H brak zgodności rozkładu z zakładanym

Wielkość: px
Rozpocząć pokaz od strony:

Download "H brak zgodności rozkładu z zakładanym"

Transkrypt

1 WSPÓŁZALEŻNOŚĆ PROCESÓW MASOWYCH Test zgodości H : rozład jest zgody z załadaym 0 : H bra zgodości rozładu z załadaym statystya: p emp i p obszar rytyczy: K ;, i gdzie liczba ategorii p Przyład: Wyoujemy 0 rzutów ostą sześcieą: >osta= sample(:6,0,replace=t) >osta [] [49] [97] Teoretyczie ażda liczba ocze powia wypaść 0 razy, bo p 0*/ 6 0 A co u as? > osta=data.frame(table(osta)) > osta osta Freq Czy otrzymae wyii świadczą o tym, że osta jest symetrycza? Czy różice są statystyczie istote? Stawiamy hipotezy: H H ,,,,, p, p, p, p, p,,,,,, 0 : p6 p, p, p, p, p, : p6

2 Obliczymy statystyę chi-wadrat p emp , i 0 p i 0 0 Obliczymy statystyę chi-wadrat w R > chi.osta=sum((osta$freq-0)^/0) > chi.osta [].3 Kwatyl z rozładu chi-wadrat : > qchisq(.95,5) [].0705 Nie ma podstaw do odrzuceia H0, a więc osta jest symetrycza. Test chisq.test() > pr=rep(/6,6) (albo pr=c(/6,/6,/6,/6,/6,/6)) > chisq.test(osta$freq,p=pr) Chi-squared test for give probabilities data: osta$freq X-squared =.3, df = 5, p-value = A więc osta jest symetrycza

3 Test iezależości Przy badaiu populacji geeralej jedocześie ze względu a dwie cechy często iteresuje as sprawdzeie hipotezy, czy cechy te są ze sobą związae. Gdy obie cechy są mierzale, posługujemy się ajczęściej pojęciem orelacji i regresji. Gdy przyajmiej jeda z dwu badaych cech jest iemierzala, to badając związe tych cech ze sobą posługujemy się pojęciem iezależości stochastyczej odpowiedich dwóch zmieych losowych. Zmiee X i Y są iezależe, jeśli dla ich dystrybuat zachodzi związe: F x, y) F ( x) F ( ). ( y H : cechy są iezależe 0 : H istieje zależość między cechami statystya: r s r s p emp i j p obszar rytyczy: K, ( r ) s; i j gdzie r ilość grup wartości cechy X s ilość grup wartości cechy Y i j Przyład: W drugim biegu CITY TRAIL w Olsztyie dia wystartowało 404 zawodiów. Li: Rozład zawodiów w poszczególych ategoriach wieowych Kobiet i Mężczyz wyglądał astępująco: obiety mężczyźi Kategoria Kategoria Kategoria Kategoria Kategoria Kategoria 60 0 Czy moża twierdzić, że płeć determiuje wie zawodiów? Uwaga: przy teście iezależości chi-wadrat wszystie wartości w tablicy otygecji powiy wyosić co ajmiej 5. Tutaj mamy problem z ategorią K60 są tylo dwie paie. W taiej sytuacji moża połączyć ategorie 50 i 60

4 Obliczeia wyglądają astępująco: obiety mężczyźi Kategoria Kategoria Kategoria Kategoria Kategoria 50 i więcej Statystyę liczymy w formie tabelaryczej: (emp) () (emp)-() ((emp)-())^/() K6 5 5, , ,046 K0 3,097, ,84599 K ,78 0,878,6588 K , , , K50 7,089-6,089,849 M6 0 9, , ,044 M ,9703 -,9703 0,04 M ,878-0,88,9787 M , , , M ,8909 6,089, ,463 i j 5*44 5*60 K6 5,35 M 30 97, Wartość statystyi 8,463 K ; 9, Obszar rytyczy dla alfa=0,05 to 488 > qchisq(0.95,4) [] ,05,4 Obszar rytyczy dla alfa=0, to K ; 7, 779 > qchisq(0.9,4) [] Jaie stąd płyą wiosi???? Czy płeć determiuje wie zawodiów? 0,,4

