FINANSOWE SZEREGI CZASOWE WYKŁAD 3
|
|
- Bronisława Lewicka
- 7 lat temu
- Przeglądów:
Transkrypt
1 FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH Kraków 0
2 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ). q q... 0 AR(p): gdze ε są d(0,σ ). p p... 0 gdze jes welomanem opóźneń AR(p) można zapsać w posac 0 ) ( p p... ) ( ) 0 ( Proces MA(q) można zapsać w posac gdze q q... ) (
3 Tomasz Wójowcz, WZ AGH Kraków ARMA(p,q) Model ARMA(p,q) jes sacjonarny, gdy perwask welomanu leżą na zewnąrz koła jednoskowego czyl q q p p gdze: ) ( ) ( 0 p p... ) ( q q... ) ( ε są d(0,σ ). () Model ARMA(p,q) jes odwracalny, gdy perwask welomanu leżą na zewnąrz koła jednoskowego () jes procesem ARMA(p,q), gdy
4 Tomasz Wójowcz, WZ AGH Kraków esymacja prognozowane Esymacja paramerów modelu ARMA(p,q) meoda najwększej warogodnośc Wybór rzędu opóźnena mnmalzacja kryerum nformacyjnego Prognozowane mając dane dla =,...,T prognoza na okres: ) ( ) ( T T T T e ()) ( e T D ) ( ) ( 0 q p 0 q T p T T T T E 0,...) ( ) ( q T p T x T x 0 ˆ ) (
5 re przykład ygodnowe cągłe sopy zwrou TP SA w okrese (95 ygodn) R ln P ln P Tomasz Wójowcz, WZ AGH Kraków
6 korelogram: ACF dla zmennej re_psa +-,96/T^0, opónena PACF dla zmennej re_psa +-,96/T^0, opónena Tomasz Wójowcz, WZ AGH Kraków
7 korelogram: Opóźnena ACF PACF jung-box [p] -0,4-0,4,558 [0,0] -0,46** -0,608** 6,889 [0,03] 3-0,0465-0,0869 7,395 [0,06] 4 0,03-0,096 7,4377 [0,4] 5-0,0949-0,06* 9,958 [0,098] 6 0,078 0,040 0,3635 [0,0] 7-0,068-0,0374 0,49 [0,66] 8 0,0396 0,039 0,7509 [0,6] 9-0,04-0,033, [0,67] 0 0,0657 0,0597,036 [0,83] -0,0905-0,0735 3,778 [0,46] -0,057-0,0707 4,373 [0,78] 3 0,055 0,038 5,07 [0,306] 4-0,008-0,045 5,0368 [0,376] 5-0,073-0,0595 6,43 [0,373] 6 0,033-0,06 6,357 [0,48] 7-0,43** -0,76** 0,8046 [0,35] 8-0,0959-0,58**,837 [0,97] 9 0,0598-0,040 3,63 [0,] 0 0,7** 0,075 30,59 [0,066] -0,048 0, ,3969 [0,084] 0,069 0, ,5606 [0,05] 3 0,003 0,045 30,569 [0,34] Tomasz Wójowcz, WZ AGH Kraków 4-0,09-0,0757 3,47 [0,7]
8 kryera nformacyjne: AIC MA AR , -737,6-740,8-740,3-738,4-739,5-737,8-736, -738,8-743,3-74,3-740,4-738,6-738, ,5-74, , -739, , -734, 3-74,4-74, -740, -744,8-737,8-735,8-733, -736, ,4-740, -739,6-743,5-74, -739,7-73, -734, , ,8-74,6-740, -736, , ,9-736, -734,3-73,3-73, Tomasz Wójowcz, WZ AGH Kraków
9 kryera nformacyjne: MA HQC AR ,4-733,6-735,5-733,6-730,4-730, -77, -74, -734,8-737,9-734,7-73,4-79, ,7-737, -734, ,8-78, ,8-79, ,7-734, -730,9-734, -75,8-7,5-78,4-70,8 4-73,4-730,9-78,9-73,5-78,8-75, -76, -77,5 5-79,8-78,3-75,8-78,3-75,5-70,3-76,7-74, ,6-75,3-70, ,6-7, Tomasz Wójowcz, WZ AGH Kraków
10 kryera nformacyjne: MA BIC AR ,5-77,7-77,6-73,8-78,6-76,5-7,4-706,5-78,9-730, -74,9-70,7-75,5-7,3-707,3-70, -79,3-74,9-70, -76, -7,9-707,4-703, -697,9 3-74,9-7,5-77, -78,5-708, -70,9-696,8-697,3 4-79,7-77, -73, -73,8-709, -703,5-69, , -7,6-708, -708,7-703,9-696,8-69, -686,9 6-7,4-707, ,7-696,7-69,5-686, -68,7 Tomasz Wójowcz, WZ AGH Kraków
