałującego sopę zwrou warość) insrumenu finansowego, - pominięcia isonego czynnika. Na przykład błąd esymacji może doyczyć przypadku szacowania parameru zmienności dlaego, że zmienność może zosać oszacowana: - jako zmienność hisoryczna np. modele z grupy GARCH), - jako zmienność implikowana. Na przykład błąd specyfikacji procesu kszałującego sopę zwrou insrumenu finansowego w modelu Blacka-Scholesa-Merona może pojawić się w przypad-
3 Ryzyko modelu w wycenie opcji indeksowych 77 ku przyjęcia założenia dla procesu sopy zwrou insrumenu podsawowego innego, niż geomeryczny ruch Browna, np.: - geomerycznego ruchu Browna ze składnikiem losowym o rozkładzie innym niż normalny, - procesu Ornseina-Uhlenbecka, - procesu skoku-dyfuzji jump-diffusion). 3. Przykłady ryzyka modelu Ilusracja zagadnienia ryzyka modelu na przykładzie wyceny opcji indeksowej, kórej źródłem będzie zła specyfikacja procesu sochasycznego kszałującego sopę zwrou oraz źródło ryzyka modelu, jakim jes błąd esymacji modelu pojawiający się wskuek nieodpowiedniej liczby obserwacji zosanie przedsawione na przykładzie modelu wyceny opcji na indeks giełdowy WIG20. W pierwszym przykładzie w modelu wyceny opcji na indeks WIG20 rozważone zosaną nasępujące procesy dla sóp zwrou r indeksu w rzech modelach wyceny opcji indeksowej: 1) Model Blacka-Scholesa-Merona BSM): r = µ + σ ε ε ~ N0,1) gdzie: µ - oznacza oczekiwaną sopę zwrou, σ - zmienność odchylenie sandardowe sopy zwrou). Proces en zakłada sałą zmienność w czasie. 2) Model Consan Elasiciy Variance CEV): r = µ + σs ε ~ N0,1) α 1 ε gdzie: µ - oznacza oczekiwaną sopę zwrou, σs α-1 zmienność. Proces en zakłada sałą elasyczność wariancji, jes wykorzysywany do modelowania heeroskedasyczności. 3) Podejście zaprezenowane przez Duana z procesem AR1)-GJR- GARCH1,1) 1 : r µ + ϕ + ε = r 1 2 ω + α + α Ι ε ) ) ε < β 1 h = h 1 W dalszej części podejście zaproponowane przez Duana z procesem AR1)-GJR- GARCH1,1) oznaczone będzie skróem GJR-GARCH.
4 78 Kaarzyna Kuziak ω 1 V = 2 1 α β 1 ϕ gdzie: µ, ϕ, α, α -, β, ω - paramery procesu sóp zwrou, h warunkowa wariancja, V bezwarunkowa wariancja procesu długoerminowa wariancja procesu). Proces en umożliwia uwzględnienie grubych ogonów rozkładów, skupiania zmienności, auokorelacji sóp zwrou oraz efeku dźwigni asymerycznej reakcji inwesorów na dobre i złe wiadomości). Paramery rzech wyróżnionych, ze względu na możliwości modelowania różnych efeków, procesów sóp zwrou indeksu WIG20 geomeryczny ruch Browna GBM, proces ze sałą elasycznością wariancji CEV oraz warunkowej wariancji AR1)-GJR-GARCH1,1)) zosały oszacowane, a wyniki esymacji zawiera abela 1. Długoerminowa wariancja V procesu AR1)-GJR- GARCH1,1) indeksu WIG20 wynosi 0,3165. Tabela 1. Oszacowania paramerów procesu dziennych logarymicznych sóp zwrou indeksu WIG20 z okresu Model Paramery GBM µ= σ= CEV µ= σ= α= GJR-GARCH µ= φ= ω= β= α= α = Źródło: obliczenia własne. Oszacowania paramerów wyróżnionych procesów zosały wykorzysane do wyceny opcji. W modelu BSM i CEV wyceny opcji znana jes posać analiyczna modelu, naomias w przypadku rzeciego modelu nie ma posaci analiycznej modelu warość opcji jes usalana za pomocą symulacji Mone Carlo meodą zaproponowaną w pracy Duan 1995)). Orzymano czery grupy warości opcji wynikającą z przyjęcia procesu AR1)-GJR-GARCH1,1), modelu BSM i modelu BSM* w kórym uwzględniono długoerminową zmienność V z modelu AR1)-GJR-GARCH1,1)) oraz CEV. Wyniki wyceny dwóch rodzajów opcji kupna, wygasających OW20C5) i OW20F5) dla rożnych kursów wykonania na dzień przedsawione zosały w abeli 2.
