Stanisław Cichocki Natalia Nehrebecka. Wykład 3
|
|
- Izabela Nowakowska
- 5 lat temu
- Przeglądów:
Transkrypt
1 Sanisław Cichocki Naalia Nehrebecka Wykład 3 1
2 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 2
3 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 3
4 Sandardowa definicja sacjonarności w wielu przypadkach okazuje się zby resrykcyjna: zmienne ekonomiczne oscylują nie yle wokół sałej ale wokół pewnego rendu. Zmienna sacjonarna wokół rendu (rendosacjonarna) jeśli odchylenie od rendu: jes sacjonarne. y E ( y ) 4
5 Przykład zmiennej rendosacjonarnej: rend liniowy y E( y ) y E( ) y 5
6 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 6
7 Zmienne zinegrowane: zmienne niesacjonarne, kóre można sprowadzić do sacjonarności poprzez różnicowanie. Zmienna, kóra po zasosowaniu d-ych różnic saje się zmienną sacjonarną oznaczamy jako: y ~ I d y Mówimy, ze zmienna jes zinegrowana rzędu d. Zmienne sacjonarne są zinegrowane rzędu 0: y ~ I(0) 7
8 Przykład zmiennej niesacjonarnej: błądzenie przypadkowe (random walk) y y Różnicując zmienną : 1 ~ IID(0, y 2 ) y Biały szum, zmienna I(0). Wobec ego błądzenie przypadkowe jes zmienną I(1) 8
9 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 9
10 Dlaczego w ogóle zajmować się sacjonarnością zmiennych? Założenie o sacjonarności zmiennych w modelu jes niezbędne przy wyprowadzaniu rozkładów ypowych saysyk esowych używanych przy esowaniu hipoez. Jeśli zmienne w modelu są niesacjonarne o rozkłady asympoyczne saysyk esowych są niesandardowe, co może prowadzić do błędnych wyników wnioskowania saysycznego. Przykładem jes problem regresji pozornej. 10
11 Wysępuje gdy część zmiennych w modelu nie jes sacjonarna (najczęściej I(1)). W akim przypadku saysyki dla zmiennych I(1) okazują się częso isone nawe jeśli między zmienną objaśnianą a zmiennymi objaśniającymi nie ma żadnego związku. 11
12 Generujemy obserwacje dwóch niezależnych zmiennych niesacjonarnych: u ~ ~ N(0,1) N(0,1) y x y x 1 1 Nasępnie przeprowadzamy regresję y na, zapisujemy saysykę i DW. u x 12
13 Nasępnie powarzamy całość 1000 razy zapisując za każdym razem wynik. Mając serię saysyk obliczamy średnią, odchylenie sandardowe, skośność, kurozę i porównujemy z paramerami esu -Sudena. Przy poziomie isoności 5% powinniśmy uzyskać isony wynik w mniej więcej 5% przypadków. 13
14 Teoreyczne Regresja y na x Średnia 0,000 0,048 Odch.sand. 1,021 4,849 Skośność 0,000-0,214 Kuroza 3,125 3,845 5% percenyl 1,677 8,294 % isonych wyników 5,000 64,200 Saysyka DW Średnia 2,000 0,313 14
15 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 15
16 Funkcja auokorelacji (Auocorrelaion Funcion) o współczynnik korelacji między dwoma realizacjami y oddalonymi w czasie o k okresów. k ( y, y Cov Var ( y ) k ) [1,1] 16