11 model ARMA(3,3) Zmenna Współczynnk Błąd sand. Saysyka warość p cons -0, , ,608 0,0737 ph_ -0, , ,693 0,00708 *** ph_ 0,6893 0,6406 0,3695 0,774 ph_3 0,5574 0, ,5573 0,5779 hea_ 0, ,355,4766 0,036 ** hea_ -0,5365 0, ,000 0,3635 hea_3-0, , ,330 0,758 AR MA Rzeczywsa Urojona Moduł Okresowość Perwasek -,50 0,0000,50 0,5000 Perwasek -,893 0,0000,893 0,5000 Perwasek 3,0364 0,0000,0364 0,0000 Perwasek -,657 0,53,907 0,4686 Perwasek -,657-0,53,907-0,4686 Perwasek 3,337 0,0000,337 0,0000 Tomasz Wójowcz, WZ AGH Kraków
12 model ARMA(,) Zmenna Współczynnk Błąd sand. Saysyka warość p cons -0, , ,5583 0,96 ph_ 0,7088 0,7353 5,5608 <0,0000 *** hea_ -0, , ,8660 <0,0000 *** Rzeczywsa Urojona Moduł Okresowość AR Perwasek,4 0,0000,4 0,0000 MA Perwasek,387 0,0000,387 0,0000 Tes na normalność rozkładu resz: Hpoeza zerowa: składnk losowy ma rozkład normalny Saysyka esu: Ch-kwadra() = 3,779 (p = 0,000500) Tes ARCH dla rzędu opóźnena 4: Hpoeza zerowa: efek ARCH ne wysępuje Saysyka esu: TR =,6393 (p = 0,55504) Tomasz Wójowcz, WZ AGH Kraków
13 Gêsoæ przykład ARMA(,) - reszy 4 Tes na normalnoæ rozk³adu: Ch-kwadra() = 3,78, waroæ p = 0,0005 uha60 N(-0, ,03734) uha60 Tomasz Wójowcz, WZ AGH Kraków
14 ARMA(,) - reszy Opóźnena ACF PACF jung-box [p] 0,0074 0,0074 0,008 [0,97] -0,05-0,05 0,5486 [0,760] 3 0,07 0,036 0,5808 [0,90] 4 0,0649 0,06,447 [0,840] 5-0,048-0,048,897 [0,864] 6 0,0963 0,044 3,7663 [0,708] 7 0,0074-0,006 3,7775 [0,805] 8 0,0379 0,046 4,0707 [0,85] 9-0,0374-0,035 4,3588 [0,886] 0 0,0676 0,059 5,303 [0,870] -0,0877-0,088 6,900 [0,807] -0,0637-0,069 7,7475 [0,805] 3 0,03 0,0306 7,95 [0,847] 4-0,06-0,0548 8,0963 [0,884] 5-0,084-0,0538 9,5398 [0,848] 6 0,0086-0,0083 9,5554 [0,889] 7-0,475** -0,50** 4,30 [0,65] 8-0,095-0,077 6,0785 [0,587] 9 0,0545 0,0538 6,74 [0,609] 0 0,605** 0,597**,3548 [0,3] -0,044 0,078,4005 [0,377] 0,036 0,06,67 [0,43] 3 0,005 0,0053,63 [0,483] 4-0,074-0,0746 3,7953 [0,473] Tomasz Wójowcz, WZ AGH Kraków
15 ygodnowe cągłe sopy zwrou TP SA można opsać modelem ARMA(,): 0,708 0,005 0, 878 Tomasz Wójowcz, WZ AGH Kraków
16 R ln P ln P ln P ln P czyl na podsawe modelu ARMA(,) możemy wyznaczyć prognozy dla logarymów cen akcj TP SA: R Tomasz Wójowcz, WZ AGH Kraków
17 ... dla samych cen... prognoza opara na rendze: Tomasz Wójowcz, WZ AGH Kraków
18 Tomasz Wójowcz, WZ AGH Kraków Model ARIMA
19 psa ARIMA P - ceny akcj TP SA - nesacjonarne R ln P ln P - sopy zwrou (różnce log-cen) - sacjonarne (ARMA(,)) Defncja Nesacjonarny proces ( ) d jes procesem ARIMA(p,d,q), jeżel jes procesem ARMA(p,q). Tomasz Wójowcz, WZ AGH Kraków
20 ARIMA - przykłady Błądzene losowe: Tomasz Wójowcz, WZ AGH Kraków
21 Tomasz Wójowcz, WZ AGH Kraków ARIMA - przykłady Błądzene losowe z dryfem zawera rend lnowy: y
22 I(0) vs I() Oznaczena: ~ I(0) gdy jes sacjonarny ~ I() gdy jes sacjonarny ~ I() gdy ( ) jes sacjonarny a b a rend deermnsyczny rend sochasyczny 0,,8 0, 0, 8 Tomasz Wójowcz, WZ AGH Kraków