5 Ryzyko modelu w wycenie opcji indeksowych 79 Tabela 2. Warości opcji o różnych cenach wykonania i dla różnych procesów sóp zwrou Opcja GJR-GARCH BSM BSM* CEV OW20C OW20C OW20C OW20C OW20C OW20F OW20F OW20F OW20F Źródło: obliczenia własne. Największa różnica w warościach opcji we wszyskich przypadkach jes widoczna między modelem BSM i modelem CEV. Wynika o z przyjęcia założenia sałej wariancji i warości oczekiwanej sóp zwrou w modelu BSM zn. sopy zwrou w kolejnych dniach pochodzą z idenycznych rozkładów), a w modelu CEV sałej elasyczności wariancji i warości oczekiwanej sóp zwrou czyli w ym przypadku wariancja zależy od poziomu ceny). Z oczywisych względów warości opcji uzyskane z modelu BSM i BSM* w kórym przyjęo długoerminową zmienność V z procesu AR1)-GJR- GARCH1,1)) są zbliżone. Zbliżone warości są również między modelami GJR-GARCH i CEV. Wynika o z faku, że oba modele opisują zmienną w czasie wariancję, uwzględniając w odmienny sposób efek dźwigni. Dodakowo w model GJR-GARCH modeluje efek powrou do średniego poziomu wariancji V, a warość opcji zależy od chwilowej wariancji w dniu wyceny kóra jes warunkiem począkowym podczas symulowania rajekorii procesu cen w meodzie Mone Carlo). W drugim przykładzie zilusrowane zosanie ryzyko modelu pojawiające się wskuek złej specyfikacji procesu sochasycznego kszałującego sopę zwrou WIG20: 1) geomerycznego ruchu Browna, 2) CEV, 3) AR1)-GJR-GARCH1,1). Na podsawie analizy dopasowania procesów do opisu kszałowania sopy zwrou indeksu WIG20 wybrany zosał model AR1)-GJR-GARCH1,1). Nasępnie wysymulowany zosał proces sopy zwrou indeksu WIG20 dla oszacowań paramerów z procesu GJR-GARCH i wycenione zosały opcje indeksowe za pomocą dwóch pozosałych modeli.
6 80 Kaarzyna Kuziak W wycenie hipoeycznej opcji kupna wysawionej na indeks WIG20 przyjęo nasępujące założenia: poziom indeksu WIG pk, sopa wolna od ryzyka 5%, długość do erminu wygaśnięcia 60 dni, średnia sopa dywidendy 0. Wykonano powórzeń w meodzie Mone Carlo dla różnych cen wykonania: 1700, 1750, 1800, 1850 i W abeli 3 zosały podane wyniki wyceny prawidłowej, j. z modelu GJR-GARCH oraz nieprawidłowej, j. na podsawie błędnie wyspecyfikowanego procesu sochasycznego sopy zwrou w modelu BSM i zmodyfikowanego BSM*, w kórym przyjęo długoerminową zmienność V z procesu GJR-GARCH oraz modelu CEV. Tabela 3. Warości opcji dla różnych cen wykonania i różnych procesów sóp zwrou Ceny wykonania GJR-GARCH CEV BSM BSM* Źródło: obliczenia własne. Pogrubioną czcionką zaznaczone są wyniki najbliższe warościom opcji z procesem GJR-GARCH. Widać, że wyniki z modelu CEV są najbliższe wynikom GJR-GARCH dla każdej wyróżnionej ceny wykonania oba modele opisują efek dźwigni). Jednak, jeżeli przyjmiemy nieprawidłowy proces sopy zwrou uaj np. GBM) różnice w wynikach warości opcji mogą być znaczące są o różnice dla jednej opcji, a podmioy częso posiadają porfele). W rzecim przykładzie przeanalizowano różnice w warościach opcji, gdy wysymulowany zosał proces sopy zwrou indeksu WIG20 dla oszacowań paramerów z procesu GBM. W wycenie przyjęo e same założenia jak w przykładzie drugim. W ym przypadku jednak prawidłowym procesem jes GBM i wycena BSM sanowi punk odniesienia. Wyniki zawiera abela 4. Tabela 4. Warości opcji dla różnych cen wykonania i różnych procesów sóp zwrou Ceny wykonania BSM BSM* GJR-GARCH CEV Źródło: obliczenia własne.
