Wykład: Analiza wariancji prosta i złożona (ANOVA)
|
|
- Kinga Król
- 8 lat temu
- Przeglądów:
Transkrypt
1 Metody statystycze w aukach biologiczych Wykład: Aaliza wariacji prosta i złożoa (ANOVA) Aaliza zmieości została opracowaa przez uczoego agielskiego, biologa i geetyka Roalda A. Fishera. Istota jego teorii opiera się a podziale zmieości główej a pewe frakcje i a aalizowaiu tych poszczególych zmieości. W oparciu o pogląd Fishera wyróżiamy 3 rodzaje zmieości: a) zmieość ogóla - wyraża się zróżicowaiem wszystkich poszczególych zmieych w stosuku do ogólej średiej (obliczoej dla całej zbiorowości) b) zmieość międzygrupowa - występuje a skutek różic powstałych między grupami doświadczalymi, wywołaa jest działaiem czyika doświadczalego a poszczególe grupy doświadczale, wyraża się zróżicowaiem średich poszczególych grup doświadczalych w stosuku do ogólej średiej c) zmieość wewątrzgrupowa - istieje między poszczególymi zmieymi wewątrz każdej grupy, wywołaa jest czyikami osobiczymi czyli idywidualymi cechami poszczególych osobików, wyraża się zróżicowaiem poszczególych zmieych wewątrz każdej grupy w stosuku do średiej dla tej grupy Aalizą wariacji posługujemy się przy badaiu istotości różic między grupami doświadczalymi. W tym celu wykorzystujemy wykryte przez Fishera prawo, że stosuek kwadratów odchyleń międzygrupowych do wewątrzgrupowych kształtuje się według określoego rozkładu (rozkład F) i stąd możliwa jest ocea prawdopodobieństwa wystąpieia pewych wartości F. Sytuację tę moża wyobrazić sobie w astępujący sposób. Jeśli z populacji o rozkładzie ormalym wybieralibyśmy losowo po dwie próby i badalibyśmy wzajeme relacje ich wariacji (iloraz), to te stosuek miałby rozkład zgody z rozkładem F. Jest to rozkład prawoskośy, tj. średia arytmetycza jest większa od mediay. Założeia aalizy wariacji: Niezależość zmieych objaśiających (czyików). Homogeiczość wariacji (rówość wariacji): porówywae grupy ie różią się zmieością. Jeśli ie ma homogeiczości, to możliwe są logarytmicze trasformacje zmieych lub też usuięcie grupy, która pod względem zmieości wyraźie odstaje od pozostałych. Normalość: Rozkład cechy w każdej z grup wiie być ormaly. W praktyce często badamy czy czyik losowy, tj. e ij posiada rozkład ormaly. W celu sprawdzeia tego założeia, od każdego pomiaru odejmujemy średią wartość grupy, z której te pomiar pochodzi, a astępie badamy rozkład tychże różic. Jeśli reszty ie mają rozkładu ormalego, to zaleca się trasformacje zmieych. Autor: Dariusz Piwczyński 1
2 Metody statystycze w aukach biologiczych Hipoteza zerowa i alteratywa: H 0 : Wszystkie średie są rówe. H 0 : µ 1 =µ =µ 3 =µ 4 =µ 5 =µ 6... H 1 : Istieje co ajmiej jeda para średich, które różią się ze sobą. H 1 : µ 1 µ lub µ 1 µ 3 lub µ µ 3 itd... Model liiowy aalizy wariacji: Każda obserwacja przedstawiaa jest jako suma efektów czyików, jakie zostały uwzględioe w aalizie zmieości. Y ij =µ + α i + e ij Czyik stały (modele stałe): Z reguły liczba poziomów czyika stałego jest iewielka. W badaiach uwzględiamy z góry określoe poziomy czyika. Wioski odosimy wyłączie do tych poziomów czyika, które zostały uwzględioe w aalizie. Przykładem czyika stałego może być: płeć, grupa żywieiowa, rasa, rok badań, stado, sezo doju próbego. Czyik losowy (modele losowe): Liczba poziomów