5 A ja to zrobić w R? > K=c(5,3,65,40,) > M=c(0,36,87,90,37) > chisq.test(cbid(k,m)) Pearso's Chi-squared test data: cbid(k, M) X-squared = 8.463, df = 4, p-value = Wiosi??? Moża taże wyorzystać poszczególe elemety: > wyi<-chisq.test(cbid(k,m)) > wyi Pearso's Chi-squared test data: cbid(k, M) X-squared = 8.463, df = 4, p-value = > wyi$statistic X-squared > wyi$expected K M [,] [,] [3,] [4,] [5,] > wyi$observed K M [,] 5 0 [,] 3 36 [3,] [4,] [5,] 37 > wyi$p.value [] > wyi$method [] "Pearso's Chi-squared test" > wyi$data.ame [] "cbid(k, M)"

6 Współczyi orelacji rag Spearmaa r s i 6 d i Przyład alohole Aia Barte liier 8 metaxa 5 4 piwo 4 rum 6 7 szampa 5 whisy 7 3 wio 3 6 wóda 8 Obliczmy teraz współczyi orelacji rag Spearmaa i przetestujemy jego istotość. Obliczeia zrobimy w formie tabelaryczej: alohole Aia Barte di di^ liier metaxa 5 4 piwo rum szampa whisy wio wóda *46 r s 0,548 0,45 88 Co to zaczy? Przy pomocy języa R: > Aia=c(8, 5, 4, 6,, 7, 3, ) > Aia [] > Barte=c(8, 4,, 7, 5, 3, 6, ) > Barte [] > di<-sum((aia-barte)^) > di [] 46

7 > r.s<--(6*di)/(8*(8^-)) > r.s [] Albo używającu fucji cor() > cor(aia,barte,method = "spearma") [] Test istotości dla współczyia orelacji rag Spearmaa H : r 0 0 s rs statystya t H : rs 0 rs Obszar rytyczy: K ( ; t, ) ( t, ; ) U as: t 0,45 0,45, 4 K ( ;,447) (,447; ) 8 > qt(0.975,6) [].4469 Wiosi? Albo przy użyciu języa R robimy to szybciej: > cor.test(aia,barte,method = "spearma") Spearma's ra correlatio rho data: Aia ad Barte S = 46, p-value = alterative hypothesis: true rho is ot equal to 0 sample estimates: rho

8 Współczyi orelacji Kedalla Korelacja Tau Kedalla obliczeia statystycze z wyorzystaiem tego testu stosujemy wtedy gdy asze zmiee (bądź przyajmiej jeda z ich) jest wyrażoa a sali porządowej. Opiera się a aalizie rag ta ja to jest w przypadu orelacji rag Spearmaa. Współczyi orelacji rag Kedalla dla rag iepowiązaych: r V Przyład: Ragi cechy X :, 5, 4,, 3 Ragi cechy Y:, 3, 4,, 5 Próbę porządujemy ze względu a jedą cechę, p. X X:,, 3, 4, 5 Y:,, 5, 4, 3 Teraz dla ażdej ragi cechy I ta dostaiemy: tworzymy pary z ragami astępującymi po iej. (,) (,5) (,4) (,3) (,5) (,4) (,3) (5,4) (5,3) (4,3) Jeżeli w parze poprzedi jest miejszy iż astępi to parze przypisujemy otę +, gdy poprzedi jest więszy iż astępi to przypisujemy otę -. Teraz tworzymy sumę wszystich ot +. U as: Ta więc V=6, a r 6 0, 55

9 W języu R: > ragix=c(,5,4,,3) > ragiy=c(,3,4,,5) > cor(ragix,ragiy,method="edall") [] 0. Test istotości dla współczyia orelacji rag Kedalla: > cor.test(ragix, ragiy,method="edall") Kedall's ra correlatio tau data: ragix ad ragiy T = 6, p-value = alterative hypothesis: true tau is ot equal to 0 sample estimates: tau 0. A więc ie ma zależości.

Wyższe momenty zmiennej losowej

Wyższe momenty zmiennej losowej Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla

Bardziej szczegółowo

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZA 1. Wyład wstępny. Teoria prawdopodobieństwa i elementy ombinatoryi. Zmienne losowe i ich rozłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

TESTY LOSOWOŚCI. Badanie losowości próby - test serii.