7 Ryzyko modelu w wycenie opcji indeksowych 81 Teoreycznie wszyskie modele powinny dawać zbliżone wyniki, gdyż GMB zawiera się zarówno w modelu CEV, jak i GJR-GARCH. Różnice powinny wynikać jedynie z oszacowań paramerów. Zgodnie z oczekiwaniami, najbliższe wyniki uzyskano z modelu BSM*, a w nasępnej kolejności GJR-GARCH. Model CEV jako najbardziej wrażliwy na błędy w oszacowaniach paramerów dał najbardziej różne wyniki zarówno w przykładzie drugim, jak i rzecim przy czym w przykładzie drugim dodakowo błędna była posać modelu). 4. Podsumowanie Analizując modele maemayczne w wycenie opcji lub ogólnie insrumenów pochodnych) należy wyróżnić dwie grupy opcji insrumenów pochodnych) e kóre są przedmioem obrou giełdowego i dla kórych ceny rynkowe są dosępne oraz e, kóre nie są noowane na giełdzie np. są obecne na rynku międzybankowym) i dla kórych ceny rynkowe nie są dosępne. Pierwsza grupa opcji podlega wycenie rynkowej popy i podaż określa cenę insrumenu, wycena eoreyczna nie jes konieczna. Naomias w przypadku drugiej grupy opcji, np. opcji egzoycznych, opcji zwykłych ale kórych płynność jes niska) określenie warości za pomocą modeli maemaycznych jes niezbędne. Żeby zapewnić koherencję w znaczeniu braku arbirażu) między ymi dwoma grupami zasady wyceny powinny być zgodne z obserwowanymi rynkowymi) cenami opcji na giełdzie. Przykłady e wskazują ponado, że pomocne w zarządzaniu ryzykiem modelu mogą być echniki analizy danych akie, jak: - esymacja odporna, - analiza szeregów czasowych, - analiza rozkładów, - prognozowanie. Lieraura Allen, S. L. 2003), Financial Risk Managemen: A Praciioners Guide o Managing Marke and Credi Risk, John Wiley & Sons, New York. Con, R. 2005), Model uncerainy and is impac on he pricing of derivaive insrumens. Mahemaical Finance. Crouhy, M., Galai, D. and Mark, R. 2001), Risk Managemen. McGraw-Hill, New York. Derman, E. 1996), Model risk, Risk 9, 34 37, Duan, J. 1995), The GARCH Opion Pricing Model, Mahemaical Finance, nr 5,
8 82 Kaarzyna Kuziak Gonarek, D. 2002), Ryzyko modelu, Rynek Terminowy nr 4/02, s Glosen, R. Jagannahan, D. Runkle, 1993), On he relaion beween he expeced value and he volailiy of he nominal excess reurn on socks, Journal of Finance 48, Kao, T., Yoshiba T. 2000), Model risk and is conrol. Moneary and Economic Sudies, Dec., Kuziak, K. 2005), Zagadnienie ryzyka modelu w zarządzaniu ryzykiem, Prace Naukowe AE, w druku. Pionek, K. 2003), Wycena opcji w modelu uwzględniającym efek AR-GARCH, Prace Naukowe AE we Wrocławiu nr 990, Rebonao, R. Theory and pracice of model risk managemen.
Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
Bardziej szczegółowoKrzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20
Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika
Bardziej szczegółowoWNIOSKOWANIE STATYSTYCZNE
Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml
Bardziej szczegółowoEFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE
Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji
Bardziej szczegółowoMagdalena Sokalska Szkoła Główna Handlowa. Modelowanie zmienności stóp zwrotu danych finansowych o wysokiej częstotliwości
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Szkoła Główna Handlowa Modelowanie zmienności
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika
Bardziej szczegółowoStudia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii
Bardziej szczegółowoMODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH
Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna
Bardziej szczegółowoPOMIAR RYZYKA RYNKOWEGO OPCJI NA PRZYKŁADZIE OPCJI NA WIG20
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 450 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 17 2006 KATARZYNA KUZIAK Akademia Ekonomiczna Wrocław POMIAR RYZYKA RYNKOWEGO OPCJI NA PRZYKŁADZIE OPCJI NA
Bardziej szczegółowoAlicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Gdański Zasosowanie modelu
Bardziej szczegółowoKrzysztof Jajuga Akademia Ekonomiczna we Wrocławiu. Modelowanie stóp procentowych a narzędzia ekonometrii finansowej
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Krzyszof Jajuga Akademia Ekonomiczna
Bardziej szczegółowoEuropejska opcja kupna akcji calloption
Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy
Bardziej szczegółowoKombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz
Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia
Bardziej szczegółowoMODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp
WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną
Bardziej szczegółowolicencjat Pytania teoretyczne:
Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie
Bardziej szczegółowoSYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE
SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne
Bardziej szczegółowoOddziaływanie procesu informacji na dynamikę cen akcji. Małgorzata Doman Akademia Ekonomiczna w Poznaniu
Oddziaływanie procesu informacji na dynamikę cen akcji. Małgorzaa Doman Akademia Ekonomiczna w Poznaniu Modele mikrosrukury rynku Bageho (97) informed raders próbują wykorzysać swoją przewagę informacyjną
Bardziej szczegółowoAnaliza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak
Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem
Bardziej szczegółowoOPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR
Daniel Iskra Uniwersye Ekonomiczny w Kaowicach OPTYMALIZACJA PORTFELA IWESTYCYJEGO ZE WZGLĘDU A MIIMALY POZIOM TOLERACJI DLA USTALOEGO VaR Wprowadzenie W osanich laach bardzo popularną miarą ryzyka sała
Bardziej szczegółowoWARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE
Daniel Iskra Uniwersye Ekonomiczny w Kaowicach WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Wprowadzenie Jednym z aspeków współczesnej ekonomii jes zarządzanie ryzykiem związanym
Bardziej szczegółowoWYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP
Krzyszof Jajuga Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Uniwersye Ekonomiczny we Wrocławiu WYCENA KONRAKÓW FUURES, FORWARD I SWAP DWA RODZAJE SYMERYCZNYCH INSRUMENÓW POCHODNYCH Symeryczne insrumeny
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Bardziej szczegółowoZarządzanie ryzykiem. Lista 3
Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa
Bardziej szczegółowoWitold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
Bardziej szczegółowoMarża zakupu bid (pkb) Marża sprzedaży ask (pkb)
Swap (IRS) i FRA Przykład. Sandardowy swap procenowy Dealer proponuje nasępujące sałe sopy dla sandardowej "plain vanilla" procenowej ransakcji swap. ermin wygaśnięcia Sopa dla obligacji skarbowych Marża
Bardziej szczegółowoTransakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.
Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki
Bardziej szczegółowoKrzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR
Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność
Bardziej szczegółowoMETODY STATYSTYCZNE W FINANSACH
METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny
Bardziej szczegółowoDaniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna we Wrocławiu Wykorzysanie
Bardziej szczegółowospecyfikacji i estymacji modelu regresji progowej (ang. threshold regression).