23 esy perwaska jednoskowego Badane sacjonarnośc esy perwaska jednoskowego: es ADF (Dckey-Fuller) H H 0 : : ~ I() ~ I(0) es KPSS (Kwakowsk-Phllps-Schmd-Shn): H H 0 : : ~ I(0) ~ I() odrzucć H 0 ADF dla ne odrzucć H 0 ~ I(0) może być I() odrzucć H 0 ADF dla Δ ne odrzucć H 0 ~ I() może być I() Tomasz Wójowcz, WZ AGH Kraków
24 Noowana TP SA w okrese (95 ygodn) Tes ADF: Hpoeza zerowa: wysępuje perwasek jednoskowy a = ; proces I() es z wyrazem wolnym (cons) model: ( - )y = b0 + (a-)*y(-) e Auokorelacja resz rzędu perwszego: -0,04 esymowana warość (a-) wynos: -0,0497 Saysyka esu: au_c() = -,5057 asympoyczna warość p = 0,885 z wyrazem wolnym rendem lnowym model: ( - )y = b0 + b* + (a-)*y(-) e Auokorelacja resz rzędu perwszego: -0,007 esymowana warość (a-) wynos: -0,09835 Saysyka esu: au_c() = -,8503 asympoyczna warość p = 0,79 z wyrazem wolnym, rendem lnowym rendem kwadraowym model: ( - )y = b0 + b* + b*^ + (a-)*y(-) e Auokorelacja resz rzędu perwszego: -0,007 esymowana warość (a-) wynos: -0,35698 Saysyka esu: au_c() = -3,47706 asympoyczna warość p = 0,87 Tomasz Wójowcz, WZ AGH Kraków
25 Noowana TP SA w okrese (95 ygodn) es KPSS Hpoeza zerowa: proces sacjonarny; dla zm. psa (z rendem) Paramer rzędu opóźnena (lag runcaon) = 4 Saysyka esu = 0, % 5%,5% % Kryyczna war.: 0,9 0,46 0,76 0,6 Hpoeza zerowa: proces sacjonarny; es KPSS dla zm. psa (bez rendu) Paramer rzędu opóźnena (lag runcaon) = 4 Saysyka esu = 3, % 5%,5% % Kryyczna war.: 0,347 0,463 0,574 0,739 Tomasz Wójowcz, WZ AGH Kraków
Finansowe szeregi czasowe wykład 7
Fnansowe szereg czasowe wykład 7 dr Tomasz Wójowcz Wydzał Zarządzana AGH 38 33 28 23 18 13 8 1 11 21 31 41 51 61 71 Kraków 213 Noowana ndeksu WIG w okrese: 3 marca 29 31 syczna 211 55 5 45 4 35 3 25 2
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje
Bardziej szczegółowo1. Szereg niesezonowy 1.1. Opis szeregu
kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 4
Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 2 1. Zmienne sacjonarne
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 3 Szereg
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 5
Sanisław Cichocki Naalia Nehrebecka Wkład 5 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 2 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA
Bardziej szczegółowoNiestacjonarne zmienne czasowe własności i testowanie
Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 3 Szereg czasowy jes pojedynczą realzacją pewnego
Bardziej szczegółowoHipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ
WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego
Bardziej szczegółowoModelowanie i analiza szeregów czasowych
Modelowanie i analiza szeregów czasowych Małgorzaa Doman Plan zajęć Część. Modelowanie szeregów jednowymiarowych.. Szeregi jednowymiarowe własności i diagnozowanie. Modele auoregresji i średniej ruchomej
Bardziej szczegółowoPROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
Bardziej szczegółowoIntegracja zmiennych Zmienna y