17 Funkcja auokorelacji cząskowej (Parial Auocorrelaion Funcion) mierzy korelację między obserwacjami y oddalonymi od siebie o k okresów bez uwzględnienia wpływu yk 1, yk 2,..., y 1 Funkcja a jes równa wyesymowanemu współczynnikowi w modelu auoregresyjnym k ego rzędu: k y 1y 1... k y k 17
18 ACF dla białego szumu 18
19 PACF dla białego szumu 19
20 ACF i PACF dla białego szumu 20
21 LAG AC PAC Q Prob>Q [Auocorrelaion] [Parial Auocor] H 0 proces jes białym szumem 21
22 ACF dla AR(1) gdy 1 22
23 PACF dla AR(1) gdy 1 23
24 ACF i PACF dla AR(1) gdy 1 24
25 LAG AC PAC Q Prob>Q [Auocorrelaion] [Parial Auocor]
26 ACF dla błądzenia przypadkowego 26
27 PACF dla błądzenia przypadkowego 27
28 ACF i PACF dla błądzenia przypadkowego 28
29 LAG AC PAC Q Prob>Q [Auocorrelaion] [Parial Auocor]
30 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 30
31 Najwcześniejszy i najpopularniejszy es, za pomocą kórego badamy czy zmienna jes sacjonarna. Mamy model: y ~ y 1 IID(0, 2 ) H0 : 1 H1 : 1 y - błądzenie przypadkowe (zmienna niesacjonarna) - jes procesem AR(1) (zmienna sacjonarna) y 31
32 Odejmując od obu sron : - jes niesacjonarne - jes sacjonarne 32 y y y y y y y y ) ( 0 : 0 H 2,0) ( : 0 H y y y 1
33 Problem: nie można używać sayski do esowania isoności parameru ponieważ rozkłady saysyk esowych są niesandardowe jeśli w modelu zmienne niesacjonarne. Specjalne ablice z warościami kryycznymi dla esu DF. Uwaga echniczna: wielkości kryyczne rozkładu sayski DF są zawsze ujemne. 33
34 Tes DF przeprowadzamy w nasępujący sposób: 1. regresja y na y 1 2. porównujemy saysykę dla y 1z warościami kryycznymi esu DF: a) warość saysyki jes mniejsza od warości kryycznej - odrzucamy H 0 o niesacjonarności y i przyjmujemy H 1 o sacjonarności ; y b) warość saysyki jes większa od warości kryycznej nie ma podsaw do odrzucenia H 0 34
35 Tes DF dla białego szumu: Dickey-Fuller es for uni roo Number of obs = Inerpolaed Dickey-Fuller Tes 1% Criical 5% Criical 10% Criical Saisic Value Value Value Z() D.x Coef. Sd. Err. P> [95% Conf. Inerval] x L
36 Tes DF dla białego szumu: Dickey-Fuller es for uni roo Number of obs = Inerpolaed Dickey-Fuller Tes 1% Criical 5% Criical 10% Criical Saisic Value Value Value Z() D.x Coef. Sd. Err. P> [95% Conf. Inerval] x L
37 Tes DF dla białego szumu: Source SS df MS Number of obs = F( 1, 19998) = Model Prob > F = Residual R-squared = Adj R-squared = Toal Roo MSE = D.x Coef. Sd. Err. P> [95% Conf. Inerval] x L
38 Tes DF dla białego szumu: Source SS df MS Number of obs = F( 1, 19998) = Model Prob > F = Residual R-squared = Adj R-squared = Toal Roo MSE = D.x Coef. Sd. Err. P> [95% Conf. Inerval] x L
39 Breusch-Godfrey LM es for auocorrelaion lags(p) chi2 df Prob > chi H0: no serial correlaion 39
40 Tes DF dla błądzenia przypadkowego: Dickey-Fuller es for uni roo Number of obs = Inerpolaed Dickey-Fuller Tes 1% Criical 5% Criical 10% Criical Saisic Value Value Value Z() D.rw Coef. Sd. Err. P> [95% Conf. Inerval] rw L