4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi
Bardziej szczegółowoOcena efektywności procedury Congruent Specyfication dla małych prób
243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji
Bardziej szczegółowoParytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD
Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)
Bardziej szczegółowoKURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
Bardziej szczegółowoE k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
Bardziej szczegółowoMODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW
Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem
Bardziej szczegółowoPIOTR FISZEDER, JACEK KWIATKOWSKI Katedra Ekonometrii i Statystyki
PIOTR FISZEDER, JACEK KWIATKOWSKI Kaedra Ekonomerii i Saysyki DYNAMICZNA ANALIZA ZALEŻNOŚCI POMIĘDZY OCZEKIWANĄ STOPĄ ZWROTU A WARUNKOWĄ WARIANCJĄ Sreszczenie: W badaniu zasosowano modele GARCHM ze sałym
Bardziej szczegółowoESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków
Bardziej szczegółowoOCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ
Tadeusz Czernik Daniel Iskra Uniwersye Ekonomiczny w Kaowicach Kaedra Maemayki Sosowanej adeusz.czernik@ue.kaowice.pl daniel.iskra@ue.kaowice.pl OCEN TRKCYJNOŚCI INWESTYCYJNEJ KCJI N PODSTWIE CZSU PRZEBYWNI
Bardziej szczegółowoPolitechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych
Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
Bardziej szczegółowoPRACA MAGISTERSKA. Modelowanie cen i zapotrzebowania na energię elektryczną.
Insyu Maemayki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska PRACA MAGISTERSKA Modelowanie cen i zaporzebowania na energię elekryczną. Pior Wilman 14.6.22 Wrocław promoor: dr Rafał Weron
Bardziej szczegółowoANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
Bardziej szczegółowoWyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH
Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele
Bardziej szczegółowoWskazówki projektowe do obliczania nośności i maksymalnego zanurzenia statku rybackiego na wstępnym etapie projektowania
CEPOWSKI omasz 1 Wskazówki projekowe do obliczania nośności i maksymalnego zanurzenia saku rybackiego na wsępnym eapie projekowania WSĘP Celem podjęych badań było opracowanie wskazówek projekowych do wyznaczania
Bardziej szczegółowoKONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK)
KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) Kaarzyna Kuziak Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W 1994 roku insyucja finansowa JP Morgan opublikowała
Bardziej szczegółowoWYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK
Przemysław Jeziorski Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Zakład Demografii i Saysyki Ekonomicznej przemyslaw.jeziorski@ue.kaowice.pl WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA
Bardziej szczegółowoJerzy Czesław Ossowski Politechnika Gdańska. Dynamika wzrostu gospodarczego a stopy procentowe w Polsce w latach
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Poliechnika Gdańska Dynamika wzrosu
Bardziej szczegółowoANALIZA PORÓWNAWCZA ŚREDNIEGO ODSETKA CZASU PRZEBYWANIA W PIERWSZEJ I DRUGIEJ POŁOWIE DNIA BADANIA EMPIRYCZNE
Tadeusz Czernik Daniel Iskra Uniwersye Ekonomiczny w Kaowicach Kaedra Maemayki Sosowanej adeusz.czernik@ue.kaowice.pl daniel.iskra@ue.kaowice.pl ANALIZA PORÓWNAWCZA ŚREDNIEGO ODSETKA CZASU PRZEBYWANIA
Bardziej szczegółowoStała potencjalnego wzrostu w rachunku kapitału ludzkiego
252 Dr Wojciech Kozioł Kaedra Rachunkowości Uniwersye Ekonomiczny w Krakowie Sała poencjalnego wzrosu w rachunku kapiału ludzkiego WSTĘP Prowadzone do ej pory badania naukowe wskazują, że poencjał kapiału
Bardziej szczegółowoSTATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU KAPITAŁOWEGO WPROWADZENIE METODOLOGIA TESTOWANIA MODELU
GraŜyna Trzpio, Dominik KręŜołek Kaedra Saysyki Akademii Ekonomicznej w Kaowicach e-mail rzpio@sulu.ae.kaowice.pl, dominik_arkano@wp.pl STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU
Bardziej szczegółowoPROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 69 Elecrical Engineering 0 Janusz WALCZAK* Seweryn MAZURKIEWICZ* PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO W arykule opisano meodę generacji
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
Bardziej szczegółowoSZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU
B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu
Bardziej szczegółowoPROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
Bardziej szczegółowoPREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY
B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW
Bardziej szczegółowoWYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH
SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów
Bardziej szczegółowoElżbieta Szulc Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie zależności między przestrzennoczasowymi procesami ekonomicznymi