czyika losowego jest zwykle duża. Badaiom podday jest losowy podzbiór wszystkich poziomów czyika. Nasze wioski odosimy do wszystkich poziomów czyika, awet tych, które ie zostały uwzględioe w eksperymecie, p. twierdzimy, że rasa wpływ a udział tłuszczu w mleko. Przykładem czyika losowego jest efekt matki, ojca, grupy geetyczej, rasy. Różica między czyikami stałymi oraz losowymi jest dość płya, w dużej mierze zależy od postawioego do rozwiązaia problemu. Model I aalizy wariacji Y ij =µ + α i + e ij gdzie: Y ij wartość cechy u j-tego obiektu pochodzącego z i-tej grupy, µ - średia ogóla, obliczoa dla całej populacji, α i - stały efekt i-tej grupy, tj. różica między średią dla i-tej grupy i dla całej populacji. Moża te efekt traktować jako przewagę i-tej grupy ad przeciętą dla całej populacji. e ij błąd losowy, resztowy. Błąd losowy jest odchyleiem daej obserwacji od średiej grupy, z jakiej oa pochodzi. Spowodoway jest zmieością przypadkową, a ta dotyczy kokretej obserwacji. Błąd jest to taka część obserwowaej zmieości, która ie jest wytłumaczoa za pomocą modelu. Model II aalizy wariacji Y ij =µ + A i + e ij gdzie: A i - losowy efekt i-tej grupy, tj. różica między średią dla i-tej grupy i dla całej populacji, Model dwuczyikowy z iterakcją. Aaliza wariacji w układzie krzyżowym. Y ijk =µ + α i + β j + (αβ) ij + e ijk gdzie: (αβ) ij efekt iterakcji pomiędzy czyikami (poprawka ze względu a iterakcję). Autor: Dariusz Piwczyński
3 Metody statystycze w aukach biologiczych Zaleca się, aby z modelu wyelimiować takie iterakcje, które są ieistote statystyczie. Zwiększa się tym samym siłę działaia czyików główych. Jest to tym bardziej uzasadioe, jeśli: liczba stopi swobody dla błędu jest miejsza aiżeli 5 oraz średi kwadrat odchyleń dla iterakcji podzieloy przez wariację błędu jest miejszy aiżeli. Iterakcja, czyli współdziałaie czyików ze sobą. Jeśli iterakcja jest istota, to ie możemy porówywać średich dla czyików główych, koiecze jest wtedy idywiduale porówaie poszczególych podgrup, p. maciorki meryosa polskiego z tryczkami suffolk.. Autor: Dariusz Piwczyński 3
4 Metody statystycze w aukach biologiczych Model dwuczyikowy z iterakcją. Aaliza wariacji w układzie hierarchiczym. Jest to sytuacja, w której określoe poziomy czyika rozważae są w obrębie czyika adrzędego. Np. kozioł czy też tryk kryje samice w wyłączie w wybraych stadach. Y ijk =µ + α i + β ij + e ijk gdzie: α i efekt stada, β ij czyik zagieżdżoy, tj. wpływ ojca. Przykład: Samce A i B kryły samice w astępującym stadach: Stado 1 Stado Stado 3 A B A B Kolejość obliczeń (Aaliza wariacji prosta) 1. Obliczaie stopi swobody (rodzaj zmieości) (DF) a) Ogóla N-1 (N liczebość populacji) b) Międzygrupowa k-1 (k - liczba grup doświadczalych) c) Wewątrzgrupowa N-k. Sumy kwadratów odchyleń (SKO) a) Ogóla ( x) S o = x N b) Międzygrupowa S m = c) Wewątrzgrupowa: Sw=S o - S m ( x1 ) ( x ) ( x3 ) ( xi ) ( x) N i 3. Średie kwadraty odchyleń (ŚKO) a) zmieość międzygrupowa: S m =S m /(k-1) b) zmieość wewątrzgupowa: S w =S w /(N-k) Sm 4. F empirycze F emp = Sw Tabela aalizy zmieości Rodzaj zmieości Liczba stopi swobody DF Ogóla Międzygrupowa Wewątrzgrupowa N-1 k-1 N-k Suma kwadratów odchyleń SKO S o S m S w Średi kwadrat odchyleń ŚKO S m S w F emp F emp F tab 0,05 0,01 Autor: Dariusz Piwczyński 4