41 Tes DF dla błądzenia przypadkowego: Dickey-Fuller es for uni roo Number of obs = Inerpolaed Dickey-Fuller Tes 1% Criical 5% Criical 10% Criical Saisic Value Value Value Z() D.rw Coef. Sd. Err. P> [95% Conf. Inerval] rw L
42 Tes DF dla błądzenia przypadkowego Source SS df MS Number of obs = F( 1, 998) = 0.08 Model Prob > F = Residual R-squared = Adj R-squared = Toal Roo MSE = D.rw Coef. Sd. Err. P> [95% Conf. Inerval] rw L
43 Tes DF dla błądzenia przypadkowego Source SS df MS Number of obs = F( 1, 998) = 0.08 Model Prob > F = Residual R-squared = Adj R-squared = Toal Roo MSE = D.rw Coef. Sd. Err. P> [95% Conf. Inerval] rw L
44 Breusch-Godfrey LM es for auocorrelaion lags(p) chi2 df Prob > chi H0: no serial correlaion 44
45 Tes DF dla zróżnicowanego błądzenia przypadkowego: Dickey-Fuller es for uni roo Number of obs = Inerpolaed Dickey-Fuller Tes 1% Criical 5% Criical 10% Criical Saisic Value Value Value Z() D.drw Coef. Sd. Err. P> [95% Conf. Inerval] drw L
46 Tes DF dla zróżnicowanego błądzenia przypadkowego: Dickey-Fuller es for uni roo Number of obs = Inerpolaed Dickey-Fuller Tes 1% Criical 5% Criical 10% Criical Saisic Value Value Value Z() D.drw Coef. Sd. Err. P> [95% Conf. Inerval] drw L
47 Tes DF dla zróżnicowanego błądzenia przypadkowego Source SS df MS Number of obs = F( 1, 997) = Model Prob > F = Residual R-squared = Adj R-squared = Toal Roo MSE = D.drw Coef. Sd. Err. P> [95% Conf. Inerval] rw LD
48 Tes DF dla zróżnicowanego błądzenia przypadkowego Source SS df MS Number of obs = F( 1, 997) = Model Prob > F = Residual R-squared = Adj R-squared = Toal Roo MSE = D.drw Coef. Sd. Err. P> [95% Conf. Inerval] rw LD
49 Breusch-Godfrey LM es for auocorrelaion lags(p) chi2 df Prob > chi H0: no serial correlaion 49
50 1. Podać definicję zmiennej sacjonarnej i rendosacjonarnej. 2. Wyjaśnić, co o są zmienne I(0) i I(1) i udowodnić, że biały szum jes zmienną I(0) a błądzenie przypadkowe zmienną I(1). 3. Wyjaśnić na czym polega zjawisko regresji pozornej. 4. Dlaczego przed przysąpieniem do weryfikacji hipoez o isoności zmiennych w modelu szacowanym na szeregu czasowym powinniśmy przeesować ich rząd inegracji?
51 Dziękuję za uwagę 51
Stanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 4
Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 5
Sanisław Cichocki Naalia Nehrebecka Wkład 5 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 2 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Bardziej szczegółowo1. Szereg niesezonowy 1.1. Opis szeregu
kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany
Bardziej szczegółowoPrzyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Bardziej szczegółowoAnaliza Szeregów Czasowych. Egzamin
Analiza Szeregów Czasowych Egzamin 12-06-2018 Zadanie 1: Zadanie 2: Zadanie 3: Zadanie 4: / 12 pkt. / 12 pkt. / 12 pkt. / 14 pkt. Projekt zaliczeniowy: Razem: / 100 pkt. / 50 pkt. Regulamin egzaminu 1.