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyk Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
Bardziej szczegółowoZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 MAŁGORZATA WASILEWSKA PORÓWNANIE METODY NPV, DRZEW DECYZYJNYCH I METODY OPCJI REALNYCH W WYCENIE PROJEKTÓW
Bardziej szczegółowoMODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII
KRZYSZTOF JAJUGA Akademia Ekonomiczna we Wrocławiu MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII. Modele makroekonomiczne a modele sóp procenowych wprowadzenie Nie do podważenia
Bardziej szczegółowoEFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP
Joanna Landmesser Kaedra Ekonomerii i Informayki SGGW e-mail: jgwiazda@mors.sggw.waw.pl EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE Sreszczenie: W pracy zbadano wysępowanie efeku
Bardziej szczegółowoAnaliza rynku projekt
Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes
Bardziej szczegółowoAnaliza metod oceny efektywności inwestycji rzeczowych**
Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie
Bardziej szczegółowoMetody badania wpływu zmian kursu walutowego na wskaźnik inflacji
Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki
Bardziej szczegółowoBayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1
Jacek Kwiakowski Uniwersye Mikołaja Kopernika w Toruniu Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1 WSTĘP Powszechnie wiadomo, że podsawowymi własnościami procesów finansowych
Bardziej szczegółowoC d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Bardziej szczegółowoKrzysztof Piontek Akademia Ekonomiczna we Wrocławiu. Modelowanie warunkowej kurtozy oraz skośności w finansowych szeregach czasowych
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 5 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna we Wrocławiu Modelowanie
Bardziej szczegółowoEKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.
EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b
Bardziej szczegółowoO PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE
MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XIII/3, 01, sr 43 5 O EWNYCH KRYERIACH INWESOWANIA W OCJE NA AKCJE omasz Warowny Kaedra Meod Ilościowych w Zarządzaniu oliechnika Lubelska e-mail: warowny@pollubpl
Bardziej szczegółowoA C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012)
A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 211 220 Pierwsza wersja złożona 25 października 2011 ISSN Końcowa wersja zaakcepowana 3 grudnia 2012 2080-0339
Bardziej szczegółowoPOMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
Bardziej szczegółowoROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach
ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika
Bardziej szczegółowoWYCENA OBLIGACJI KATASTROFICZNEJ WRAZ Z SYMULACJAMI NUMERYCZNYMI
Zeszyy Naukowe Wydziału Informaycznych Technik Zarządzania Wyższej Szkoły Informayki Sosowanej i Zarządzania Współczesne Problemy Zarządzania Nr 1/2010 WYCENA OBLIGACJI KATASTROFICZNEJ WRAZ Z SYULACJAI
Bardziej szczegółowoWERYFIKACJA JAKOŚCI PROGNOZ ZMIENNOŚCI WYKORZYSTYWANYCH W MODELU RISKMETRICS TM
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 083-8611 Nr 86 016 Ekonomia 6 Uniwersye Ekonomiczny w Kaowicach Wydział Finansów i Ubezpieczeń Kaedra Inwesycji i Nieruchomości
Bardziej szczegółowoOcena płynności wybranymi metodami szacowania osadu 1
Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych
Bardziej szczegółowoHeteroskedastyczność szeregu stóp zwrotu a koncepcja pomiaru ryzyka metodą VaR
Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Heeroskedasyczność szeregu sóp zwrou a koncepcja pomiaru ryzyka meodą VaR Wsęp Spośród wielu rodzajów ryzyka
Bardziej szczegółowoEfekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA
Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala
Bardziej szczegółowoAnna Pajor Akademia Ekonomiczna w Krakowie
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Krakowie Prognozowanie
Bardziej szczegółowo( ) ( ) ( τ) ( t) = 0
Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany
Bardziej szczegółowoDYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
Bardziej szczegółowoFinanse. cov. * i. 1. Premia za ryzyko. 2. Wskaźnik Treynora. 3. Wskaźnik Jensena
Finanse 1. Premia za ryzyko PR r m r f. Wskaźnik Treynora T r r f 3. Wskaźnik Jensena r [ rf ( rm rf ] 4. Porfel o minimalnej wariancji (ile procen danej spółki powinno znaleźć się w porfelu w a w cov,
Bardziej szczegółowoMODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX
Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział
Bardziej szczegółowoPrognozowanie średniego miesięcznego kursu kupna USD
Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska
Bardziej szczegółowoPorównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz
233 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Porównanie jakości nieliniowych modeli ekonomerycznych na podsawie esów rafności prognoz Sreszczenie.