5 Metody statystycze w aukach biologiczych Obliczoą wartość statystyki F (tzw. F empirycze - F emp. ) odosimy do wartości krytyczej z rozkładu F-Sedecora dla założoego poziomu istotości (α) i określoej liczby stopi swobody (ν 1 =k-1 oraz ν =N-k) (F tabelarycze - F tab. ). Jeżeli F emp. F tab. - to mamy podstawę do odrzuceie hipotezy zerowej i stwierdzeia, iż istieje co ajmiej jeda para średich, które różią się ze sobą. Zatem czyik doświadczaly wpływa statystyczie a cechę. W przeciwym przypadku, ie mamy podstaw do odrzuceia H 0. Testy wielokrotych porówań możemy je podzielić a 3 grupy: Aaliza kotrastów (test Scheffego) Testy oparte a studetyzowaym rozstępie umożliwiające grupowaie średiach (NIR, Newmaa-Keulsa, Tukey, Duca,) Wioskowaie a podstawie przedziałów ufości (test Scheffego, Beferroiego, test Dueta) Testy wielokrotych porówań wykoujemy wtedy, gdy a podstawie aalizy wariacji stwierdzimy, iż czyik wpływa istotie a badaą cechę!!!! Grupy jedorode: są to takie grupy średich, które ie różią się statystyczie ze sobą. Procedury, które zmierzają do wyróżieia grup jedorodych azywają się procedurami porówań wielokrotych, procedurami jedoczesego wioskowaia lub post-hoc. Testy te wykorzystujemy przy aalizie wariacji wykoywaej w ramach Modelu I. Test Ducaa jest oparty a studetyzowaym rozstępie. Poziom istotości dla całego doświadczeia wyosi 1-(1-α) -1. W sytuacji, gdy rośie do ieskończoości poziom te rośie do jedości. W związku z czym, przy dużej liczbie porówywaych średich prawdopodobieństwo popełieia błędu drastyczie rośie. Test te stosoway jest raczej jako test towarzyszący iym testom. Test Ducaa umożliwia tworzeie grup jedorodych, czyli takich, pomiędzy którymi ie występują różice istote statystyczie a podstawie prób iezależych. Kolejość działań przy wykoywaiu testu Ducaa: 1. Porządkujemy rosąco ciąg uzyskaych średich arytmetyczych. Wybieramy parę średich do porówaia 3. Odczytujemy z tabel testu Ducaa wartości krytycze. Uzależioe są oe od poziomu istotości, liczby stopi swobody oraz typu rozstępu. Typ rozstępu - liczba wartości średich zawartych w jedym ciągu pomiędzy porówywaymi średimi. 4. Wyliczamy tzw. istoty obszar zmieości: D*Sd D odczytujemy w zależości od liczby stopi swobody (zmieość wewątrzgrupowa) oraz typu rozstępu. S d = S w gr S w wariacja dla zmieości wewątrzgrupowej; gr przecięta liczebość grupy 1 i gr = * i k 1 i k liczba grup doświadczalych, i liczebość grupy Jeżeli x i - x j S d *D 0,05 to różica pomiędzy średimi jest istota statystyczie; Jeżeli x i - x j S d *D 0,01 to różica pomiędzy średimi jest wysoko istota statystyczie; Jeżeli x i - x j < S d *D 0,05 to różica pomiędzy średimi jest ieistota statystyczie. Autor: Dariusz Piwczyński 5
6 Metody statystycze w aukach biologiczych Test NIR [test ajmiejszych istotych różic] (LSD [least sigificat differeces]). Jest ajstarszym historyczie testem wielokrotych porówań. Zapropooway przez Fishera w Jego idea polega a wyzaczeiu tzw. ajmiejszych istotych różic i porówaiu ich z różicami średich. Jest to test ajmiej odpory a wzrost liczby wielokrotych porówań, poieważ poziom istotości odosi się do pojedyczego porówaia. W takim przypadku bardzo szybko wzrasta poziom istotości całego eksperymetu. Wobec powyższych test NIR stosoway jest jako test