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 3 Szereg
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Współliniowość 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji Metody radzenia sobie z heteroskedastycznością
Bardziej szczegółowoEkonometria Ćwiczenia 19/01/05
Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych
Bardziej szczegółowo1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
Bardziej szczegółowoAnaliza szeregów czasowych w Gretlu (zajęcia 8)
Analiza szeregów czasowych w Grelu (zajęcia 8) Grel jes dość dobrym narzędziem do analizy szeregów czasowych. Już w samej podsawie Grela znajdziemy sporo zaimplemenowanych echnik służących do obróbki danych
Bardziej szczegółowoStacjonarność Integracja. Integracja. Integracja
Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:
Bardziej szczegółowoWprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
Bardziej szczegółowoNatalia Nehrebecka Stanisław Cichocki. Wykład 6
Natalia Nehrebecka Stanisław Cichocki Wykład 6 1 1. Zmienne dyskretne Zmienne zero-jedynkowe 2. Modele z interakcjami 2 Zmienne dyskretne Zmienne nominalne Zmienne uporządkowane 3 4 1 podstawowe i 0 podstawowe
Bardziej szczegółowoCzasowy wymiar danych
Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 4
Stanisław Cichocki Natalia Nehrebecka Wykład 4 1 1. Własności hiperpłaszczyzny regresji 2. Dobroć dopasowania równania regresji. Współczynnik determinacji R 2 Dekompozycja wariancji zmiennej zależnej Współczynnik
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16
Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
Bardziej szczegółowoIntegracja zmiennych Zmienna y
Inegracja zmiennych Zmienna y jes zinegrowana rzędu d jeśli jej różnice rzędu d są sacjonarne. Zapisujemy o y ~ I ( d ). Przyjmuje się również, że zmienna sacjonarna y (jako że nie rzeba jej różnicować,
Bardziej szczegółowoEKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.
EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b
Bardziej szczegółowoNatalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Bardziej szczegółowoTesty własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu
Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Bardziej szczegółowoO sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym
Sezonowość O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Na przykład zmienne kwartalne charakteryzuja się zwykle sezonowościa kwartalna a zmienne
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Testowanie autokorelacji 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji 3.Problemy z danymi Zmienne pominięte
Bardziej szczegółowoHeteroskedastyczość w szeregach czasowyh
Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności
Bardziej szczegółowoDiagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Bardziej szczegółowoMetoda najmniejszych kwadratów
Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników
Bardziej szczegółowoWprowadzenie Testy własności składnika losowego. Diagnostyka modelu. Część 1. Diagnostyka modelu
Część 1 Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy
Bardziej szczegółowoEgzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Bardziej szczegółowoEkonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
Bardziej szczegółowoModelowanie i analiza szeregów czasowych
Modelowanie i analiza szeregów czasowych Małgorzaa Doman Plan zajęć Część. Modelowanie szeregów jednowymiarowych.. Szeregi jednowymiarowe własności i diagnozowanie. Modele auoregresji i średniej ruchomej
Bardziej szczegółowoDiagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Bardziej szczegółowoEgzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Bardziej szczegółowoFINANSOWE SZEREGI CZASOWE WYKŁAD 3
FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Gdański Zasosowanie modelu
Bardziej szczegółowoNiestacjonarne zmienne czasowe własności i testowanie
Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:
Bardziej szczegółowoEkonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Bardziej szczegółowoKlasyfikacja modeli. Metoda najmniejszych kwadratów
Konspek ekonomeria: Weryfikacja modelu ekonomerycznego Klasyfikacja modeli Modele dzielimy na: - jedno- i wielorównaniowe - liniowe i nieliniowe - sayczne i dynamiczne - sochasyczne i deerminisyczne -
Bardziej szczegółowoAutoregresyjne modele o rozłożonych opóźnieniach - Autoregressive Distributed Lags models
Autoregresyjne modele o rozłożonych opóźnieniach - Autoregressive Distributed Lags models ADL ADL Ogólna postać modelu ADL o p-opóźnieniach zmiennej zależnej i r-opóźnieniach zmiennej/zmiennych objaśniających
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Problemy z danymi Obserwacje nietypowe i błędne Współliniowość. Heteroskedastycznośd i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne Obserwacje nietypowe i błędne Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2)
Bardziej szczegółowoEkonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Bardziej szczegółowoEgzamin z ekonometrii wersja IiE, MSEMat Pytania teoretyczne
Egzamin z ekonometrii wersja IiE, MSEMat 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Wyjaśnić, jakie korzyści i niebezpieczeństwa
Bardziej szczegółowoEgzamin z ekonometrii wersja ogolna
Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.