Inegracja zmiennych Zmienna y jes zinegrowana rzędu d jeśli jej różnice rzędu d są sacjonarne. Zapisujemy o y ~ I ( d ). Przyjmuje się również, że zmienna sacjonarna y (jako że nie rzeba jej różnicować,
Bardziej szczegółowoModele ARIMA prognoza, specykacja
Modele ARIMA prognoza, specykacja Wst p do ekonometrii szeregów czasowych wiczenia 3 5 marca 2010 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Funkcja autokorelacji
Bardziej szczegółowo1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące
Bardziej szczegółowoEkonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk
Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1
Bardziej szczegółowoEkonometryczne modele nieliniowe
Ekonomeryczne modele nelnowe Wykład 5 Progowe modele regrej Leraura Hanen B. E. 997 Inference n TAR Model, Sude n Nonlnear Dynamc and Economerc,. Tek na rone nerneowej wykładu Dodakowa leraura Hanen B.
Bardziej szczegółowoSzeregi czasowe, analiza zależności krótkoi długozasięgowych
Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t
Bardziej szczegółowospecyfikacji i estymacji modelu regresji progowej (ang. threshold regression).
4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi
Bardziej szczegółowo1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
Bardziej szczegółowoMetody analizy i prognozowania szeregów czasowych
Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r.
Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny
Bardziej szczegółowoStatystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego
Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Gdański Zasosowanie modelu
Bardziej szczegółowoSylabus Formularz opisu przedmiotu (formularz sylabusa) dla studiów I i II stopnia 1 wypełnia koordynator przedmiotu
Sylabus Formularz opisu przedmiotu (formularz sylabusa) dla studiów I i II stopnia 1 wypełnia koordynator przedmiotu A. Informacje ogólne Nazwa pola Nazwa przedmiotu Treść Analiza Szeregów Czasowych Jednostka
Bardziej szczegółowoWykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 8. CAŁKI NIEOZNACZONE. ( x) 2 cos2x
Wykład z Podsaw maemayk dla sudenów Inżyner Środowska Wykład 8. CŁKI NIEOZNCZONE Defnca (funkca perwona) Nech F es funkcą perwoną funkc f na przedzale I, eżel F '( ) f ( ) dla każdego I. Udowodnć, że funkce
Bardziej szczegółowoJacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.
DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury
Bardziej szczegółowoKrzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20
Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH
Bardziej szczegółowoWprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Bardziej szczegółowoANALIZA POWIĄZAŃ MIĘDZY INDEKSAMI GIEŁDY FRANCUSKIEJ, HOLENDERSKIEJ I BELGIJSKIEJ Z WYKORZYSTANIEM MODELU KOREKTY BŁĘDEM
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 083-86 Nr 89 06 Uniwersye Ekonomiczny w Kaowicach Wydział Ekonomii Kaedra Meod Saysyczno-Maemaycznych w Ekonomii pawel.prenzena@edu.ueka.pl
Bardziej szczegółowoEKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.
EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b
Bardziej szczegółowoAnaliza Szeregów Czasowych. Egzamin
Analiza Szeregów Czasowych Egzamin 12-06-2018 Zadanie 1: Zadanie 2: Zadanie 3: Zadanie 4: / 12 pkt. / 12 pkt. / 12 pkt. / 14 pkt. Projekt zaliczeniowy: Razem: / 100 pkt. / 50 pkt. Regulamin egzaminu 1.
Bardziej szczegółowoAnaliza szeregów czasowych: 6. Liniowe modele niestacjonarne
Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Warunki stacjonarności modelu AR(p) y n = β 1 y n 1 + β 2 y n 2 + + β
Bardziej szczegółowolicencjat Pytania teoretyczne:
Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie
Bardziej szczegółowo65120/ / / /200
. W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę
Bardziej szczegółowoEkonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk
Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 5 & 6 Szaeregi
Bardziej szczegółowoAnaliza szeregów czasowych w Gretlu (zajęcia 8)
Analiza szeregów czasowych w Grelu (zajęcia 8) Grel jes dość dobrym narzędziem do analizy szeregów czasowych. Już w samej podsawie Grela znajdziemy sporo zaimplemenowanych echnik służących do obróbki danych
Bardziej szczegółowo) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
Bardziej szczegółowo3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Bardziej szczegółowo1.1 Opis danych Dekompozycja szeregu ARIMA Prognoza Podsumowanie Opis danych...
1 Szereg niesezonowy... 3 1.1 Opis danych... 3 1.2 Dekompozycja szeregu... 3 1.3... 3 1.4 ARIMA... 10 1.5 Prognoza... 12 1.6 Podsumowanie... 15 2 Szereg sezonowy... 15 2.1 Opis danych... 15 2.2 Dekompozycja
Bardziej szczegółowoKlasyfikacja modeli. Metoda najmniejszych kwadratów
Konspek ekonomeria: Weryfikacja modelu ekonomerycznego Klasyfikacja modeli Modele dzielimy na: - jedno- i wielorównaniowe - liniowe i nieliniowe - sayczne i dynamiczne - sochasyczne i deerminisyczne -
Bardziej szczegółowoStudia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii
Bardziej szczegółowoParytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD
Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)
Bardziej szczegółowoKarolina Kluth Uniwersytet Mikołaja Kopernika w Toruniu. Konwergencja gospodarcza w zakresie kryteriów Traktatu z Maastricht analiza ekonometryczna
DYAMICZE MODELE EKOOMETRYCZE X Ogólnopolske Semnarum aukowe, 4 6 wrześna 007 w Torunu Kaedra Ekonomer Saysyk, Unwersye Mkołaja Kopernka w Torunu Karolna Kluh Unwersye Mkołaja Kopernka w Torunu Konwergencja
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych
Bardziej szczegółowoBadanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
Bardziej szczegółowoZadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość?
Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Wykres stopy bezrobocia rejestrowanego w okresie 01.1998 12.2008, dane Polskie 22 20 18 16 stopa 14 12
Bardziej szczegółowoEkonometryczne modele nieliniowe
Eonomeryczne modele nieliniowe Wyład Doromił Serwa Zajęcia Wyład Laoraorium ompuerowe Prezenacje Zaliczenie EGZAMI 50% a egzaminie oowiązują wszysie informacje przeazane w czasie wyładów np. slajdy. Aywność
Bardziej szczegółowo(estymator asymptotycznej macierzy kowariancji estymatora nieliniowej MNK w MNRN)
W ypowym zadanu z regresj nelnowej mamy nasępujące eapy: Esymacja (uzyskane ocen punkowych paramerów), w ym: 1. Dobór punków sarowych.. Kolejne eracje algorymu Gaussa Newona. 3. Zakończene algorymu Gaussa
Bardziej szczegółowoAnaliza szeregów czasowych bezrobocia i inflacji w Danii
Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Analiza szeregów czasowych bezrobocia i inflacji w Danii Projekt zaliczeniowy z przedmiotu: Analiza Szeregów Czasowych
Bardziej szczegółowoWYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK
Przemysław Jeziorski Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Zakład Demografii i Saysyki Ekonomicznej przemyslaw.jeziorski@ue.kaowice.pl WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA
Bardziej szczegółowoWYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
1 WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy): Matematyka Specjalność (jeśli
Bardziej szczegółowo4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE - zadania powtórzeniowe
PROGNOZOWANIE I SYMULACJE - zadana powórzenowe Zadana I. Na podsawe danych z la 88- zbudowano model: y = + 3, 5 s = szuk, R =,3 opsujcy lczb sprzedawanych arówek w yscach szuk w pewnej frme. Wyznaczy prognoz
Bardziej szczegółowo( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X
Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są
Bardziej szczegółowoWYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
1 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy):
Bardziej szczegółowoProjekt z Ekonometrii Dynamicznej
Projekt z Ekonometrii Dynamicznej Tomasz Tymecki L.p. Nazwa 1 KGHM 2 ORBIS 3 FERRUM 4 VISTULA 5 BORYSZEW 6 MOSTOSTALZAB 7 BYTOM 8 FORTE 9 PRÓCHNIK 1 ŻYWIEC 11 Indeks WIG 12 Indeks WIG2 Spis treści I. Analiza
Bardziej szczegółowot t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o
Cele werfacj odelu Werfacja sasczna odelu polega na oblczenu szeregu ernów jaośc odelu oraz werfacj pewnch hpoez sascznch w celu sprawdzena cz na podsawe ego odelu ożna wcągać wnos doczące badanego zjawsa
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Bardziej szczegółowoNatalia Nehrebecka. Zajęcia 3
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a
Bardziej szczegółowoWNIOSKOWANIE STATYSTYCZNE
Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml
Bardziej szczegółowoPODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK
PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK Założena Nech oznacza ozom (warość) badanego zjawska (zmennej) w kolejnch momenach czasu T0, gdze T 0 0,1,..., n 1 oznacza worz szereg czasow. zbór numerów czasu. Cąg
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAICZNE ODELE EKONOETRYCZNE X Ogólnopolske Semnarum Naukowe, 4 6 wrześna 7 w Torunu Kaedra Ekonomer Saysyk, Unwersye kołaja Kopernka w Torunu Jacek Kwakowsk Unwersye kołaja Kopernka w Torunu odele RCA
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Bardziej szczegółowoMateriał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych)
Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) (studium przypadku) Nazwa przedmiotu: ekonometria finansowa I (22204), analiza szeregów czasowych
Bardziej szczegółowoWykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
Bardziej szczegółowoProjekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Bardziej szczegółowot t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o ˆ
Eonoera Ćwczena Werfacja odelu eonoercznego Maerał poocncze Cele werfacj odelu Werfacja sasczna odelu polega na oblczenu szeregu ernów jaośc odelu oraz werfacj pewnch hpoez sascznch w celu sprawdzena cz
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
Bardziej szczegółowoKurtoza w procesach generowanych przez model RCA GARCH
Joanna Górka * Kuroza w procesach generowanych przez model RCA GARCH Wsęp Na przesrzen osanej dekady odnoowuje sę szybk rozwój model nelnowych. Wdoczna jes zwłaszcza różnorodność nelnowych specyfkacj modelowych,
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
Bardziej szczegółowoFunkcje i charakterystyki zmiennych losowych
Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych
Bardziej szczegółowoWykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Bardziej szczegółowoCechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
Bardziej szczegółowoNatalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
Bardziej szczegółowoOcena efektywności procedury Congruent Specyfication dla małych prób
243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji
Bardziej szczegółowoModelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH
Raport 10/2015 Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych
Bardziej szczegółowoHIPOTEZA STOPY NATURALNEJ. MIĘDZY EKONOMETRIĄ A HISTORIĄ MYŚLI EKONOMICZNEJ.