TESTY LOSOWOŚCI. Badanie losowości próby - test serii. TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla

Bardziej szczegółowo

Wykład 11 ( ). Przedziały ufności dla średniej

Wykład 11 ( ). Przedziały ufności dla średniej Wykład 11 (14.05.07). Przedziały ufości dla średiej Przykład Cea metra kwadratowego (w tys. zł) z dla 14 losowo wybraych mieszkań w mieście A: 3,75; 3,89; 5,09; 3,77; 3,53; 2,82; 3,16; 2,79; 4,34; 3,61;

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wykład wstępy. Teoria prawdopodobieństwa i elemety kombiatoryki 3. Zmiee losowe 4. Populacje i próby daych 5. Testowaie hipotez i estymacja parametrów 6. Test t 7. Test 8. Test

Bardziej szczegółowo

Podstawowe testy statystyczne i analiza zależności zjawisk

Podstawowe testy statystyczne i analiza zależności zjawisk Podstawowe testy statystycze i aaliza zależości zjawisk PODSTAWOWE TESTY STATYSTYCZNE Hipotezy statystycze Hipoteza statystycza dowole przypuszczeie dotyczące rozkładu lub jego parametrów Hipoteza parametrycza

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Zadanie Rozważmy następujący model strzelania do tarczy. Współrzędne puntu trafienia (, Y ) są niezależnymi zmiennymi losowymi o jednaowym rozładzie normalnym N ( 0, σ ). Punt (0,0) uznajemy za środe tarczy,

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 10

Stanisław Cichocki. Natalia Nehrebecka. Wykład 10 Stanisław Cichoci Natalia Nehrebeca Wyład 10 1 1. Testowanie hipotez prostych Rozład estymatora b Testowanie hipotez prostych przy użyciu statystyi t Przedziały ufności Badamy czy hipotezy teoretyczne

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

S t a t y s t y k a, część 3. Michał Żmihorski

S t a t y s t y k a, część 3. Michał Żmihorski S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji

Bardziej szczegółowo

Analiza I.1, zima wzorcowe rozwiązania

Analiza I.1, zima wzorcowe rozwiązania Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw

Bardziej szczegółowo

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Konrad Miziński, nr albumu 233703 26 maja 2015 Zadanie 1 Wartość krytyczna c, niezbędna wyliczenia mocy testu (1 β) wyznaczono za

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Aaliza matematycza i algebra liiowa Materiały pomocicze dla studetów do wyładów Rachue różiczowy ucji wielu zmieych. Pochode cząstowe i ich iterpretacja eoomicza. Estrema loale. Metoda ajmiejszych wadratów.

Bardziej szczegółowo

Testowanie hipotez dla frakcji. Wrocław, 29 marca 2017

Testowanie hipotez dla frakcji. Wrocław, 29 marca 2017 Testowanie hipotez dla frakcji Wrocław, 29 marca 2017 Powtórzenie z rachunku prawdopodobieństwa Centralne Twierdzenie Graniczne Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu o średniej µ i skończonej

Bardziej szczegółowo

Testowanie hipotez dla proporcji. Wrocław, 13 kwietnia 2015

Testowanie hipotez dla proporcji. Wrocław, 13 kwietnia 2015 Testowanie hipotez dla proporcji Wrocław, 13 kwietnia 2015 Powtórka z rachunku prawdopodobieństwa Centralne Twierdzenie Graniczne Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu o średniej µ i

Bardziej szczegółowo

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI Piotr KOZIERSKI WYKORZYSTAIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDETYFIKACJI UKŁADÓW AUTOMATYKI STRESZCZEIE W artyule przedstawioo sposób idetyfiacji parametryczej obietów ieliiowych zapisaych w przestrzei

Bardziej szczegółowo

Statystyka. Katarzyna Chudy Laskowska

Statystyka. Katarzyna Chudy Laskowska Statystyka Katarzya Chudy Laskowska http://kc.sd.prz.edu.pl/ WNIOSKOWANIE STATYSTYCZNE Celem aalizy statystyczej ie jest zwykle tylko opisaie (prezetacja) posiadaych daych, czyli tzw. próby statystyczej.

Bardziej szczegółowo

i statystyka matematyczna Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, M. Przybycień Rachunek prawdopodobieństwa i statystyka

i statystyka matematyczna Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, M. Przybycień Rachunek prawdopodobieństwa i statystyka Rachue prawdopodobieństwa i statystya matematycza Dr hab. iż.. Mariusz Przybycień Literatura: Rachue prawdopodobieństwa i statystya matematycza w zadaiach, tom I i II, W. Krysici i i., PWN 200. Wstęp do

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystya Iżyiersa dr hab. iż. Jace Tarasiu GH, WFiIS 03 Wyład 4 RCHUNEK NIEPEWNOŚCI + KILK UŻYTECZNYCH NRZĘDZI STTYSTYCZNYCH Wyład w więszości oparty a opracowaiu prof.. Zięby http://www.fis.agh.edu.pl/~pracowia_fizycza/pomoce/opracowaiedaychpomiarowych.pdf

Bardziej szczegółowo

Wykład 8 Dane kategoryczne

Wykład 8 Dane kategoryczne Wykład 8 Dane kategoryczne Wrocław, 19.04.2017r Zmienne kategoryczne 1 Przykłady zmiennych kategorycznych 2 Zmienne nominalne, zmienne ordynalne (porządkowe) 3 Zmienne dychotomiczne kodowanie zmiennych

Bardziej szczegółowo

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY Zgodie z dążeiami filozofii pitagorejsiej matematyzacja abstracyjego myśleia powia być dooywaa przy pomocy liczb. Soro ta, to liczby ależy tworzyć w miarę

Bardziej szczegółowo

KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli.

KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli. KOMBINATORYKA Kombiatoryą azywamy dział matematyi zajmujący się zbiorami sończoymi oraz relacjami między imi. Kombiatorya w szczególości zajmuje się wyzaczaiem liczby elemetów zbiorów sończoych utworzoych

Bardziej szczegółowo

UWAGI O GRANICZNYCH ROZKŁADACH EKSTREMALNYCH STATYSTYK POZYCYJNYCH

UWAGI O GRANICZNYCH ROZKŁADACH EKSTREMALNYCH STATYSTYK POZYCYJNYCH D I D A C T I C S O F M A T H E M A T I C S No. 5-6 (9-0) 009 Rafał Korzoe (Wrocław) UWAGI O GRANICZNYCH ROZKŁADACH EKSTREMALNYCH STATYSTYK POZYCYJNYCH Abstract. I may practical issues to deal with etreme

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)

Bardziej szczegółowo

INDUKCJA MATEMATYCZNA

INDUKCJA MATEMATYCZNA MATEMATYKA DYSKRETNA (4/5) dr hab. iż. Małgorzata Stera malgorzata.stera@cs.put.poza.pl www.cs.put.poza.pl/mstera/ INDUKCJA MATEMATYCZNA Matematya Dysreta Małgorzata Stera FUNKCJA SILNIA dla, fucja silia

Bardziej szczegółowo

Testy dla dwóch prób w rodzinie rozkładów normalnych

Testy dla dwóch prób w rodzinie rozkładów normalnych Testy dla dwóch prób w rodzinie rozkładów normalnych dr Mariusz Grządziel Wykład 12; 18 maja 2009 Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego)

Bardziej szczegółowo

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych Wykład 12 (21.05.07): Testy dla dwóch prób w rodzinie rozkładów normalnych Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego) n 1 = 9 poletek w dąbrowie,

Bardziej szczegółowo

Podstawy rachunku prawdopodobieństwa (przypomnienie)

Podstawy rachunku prawdopodobieństwa (przypomnienie) . Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału

Bardziej szczegółowo

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011 Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y

Bardziej szczegółowo

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ, σ 2 X ),

Bardziej szczegółowo

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o 1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady

Bardziej szczegółowo

Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego.

Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego. Rachue rawdoodobieństwa MAP064 Wydział Eletroii, ro aad. 008/09, sem. leti Wyładowca: dr hab. A. Jurlewicz Wyład 8: Zmiee losowe dysrete. Rozłady Beroulliego (dwumiaowy), Pascala, Poissoa. Przybliżeie

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

obie z mocy ustawy. owego.

obie z mocy ustawy. owego. Kwartalik Prawo- o-ekoomia 3/015 Aa Turczak Separacja po faktycza lub prawa obie z mocy ustawy cza, ie ozacza defiitywego owego 1 75 1 61 3 Art 75 88 Kwartalik Prawo- o-ekoomia 3/015 zaspokajaia usp iedostatku

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach,

Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, Rachue prawdopodobieństwa i statystya matematycza Dr hab. iż. Mariusz Przybycień Literatura: Rachue prawdopodobieństwa i statystya matematycza w zadaiach, tom I i II, W. Krysici i i., PWN 2005. Wstęp do