Bardziej szczegółowoANALIZA POWIĄZAŃ MIĘDZY INDEKSAMI GIEŁDY FRANCUSKIEJ, HOLENDERSKIEJ I BELGIJSKIEJ Z WYKORZYSTANIEM MODELU KOREKTY BŁĘDEM
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 083-86 Nr 89 06 Uniwersye Ekonomiczny w Kaowicach Wydział Ekonomii Kaedra Meod Saysyczno-Maemaycznych w Ekonomii pawel.prenzena@edu.ueka.pl
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 1
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Obciążenie Lovella 3. Metoda od ogólnego do szczególnego 4. Kryteria informacyjne 2 1.
Bardziej szczegółowoEgzamin z ekonometrii wersja IiE, MSEMAT
Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.
Bardziej szczegółowospecyfikacji i estymacji modelu regresji progowej (ang. threshold regression).
4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi
Bardziej szczegółowoModele warunkowej heteroscedastyczności
Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty
Bardziej szczegółowoZmienne sztuczne i jakościowe
Zmienne o ograniczonym zbiorze wartości Przykład 1. zarobki = β 0 + β 1 liczba godzin pracy + β 2 wykształcenie + ε Przykład 2. zarobki = β 0 + β 1 liczba godzin pracy + β 2 klm + ε zarobki = β 0 + β 1
Bardziej szczegółowoEgzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Porównaj zastosowania znanych ci kontrastów
Bardziej szczegółowoBudowa modelu i testowanie hipotez
Problemy metodologiczne Gdzie jest problem? Obciążenie Lovella Dysponujemy oszacowaniami parametrów następującego modelu y t = β 0 + β 1 x 1 +... + β k x k + ε t Gdzie jest problem? Obciążenie Lovella
Bardziej szczegółowoStatystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego
Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez
Bardziej szczegółowoNatalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Bardziej szczegółowoWNIOSKOWANIE STATYSTYCZNE
Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml
Bardziej szczegółowoTestowanie hipotez statystycznych
Część 2 Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład statystyki testowej Hipoteza łączna H 0 : Rβ = q Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład
Bardziej szczegółowolicencjat Pytania teoretyczne:
Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie
Bardziej szczegółowoEgzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 08-02-2017 Pytania teoretyczne 1. Za pomocą którego testu testujemy stabilność parametrów? Jakiemu założeniu KMRL odpowiada H0 w tym teście? Jaka jest hipoteza alternatywna
Bardziej szczegółowoEkonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18
Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa
Bardziej szczegółowoWprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Bardziej szczegółowoProblem równoczesności w MNK
Problem równoczesności w MNK O problemie równoczesności mówimy, gdy występuje korelacja między wartościa oczekiwana ε i i równoczesnym x i Model liniowy y = Xβ + ε, E (u) = 0 Powiedzmy, że występuje w
Bardziej szczegółowoEkonometria egzamin 31/01/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 31/01/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Bardziej szczegółowoEkonometria egzamin wersja Informatyka i Ekonometria 26/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
Bardziej szczegółowoAnaliza szeregów czasowych bezrobocia i inflacji w Danii
Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Analiza szeregów czasowych bezrobocia i inflacji w Danii Projekt zaliczeniowy z przedmiotu: Analiza Szeregów Czasowych
Bardziej szczegółowoEkonometria dla IiE i MSEMat Z7
Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany
Bardziej szczegółowoWykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów nieobserwowalnych
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichoci Natalia Nehrebeca Wyład 10 1 1. Testowanie hipotez prostych Rozład estymatora b Testowanie hipotez prostych przy użyciu statystyi t Przedziały ufności Badamy czy hipotezy teoretyczne
Bardziej szczegółowoNatalia Nehrebecka. Wykład 1
Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Dwiczenia Literatura 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy organizacyjne
Bardziej szczegółowoAutokorelacja i heteroskedastyczność
Autokorelacja i heteroskedastyczność Założenie o braku autokorelacji Cov (ε i, ε j ) = E (ε i ε j ) = 0 dla i j Oczekiwana wielkość elementu losowego nie zależy od wielkości elementu losowego dla innych