Jacek Wallusch Akadema Ekonomczna w Poznanu HIPOTEZA STOPY NATURALNEJ. MIĘDZY EKONOMETRIĄ A HISTORIĄ MYŚLI EKONOMICZNEJ. Dazu brauche ch ene Besazung de mmach dam alles klapp. Wenn se mmachen soll dann
Bardziej szczegółowoZaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna
Bardziej szczegółowoStatystyka. Zmienne losowe
Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu
Bardziej szczegółowoW praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Bardziej szczegółowoPROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
Bardziej szczegółowoKier. MTR Programowanie w MATLABie Laboratorium
Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu
Bardziej szczegółowoProjekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Bardziej szczegółowoEuropejska opcja kupna akcji calloption
Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy
Bardziej szczegółowoNatalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
Bardziej szczegółowo5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Bardziej szczegółowoPROGNOZA WYSTĄPIENIA WSTRZĄSU ZA POMOCĄ SZEREGÓW CZASOWYCH. 1. Wprowadzenie. Zdzisław Iwulski* Górnictwo i Geoinżynieria Rok 31 Zeszyt 3/1 2007
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3/1 2007 Zdzisław Iwulski* PROGNOZA WYSTĄPIENIA WSTRZĄSU ZA POMOCĄ SZEREGÓW CZASOWYCH 1. Wprowadzenie Z szeregami czasowymi spotykamy się w inżynierii, geologii,
Bardziej szczegółowoEkonometria I materiały do ćwiczeń data lp wykładu temat Wykład dr Dorota Ciołek Ćwiczenia mgr inż. Marta Chylińska
Ekonomera I maerał do ćwczeń daa lp wkładu ema Wkład dr Doroa Cołek Ćwczena mgr nż. Mara Chlńska - Rodzaje danch sascznch 1a) Przkład problemów badawczch - Zmenne ekonomczne jako zmenne hpoeza, propozcja
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
Bardziej szczegółowoPrognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Bardziej szczegółowoModelowanie systemów skointegrowanych. Aspekty teoretyczne
Bank i Kredy 45(5), 04, 433 466 Modelowanie sysemów skoinegrowanych. Aspeky eoreyczne Michał Majserek Nadesłany: 30 kwienia 04 r. Zaakcepowany: 3 września 04 r. Sreszczenie Analiza ekonomeryczna w przypadku
Bardziej szczegółowoMagdalena Sokalska Szkoła Główna Handlowa. Modelowanie zmienności stóp zwrotu danych finansowych o wysokiej częstotliwości
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Szkoła Główna Handlowa Modelowanie zmienności
Bardziej szczegółowoStacjonarność Integracja. Integracja. Integracja
Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:
Bardziej szczegółowoMODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO
KIERZKOWSKI Arur 1 Transpor loniczy, szeregi czasowe, eksploaacja, modelowanie MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO W referacie przedsawiono probabilisyczny model czasu obsługi naziemnej saku
Bardziej szczegółowoEkonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE
Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria szeregów czasowych Procesy stochastyczne Stacjonarność i biały szum Niestacjonarność:
Bardziej szczegółowoWYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego
WYKŁAD: Szeregi czasowe I Zaawansowane Metody Uczenia Maszynowego Szereg czasowy (X t ) - ciąg zmiennych losowych indeksowany parametrem t (czas). Z reguły t N lub t Z. Dotąd rozpatrywaliśmy: (X t )- ciąg
Bardziej szczegółowoNie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce
Zeszyy Naukowe Uniwersyeu Szczecińskiego nr 862 Finanse, Rynki Finansowe, Ubezpieczenia nr 75 (2015) DOI: 10.18276/frfu.2015.75-16 s. 193 204 Nie(efekywność) informacyjna giełdowego rynku konraków erminowych
Bardziej szczegółowo