Bardziej szczegółowo

Kombinacje, permutacje czyli kombinatoryka dla testera

Kombinacje, permutacje czyli kombinatoryka dla testera Magazie Kombiacje, permutacje czyli ombiatorya dla testera Autor: Jace Oroje O autorze: Absolwet Wydziału Fizyi Techiczej, Iformatyi i Matematyi Stosowaej Politechii Łódziej, specjalizacja Sieci i Systemy

Bardziej szczegółowo

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest

Bardziej szczegółowo

Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia

Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk

Bardziej szczegółowo

Parametryczne Testy Istotności

Parametryczne Testy Istotności Parametrycze Testy Istotości Wzory Parametrycze testy istotości schemat postępowaia pukt po pukcie Formułujemy hipotezę główą H odośie jakiegoś parametru w populacji geeralej Hipoteza H ma ajczęściej postać

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 4 Nieparametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 4 Nieparametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lecja 4 Nearametrycze testy stotośc ZADANIE DOMOWE www.etraez.l Stroa 1 Część 1: TEST Zazacz orawą odowedź (tylo jeda jest rawdzwa). Pytae 1 W testach earametryczych a) Oblczamy statystyę

Bardziej szczegółowo

STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś

STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś 1 STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr iż Krzysztof Bryś Pojȩcia wstȩpe populacja - ca ly zbiór badaych przedmiotów lub wartości. próba - skończoy podzbiór populacji podlegaj acy badaiu.

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI 2 PEARSONA ROZKŁAD GAUSSA Ćwiczeia rachuowe TEST ZGODOŚCI PEARSOA ROZKŁAD GAUSSA UWAGA: a stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz alulacyjy do programu Calc paietu Ope Office, iezbędy podczas

Bardziej szczegółowo

Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich

Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Magdalena Frąszczak Wrocław, 22.03.2017r Problem Behrensa Fishera Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego

Bardziej szczegółowo

X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9

X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9 Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli

Bardziej szczegółowo

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Konrad Miziński, nr albumu 233703 31 maja 2015 Zadanie 1 Wartości oczekiwane µ 1 i µ 2 oszacowano wg wzorów: { µ1 = 0.43925 µ = X

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a) ZADANIA - ZESTAW 1 Zadanie 11 Rzucamy trzy razy monetą A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie Oreślić zbiór zdarzeń elementarnych Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

Wstęp. zbiór wszystkich zdarzeń elementarnych (sample space), S zbiór zdarzeń, (events), P prawdopodobieństwo (probability distribution).

Wstęp. zbiór wszystkich zdarzeń elementarnych (sample space), S zbiór zdarzeń, (events), P prawdopodobieństwo (probability distribution). Wstęp,, S P przestrzeń probabilistycza (Probability space), zbiór wszystich zdarzeń elemetarych (sample space), S zbiór zdarzeń, (evets), P prawdopodobieństwo (probability distributio). P : S R ZMIENNA

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

Porównanie dwu populacji

Porównanie dwu populacji Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :

Bardziej szczegółowo

4. Weryfikacja modelu

4. Weryfikacja modelu 4. Weryfiacja modelu Wyznaczenie wetora parametrów struturalnych uładu ończy etap estymacji. Kolejnym etapem jest etap weryfiacji modelu. Przeprowadza się ją w dwóch ujęciach: merytorycznym i statystycznym.

Bardziej szczegółowo

Analiza I.1, zima globalna lista zadań

Analiza I.1, zima globalna lista zadań Aaliza I., zima 207 - globala lista zadań Marci Kotowsi 8 styczia 208 Podstawy Zadaie. Udowodij, że dla ażdego aturalego liczby 7 2 + oraz 7 2 dzielą się przez 6. Zadaie 2. Rozstrzygij, czy poiższe liczby

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

Metody probabilistyczne Rozwiązania zadań

Metody probabilistyczne Rozwiązania zadań Metody robabilistyczne Rozwiązania zadań 6. Momenty zmiennych losowych 8.11.2018 Zadanie 1. Poaż, że jeśli X Bn, to EX n. Odowiedź: X rzyjmuje wartości w zbiorze {0, 1,..., n} z rawdoodobieństwami zadanymi

Bardziej szczegółowo

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Techniczne Aspekty Zapewnienia Jakości

Techniczne Aspekty Zapewnienia Jakości Istytut Techologii Maszy i Automatyzacji Politechii Wrocławsiej Pracowia Metrologii i Badań Jaości Wrocław, dia Ro i ierue studiów. Grupa (dzień tygodia i godzia rozpoczęcia zajęć) Techicze Aspety Zapewieia