towarzyszący iym testom. Jeśli bezwzględa wartość różicy średich z próby jest większa aiżeli tzw. ajmiejsza istota różica (NIR), to możemy stwierdzić, iż jest oa istota statystyczie. Test Tukeya jest oparty o studetyzoway rozkład. Jest to test ajbardziej polecay do porówaia par średich. Pozwala o wyzaczać grupy średich jedorodych. Występuje w dwóch odmiaach: rówa liczebość próbek, ierówa liczebość próbek (test Spjotvolla i Stoliea). Test Tukea jest bardziej koserwatywy aiżeli NIR, lecz miej iż test Scheffego. Błąd pierwszego rodzaju jest przy tym teście miejszy aiżeli w przypadku NIR, Duca,a poadto gwaratuje o jedakowy poziom istotości dla wszystkich porówywaych par. Test Scheffe jest testem ajbardziej koserwatywym, co ozacza, że rzadziej będziemy odrzucać pojedycze porówaia iż w przypadku iych testów. Test Scheffe zapewia łączy poziom istotości dla wszystkich porówywaych par. Test te doskoale adaje się ie tylko do porówaia par cech, ale rówież uwzględia wszelkie kotrasty. To test ajbardziej zachowawczy, gdyż błąd pierwszego rodzaju jest ajmiejszy. Aalizę wariacji możemy wykoać w SAS za pomocą procedur ANOVA oraz GLM. ANOVA Aalysis of variace (Aaliza wariacji) Geeral Liear Models (Ogóle modele liiowe) Procedura aova w przypadku klasyfikacji pojedyczej (aaliza jedoczyikowa) oraz w przypadku układów ortogoalych daje idetycze rezultaty, jak glm. GLM zalecaa jest w odiesieiu do klasyfikacji wieloczyikowej, o iejdaakowej wielkości grup doświadczalych. Przykład użycia procedury aova (glm): proc aova data=bibliotea.tabela; class czyik; model cecha = czyik; meas czyik/ tukey; ru;quit; Objaśieia: class - azwy czyików doświadczalych/ model - tworzymy model aalizy, zmiee zależe = zmiee iezależe (czyiki) meas - wskazujemy dla jakich grup mają być wyliczoe średie i jakie testy użyte do weryfikacji różic Autor: Dariusz Piwczyński 6
1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
dr hab. Dariusz Piwczyński, prof. nadzw. UTP
dr hab. Dariusz Piwczyński, prof. nadzw. UTP Porównanie większej niż 2 liczby grup (k>2) Zmienna zależna skala przedziałowa Zmienna niezależna skala nominalna lub porządkowa 2 Istota teorii analizy wariancji
KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę
3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
Wykład: Założenia analizy wariancji. Analiza wariancji złożona i testy wielokrotnych porównań.
Wykład: Założenia analizy wariancji. Analiza wariancji złożona i testy wielokrotnych porównań. Założenia analizy wariancji: Niezależność zmiennych objaśniających (czynników). Homogeniczność wariancji (równość
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Parametryczne Testy Istotności
Parametrycze Testy Istotości Wzory Parametrycze testy istotości schemat postępowaia pukt po pukcie Formułujemy hipotezę główą H odośie jakiegoś parametru w populacji geeralej Hipoteza H ma ajczęściej postać
Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste
Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x
Statystyka matematyczna dla leśników
Statystyka matematycza dla leśików Wydział Leśy Kieruek leśictwo Studia Stacjoare I Stopia Rok akademicki 0/0 Wykład 5 Testy statystycze Ogóle zasady testowaia hipotez statystyczych, rodzaje hipotez, rodzaje
Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).
Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3
L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie
Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15
Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
µ = Test jest następujący: jeŝeli X > 0.01 to odrzucamy H. 0
7. Testowaie hipotez statystyczych 7. Populacja ma rozkład ciągły opisay fukcją gęstości f ( x) ( + ) x dla x [,]. Testowaa jest hipoteza, Ŝe wobec hipotezy alteratywej, Ŝe. Wioskujemy a podstawie jedoelemetowej
Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
Planowanie doświadczeń - DPLD LMO Materiały pomocnicze
Plaowaie doświadczeń - DPLD LMO Materiały pomocicze Układ bloków kompletie zradomizowaych Założeia: (a) Z jedostek doświadczalych tworzymy rówolicze grupy zwae blokami (b bloków) w taki sposób, aby jedostki
Ćwiczenie 2 ESTYMACJA STATYSTYCZNA
Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej
Prawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
Statystyka. Katarzyna Chudy Laskowska
Statystyka Katarzya Chudy Laskowska http://kc.sd.prz.edu.pl/ WNIOSKOWANIE STATYSTYCZNE Celem aalizy statystyczej ie jest zwykle tylko opisaie (prezetacja) posiadaych daych, czyli tzw. próby statystyczej.
1 Testy statystyczne. 2 Rodzaje testów
1 Testy statystycze Podczas sprawdzaia hipotez statystyczych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ a odrzuceiu hipotezy zerowej (H 0 ), gdy jest oa prawdziwa, czyli
Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2
Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%
TESTY LOSOWOŚCI. Badanie losowości próby - test serii.
TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla
będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
STATYSTYKA OPISOWA WYKŁAD 1 i 2
STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
Porównanie dwu populacji
Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.
MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,
Analiza wariancji. dr Janusz Górczyński
Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik
ZDARZENIE ELEMENTARNE to możliwy wynik doświadczenia losowego. Wszystkie takie możliwe wyniki tworzą zbiór zdarzeń elementarnych.
STATYSTYKA to auka, której przedmiotem zaiteresowaia są metody pozyskiwaia i prezetacji, a przede wszystkim aalizy daych opisujących zjawiska masowe. Metody statystycze oparte są a rachuku prawdopodobieństwa.
JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA
JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA 1 Obserwowana (badana) cecha Y Czynnik wpływający na Y (badany) A A i i ty poziom czynnika A a liczba poziomów (j=1..a), n i liczba powtórzeń w i tej populacji
Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie
SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY
SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą
1) Jakie są różnice pomiędzy analiza danych a wnioskowaniem statystycznym?
Plaowaie Eksperymetów 1) Jakie są różice pomiędzy aaliza daych a wioskowaiem statystyczym? Celem aalizy daych jest prezetacja kokretego zbioru daych, w sposób ukazujący jego właściwości, w szczególości
są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X
Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)
H brak zgodności rozkładu z zakładanym
WSPÓŁZALEŻNOŚĆ PROCESÓW MASOWYCH Test zgodości H : rozład jest zgody z załadaym 0 : H bra zgodości rozładu z załadaym statystya: p emp i p obszar rytyczy: K ;, i gdzie liczba ategorii p Przyład: Wyoujemy
STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś
1 STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr iż Krzysztof Bryś Pojȩcia wstȩpe populacja - ca ly zbiór badaych przedmiotów lub wartości. próba - skończoy podzbiór populacji podlegaj acy badaiu.
ANALIZA DANYCH DYSKRETNYCH
ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,
16 Przedziały ufności
16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])
Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2
Wykład 7 Dwie iezależe próby Często porówujemy wartości pewej zmieej w dwóch populacjach. Przykłady: Grupa zabiegowa i kotrola Lekarstwo a placebo Pacjeci biorący dwa podobe lekarstwa Mężczyźi a kobiety
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA. Wykład wstępy. Teoria prawdopodobieństwa i elemety kombiatoryki 3. Zmiee losowe 4. Populacje i próby daych 5. Testowaie hipotez i estymacja parametrów 6. Test t 7. Test 8. Test
STATYSTKA I ANALIZA DANYCH LAB II
STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.