Bardziej szczegółowoZastosowanie technologii SDF do lokalizowania źródeł emisji BPSK i QPSK
Jan M. KELNER, Cezary ZIÓŁKOWSKI Wojskowa Akademia Techniczna, Wydział Elekroniki, Insyu Telekomunikacji doi:1.15199/48.15.3.14 Zasosowanie echnologii SDF do lokalizowania źródeł emisji BPSK i QPSK Sreszczenie.
Bardziej szczegółowoMagdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye
Bardziej szczegółowoRACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE
RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE PYTANIA KONTROLNE Czym charakeryzują się wskaźniki saycznej meody oceny projeku inwesycyjnego Dla kórego wskaźnika wyliczamy średnią księgową
Bardziej szczegółowoMAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa
Bardziej szczegółowoCopyright by Politechnika Białostocka, Białystok 2017
Recenzenci: dr hab. Sanisław Łobejko, prof. SGH prof. dr hab. Doroa Wikowska Redakor naukowy: Joanicjusz Nazarko Auorzy: Ewa Chodakowska Kaarzyna Halicka Arkadiusz Jurczuk Joanicjusz Nazarko Redakor wydawnicwa:
Bardziej szczegółowo2. Wprowadzenie. Obiekt
POLITECHNIKA WARSZAWSKA Insyu Elekroenergeyki, Zakład Elekrowni i Gospodarki Elekroenergeycznej Bezpieczeńswo elekroenergeyczne i niezawodność zasilania laoraorium opracował: prof. dr ha. inż. Józef Paska,
Bardziej szczegółowoWPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH
Tadeusz Czernik Uniwersye Ekonomiczny w Kaowicach WPŁYW NIEPEWNOŚCI OZACOWANIA ZMIENNOŚCI NA CENĘ INTRUMENTÓW POCHODNYCH Wprowadzenie Jednym z filarów współczesnych finansów jes eoria wyceny insrumenów
Bardziej szczegółowoKrzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH
Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informatyki Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH rozprawa doktorska Promotor: prof.
Bardziej szczegółowoPostęp techniczny. Model lidera-naśladowcy. Dr hab. Joanna Siwińska-Gorzelak
Posęp echniczny. Model lidera-naśladowcy Dr hab. Joanna Siwińska-Gorzelak Założenia Rozparujemy dwa kraje; kraj 1 jes bardziej zaawansowany echnologicznie (lider); kraj 2 jes mniej zaawansowany i nie worzy
Bardziej szczegółowoWarszawa, dnia 5 czerwca 2017 r. Poz. 13 UCHWAŁA NR 29/2017 ZARZĄDU NARODOWEGO BANKU POLSKIEGO. z dnia 2 czerwca 2017 r.
DZIENNIK URZĘDOWY NARODOWEGO BANKU POLSKIEGO Warszawa, dnia 5 czerwca 2017 r. Poz. 13 UCHWAŁA NR 29/2017 ZARZĄDU NARODOWEGO BANKU POLSKIEGO z dnia 2 czerwca 2017 r. zmieniająca uchwałę w sprawie wprowadzenia
Bardziej szczegółowoANALIZA RYZYKA NA RYNKU NORD POOL SPOT
Alicja Ganczarek-Gamro Dominik Krężołek Uniwersye Ekonomiczny w Kaowicach ANALIZA RYZYKA NA RYNKU NORD POOL SPOT Wprowadzenie Rynek owarowy można zdefiniować jako pewien sysem, w kórym nasępuje konfronacja
Bardziej szczegółowoJacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.
DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury
Bardziej szczegółowo