Bardziej szczegółowo

i statystyka matematyczna Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, M. Przybycień Rachunek prawdopodobieństwa i statystyka

i statystyka matematyczna Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, M. Przybycień Rachunek prawdopodobieństwa i statystyka Rachue prawdopodobieństwa i statystya matematycza Dr hab. iż.. Mariusz Przybycień Literatura: Rachue prawdopodobieństwa i statystya matematycza w zadaiach, tom I i II, W. Krysici i i., PWN 200. Wstęp do

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 4 kwietnia 2012 Testy nieparametryczne Dotychczas zajmowaliśmy si e praktycznym zastosowaniem testów istotności nasze zadanie sprowadza lo si e do testowania hipotez o parametrach rozk ladu. Teraz b edziemy

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej

Bardziej szczegółowo

Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym

Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną

Bardziej szczegółowo

Dwa podstawowe zagadnienia klasycznej statystyki matematycznej.

Dwa podstawowe zagadnienia klasycznej statystyki matematycznej. 5. Podstawowe pojęcia statystyi CZĘŚĆ II STATYSTYKA MATEMATYCZNA Rachue prawdopodobieństwa a statystya matematycza. Część I, rachue prawdopodobieństwa, dostarcza podstawowych pojęć i wzorów języa, za pomocą

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Zeszyty naukowe nr 9

Zeszyty naukowe nr 9 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0, Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi

Bardziej szczegółowo

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość

Bardziej szczegółowo

Wytrzymałość śruby wysokość nakrętki

Wytrzymałość śruby wysokość nakrętki Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a

Bardziej szczegółowo

ANALIZA DANYCH DYSKRETNYCH

ANALIZA DANYCH DYSKRETNYCH ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

Statystyka matematyczna. Wykład VI. Zesty zgodności

Statystyka matematyczna. Wykład VI. Zesty zgodności Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x

Bardziej szczegółowo

Badanie stacjonarności szeregów czasowych w programie GRETL

Badanie stacjonarności szeregów czasowych w programie GRETL Badanie stacjonarności szeregów czasowych w programie GRETL Program proponuje następujące rodzaje testów stacjonarności zmiennych:. Funcję autoorelacji i autoorelacji cząstowej 2. Test Diceya-Fullera na

Bardziej szczegółowo

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że

Bardziej szczegółowo

Metody Podejmowania Decyzji

Metody Podejmowania Decyzji Metody Podejmowaia Decyzji Wzrost liczby absolwetów w Politechice Wrocławsiej a ieruach o luczowym zaczeiu dla gospodari opartej a wiedzy r UDA-POKL.04.0.0-00-065/09-0 Recezet: Prof. dr hab. iż. Ja Iżyowsi

Bardziej szczegółowo

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG Tomasz ŚWIĘTOŃ 1 TRANSFORMACJA DO UKŁADU 2000 A ROBLEM ZGODNOŚCI Z RG Na mocy rozporządzeia Rady Miistrów w sprawie aństwowego Systemu Odiesień rzestrzeych już 31 grudia 2009 roku upływa termi wykoaia

Bardziej szczegółowo

Wiadowmości wstępne z rachunku prawdopodobieństwa

Wiadowmości wstępne z rachunku prawdopodobieństwa Biotechologia, Chemia, Chemia Budowlaa - Wydział Chemiczy - 1 Wiadowmości wstępe z rachuu prawdopodobieństwa Zdecydowaa więszość procesów fizyczych, techiczych, społeczych, eoomiczych itp, przebiega w

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Bezpieczeństwo i niezawodność w geotechnice Kalibracja częściowych współczynników bezpieczeństwa według Eurokodu EC7-1

Bezpieczeństwo i niezawodność w geotechnice Kalibracja częściowych współczynników bezpieczeństwa według Eurokodu EC7-1 Bezpieczeństwo i iezawodość w geotechice Kalibracja częściowych współczyiów bezpieczeństwa według Euroodu EC7-1 Dr hab iż Włodzimierz Brząała, prof PWr Politechia Wrocławsa, Wydział Budowictwa Lądowego

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Powtórzenie do kolokwium

Powtórzenie do kolokwium Powtórzenie do kolokwium Zakres materiału: Rozkład dwumianowy Rozkład normalny Przedziały ufności dla frakcji oraz średniej przy nieznanej wariancji Testy istotności: frakcji, próbkowy i dwupróbkowy test

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2 Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%

Bardziej szczegółowo