Bardziej szczegółowoEgzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 02022015 Pytania teoretyczne 1. Podać treść twierdzenia GaussaMarkowa i wyjaśnić jego znaczenie. 2. Za pomocą jakich testów testuje się autokorelację? Jakiemu założeniu
Bardziej szczegółowoEkonometria egzamin wersja ogólna 17/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 17/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca
Bardziej szczegółowoEkonometria dla IiE i MSEMat Z12
Ekonometria dla IiE i MSEMat Z12 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 09-01-2017 Test RESET Ramsey a W pierwszym etapie estymujemy współczynniki regresji w modelu:
Bardziej szczegółowo1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL)
1 Metoda Najmniejszych Kwadratów (MNK) 1. Co to jest zmienna endogeniczna, a co to zmienne egzogeniczna? 2. Podaj postać macierzy obserwacji dla modelu y t = a + bt + ε t 3. Co to jest wartość dopasowana,
Bardziej szczegółowoJednowskaźnikowy model Sharpe`a
Uniwersytet Warszawski Wydział Nauk Ekonomicznych Milena Jamroziak i Paweł Androszczuk Model ekonometryczny Jednowskaźnikowy model Sharpe`a dla akcji Amici Praca zaliczeniowa napisana pod kierunkiem mgr
Bardziej szczegółowoAlicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza
Bardziej szczegółowoDr Łukasz Goczek. Uniwersytet Warszawski
Dr Łukasz Goczek Uniwersytet Warszawski Dane krótko i długookresowe stopy procentowe Co wiemy z teorii? Krótkookresowe stopy powodują stopami długookresowymi (toteż taka jest idea bezpośredniego celu
Bardziej szczegółowoZajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego
Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb
Bardziej szczegółowoJacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.
DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury
Bardziej szczegółowoParytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD
Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 3 Szereg czasowy jes pojedynczą realzacją pewnego
Bardziej szczegółowoEkonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk
Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1
Bardziej szczegółowoEkonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE
Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria szeregów czasowych Procesy stochastyczne Stacjonarność i biały szum Niestacjonarność:
Bardziej szczegółowoWykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Bardziej szczegółowoEgzamin z Ekonometrii
Pytania teoretyczne Egzamin z Ekonometrii 18.06.2015 1. Opisać procedurę od ogólnego do szczegółowego na przykładzie doboru liczby opóźnień w modelu. 2. Na czym polega najważniejsza różnica między testowaniem
Bardziej szczegółowoKURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
Bardziej szczegółowoModele wielorównaniowe (forma strukturalna)
Modele wielorównaniowe (forma strukturalna) Formę strukturalna modelu o G równaniach AY t = BX t + u t, gdzie Y t = [y 1t,..., y Gt ] X t = [x 1t,..., x Kt ] u t = [u 1t,..., u Gt ] E (u t ) = 0 Var (u
Bardziej szczegółowoTESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Mariusz Doszyń TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH Od pewnego czasu w lieraurze ekonomerycznej pojawiają się
Bardziej szczegółowo, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59
Zadanie 1. Ekonometryk szacując funkcję konsumpcji przeprowadził estymację osobno dla tzw. Polski A oraz Polski B. Dla Polski A posiadał n 1 = 40 obserwacji i uzyskał współczynnik dopasowania RA 2 = 0.4,
Bardziej szczegółowoNatalia Nehrebecka. 18 maja 2010
Natalia Nehrebecka 18 maja 2010 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie
Bardziej szczegółowoHeteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów
Formy heteroscedastyczności Własności estymatorów MNK wydatki konsumpcyjne 0 10000 20000 30000 40000 14.4 31786.08 dochód rozporz¹dzalny Zródlo: Obliczenia wlasne, dane BBGD 2004 Formy heteroscedastyczności
Bardziej szczegółowoZarządzanie ryzykiem. Lista 3
Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa
Bardziej szczegółowoPolitechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych
Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II
Bardziej szczegółowoStanisław Cihcocki. Natalia Nehrebecka
Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach
Bardziej szczegółowo