Estymacja przedziałowa - przedziały ufności
Estymacja przedziałowa - przedziały ufości Próbę -elemetową charakteryzujemy jej parametrami (p. x, s, s ). Służą oe do ocey wartości iezaych parametrów populacji (m, σ, σ). Nazywamy je estymatorami puktowymi
Estymacja parametrów populacji
Estymacja parametrów populacji Estymacja parametrów populacji Estymacja polega a szacowaiu wartości parametrów rozkładu lub postaci samego rozkładu zmieej losowej, a podstawie próby statystyczej. Estymacje
Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja
Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im
KADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
1 Dwuwymiarowa zmienna losowa
1 Dwuwymiarowa zmiea loowa 1.1 Dwuwymiarowa zmiea loowa kokowa X = x i, Y = y k = p ik przy czym i, k N oraz p ik = 1; i k p i = X = x i = p ik dla i N; p k = Y = y k = p ik dla k N; k i F 1 x = p i dla
Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)
IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe
Zjazd 7. SGGW, dn. 28.11.10 r. Matematyka i statystyka matematyczna Tematy 1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe nna Rajfura 1 Zagadnienia Przykład porównania wielu obiektów w
PODSTAWY BIOSTATYSTYKI ĆWICZENIA
PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM ZADANIE 1 Z populacji wyborców pobrao próbkę 1000 osób i okazało
Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE
WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE Było: Przykład. W doświadczeniu polowym załoŝonym w układzie całkowicie losowym w czterech powtórzeniach porównano
Identyfikacja i modelowanie struktur i procesów biologicznych
Idetyfikacja i modelowaie struktur i procesów biologiczych Laboratorium 4: Modele regresyje mgr iż. Urszula Smyczyńska AGH Akademia Góriczo-Huticza Aaliza regresji Aaliza regresji jest bardzo szeroka dziedzią,
Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD Zdarzeia losowe i prawdopodobieństwo Zmiea losowa i jej rozkłady Metody statystycze metody opisu metody wioskowaia statystyczego sytetyczy liczbowy opis właściwości zbioru daych ocea charakterystyk
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia
Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk
STATYSTYKA MATEMATYCZNA
TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę
Elementy modelowania matematycznego
Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,
Przykład 1. (A. Łomnicki)
Plan wykładu: 1. Wariancje wewnątrz grup i między grupami do czego prowadzi ich ocena 2. Rozkład F 3. Analiza wariancji jako metoda badań założenia, etapy postępowania 4. Dwie klasyfikacje a dwa modele
Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7
Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Statystyka w rozumieniu tego wykładu to zbiór metod służących pozyskiwaniu, prezentacji, analizie danych.
Statystyka w rozumieiu tego wykładu to zbiór metod służących pozyskiwaiu, prezetacji, aalizie daych. Celem geeralym stosowaia tych metod, jest otrzymywaie, a podstawie daych, użyteczych uogólioych iformacji
θx θ 1, dla 0 < x < 1, 0, poza tym,
Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona
Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów
(X i X) 2. n 1. X m S
Wykład 8. Przedziały ufości i testowaie hipotez A gdy ie zamy wariacji σ 2? Załóżmy, że X ma rozkład ormaly, ale ie zamy wartości ai m ai σ 2. Jak wtedy szacować wartość średią m? Przypomijmy, że Wtedy
PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).
TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ
Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.
Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują
Słowniczek Hipoteza statystyczna Hipoteza parametryczna Hipoteza nieparametryczna Hipoteza zerowa Hipoteza alternatywna Błąd pierwszego rodzaju
Słowiczek Hipoteza statystycza jakiekolwiek przypuszczeie dotyczące rozkładu populacji geeralej Hipoteza parametrycza hipoteza statystycza precyzująca wartość parametru w rozkładzie populacji geeralej
40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.
Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje
ANALIZA KORELACJI IREGRESJILINIOWEJ
ANALIZA KORELACJI IREGRESJILINIOWEJ 1. ZALEŻNOŚCI STOCHASTYCZNE Badajac zjawiska o charakterze masowym, w tym szczególie zjawiska spo leczo-ekoomicze, stwierdzamy, że każde z ich jest uwarukowae dzia laiem
Matematyka i statystyka matematyczna dla rolników w SGGW
Było: Testowanie hipotez (ogólnie): stawiamy hipotezę, wybieramy funkcję testową f (test statystyczny), przyjmujemy poziom istotności α; tym samym wyznaczamy obszar krytyczny testu (wartość krytyczną funkcji
Ekonometria Mirosław Wójciak
Ekoometria Mirosław Wójciak Literatura obowiązkowa Barczak A, ST. Biolik J, Podstawy Ekoometrii, Wydawictwo AE Katowice, Katowice 1998 Dziechciarz J. Ekoometria Metody, przykłady, zadaia (wyd. ) Kukuła
BADANIA DOCHODU I RYZYKA INWESTYCJI
StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;
Wykład 11 ( ). Przedziały ufności dla średniej
Wykład 11 (14.05.07). Przedziały ufości dla średiej Przykład Cea metra kwadratowego (w tys. zł) z dla 14 losowo wybraych mieszkań w mieście A: 3,75; 3,89; 5,09; 3,77; 3,53; 2,82; 3,16; 2,79; 4,34; 3,61;
ANALIZA PARAMETRÓW WZROSTU CIELĄT RAS LIMOUSINE, CHAROLAISE I HEREFORD W STADACH HODOWLANYCH OBJĘTYCH KONTROLĄ UŻYTKOWOŚCI
Rocz. Nauk. Zoot., T. 38, z. 2 (2011) 137 147 ANALIZA PARAMETRÓW WZROSTU CIELĄT RAS LIMOUSINE, CHAROLAISE I HEREFORD W STADACH HODOWLANYCH OBJĘTYCH KONTROLĄ UŻYTKOWOŚCI Z e o C h o r o s z y 1, B o g u
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli
Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej
WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa
Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut
Statystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że
1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,
1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =
Zeszyty naukowe nr 9
Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę
Analiza doboru modelu regresji dla rozkładu Poissona na przykładzie analizy ryzyka awarii 1. Dodatek do Rozdziału 1 skryptu:
Aaliza doboru modelu regresji dla rozkładu Poissoa a przykładzie aalizy ryzyka awarii Dodatek do Rozdziału skryptu: Metoda ajwiększej wiarygodości i iformacja Fisher a w fizyce i ekoofizyce Jacek Syska
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału
Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest
Testy post-hoc. Wrocław, 6 czerwca 2016
Testy post-hoc Wrocław, 6 czerwca 2016 Testy post-hoc 1 metoda LSD 2 metoda Duncana 3 metoda Dunneta 4 metoda kontrastów 5 matoda Newman-Keuls 6 metoda Tukeya Metoda LSD Metoda Least Significant Difference
Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,
Porównanie wielu rozkładów normalnych
Porównanie wielu rozkładów normalnych Założenia:. X i N(µ i, σi 2 ), i =,..., k 2. X,..., X k są niezależne Czy µ = = µ k? Czy σ 2 = = σ 2 k? Próby: X i,..., X ini, i =,..., k X i, varx i, s 2 i = varx
Autor: Dariusz Piwczyński 1 Ćwiczenie. Analiza zmienności złożona. Testy wielokrotnych porównań
Autor: Dariusz Piwczyński 1 Ćwiczenie. Analiza zmienności złożona. Testy wielokrotnych porównań Analizę wariancji możemy wykonać w SAS za pomocą procedury ANOVA oraz GLM. ANOVA Analysis of variance (Analiza
Statystyczny opis danych - parametry
Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea