ESTYMACJA POZIOMU ZAKŁÓCENIA W SZEREGACH CZASOWYCH PRZY POMOCY FILTRU MEDIANOWEGO

Wielkość: px
Rozpocząć pokaz od strony:

Download "ESTYMACJA POZIOMU ZAKŁÓCENIA W SZEREGACH CZASOWYCH PRZY POMOCY FILTRU MEDIANOWEGO"

Transkrypt

1 POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Egieerig 04 Grzegorz MIKOŁAJCZAK* Jaub PĘKSIŃSKI* ESTYMACJA POZIOMU ZAKŁÓCENIA W SZEREGACH CZASOWYCH PRZY POMOCY FILTRU MEDIANOWEGO W pracy przedtawioo metodę etymacji poziomu załóceia wyorzytującą filtrację mediaową oraz zajomość wpółczyia reducji zumu. Załada ię, że w proceie wygładzaia tłumioy jet tylo zum, bez zmiay ygału użyteczego. Poziom tłumieia zumu dla filtracji mediaowej, zay jet a priori, co pozwala a doładiejzą etymację poziomu wariacji ładia loowego zeregu czaowego. SŁOWA KLUCZOWE: filtr mediaowy, etymacja wariacji załóceia, zeregi czaowe. WSTĘP Aaliza zeregów czaowych ma dwa główe cele: wyrywaie atury zjawia reprezetowaego przez ewecję oberwacji i progozowaie (przewidywaie) przyzłych wartości zeregu czaowego. Oba te cele wymagają zidetyfiowaia i opiaia, w poób miej lub bardziej formaly, elemetów zeregu czaowego. Wśród ładiów zeregu czaowego możemy wyróżić: tedecja rozwojowa (tred), wahaia ezoowe, wahaia cylicze (oiuturale), wahaia przypadowe (ładi loowy, zum) []. Jedym z problemów w aalizie zeregów czaowych jet reducja iepożądaych załóceń. Z uwagi a wielość metod i algorytmów charateryzujących ię różą złożoością i efetywością uuwaia zumu, tóre zależą od charateru i poziomu załóceia, trudo jet wybrać ajbardziej efetywą metodę. O ile tylo dypoujemy oreśloą wiedzą lub mamy podtawy do poczyieia pewych założeń co do atury i potaci załóceń, możemy dobrać odpowiedią metodę, tóra zapewi optymalą jaość aalizy zeregu czaowego []. Zagadieie etymacji zumu polega ajczęściej a wyzaczeiu odchyleia tadardowego załóceia σ, lub wariacji σ, z zeregu czaowego, przy założeiu, że ładi loowy jet proceem addytywym (), tacjoarym, ieorelowaym z ygałem, o wartości przeciętej zero i rozładzie ormalym [3, 4]: * Zachodiopomori Uiwerytet Techologiczy.

2 06 Grzegorz Miołajcza, Jaub Pęińi x () gdzie: ygał użyteczy, x ygał zazumioy, addytywe załóceie o rozładzie ormalym, wartości przeciętej zero E() = 0 i wariacji V() =. Metody etymacji poziomu załóceia moża podzielić, zaadiczo a dwie grupy. Pierwza bazująca a filtracji ygału zazumioego, polegająca a założeiu, że odfiltroway ygał jet orygiałem, co prowadzi do wyzaczeia odchyleia tadardowego zumu σ a podtawie różicy między ygałem zazumioym a odfiltrowaym. Drugi poób etymacji załóceia polega a zalezieiu w zeregu czaowym miejca gdzie ie wytępuje ygał użyteczy i a tej podtawie wyzaczeiu poziomu załóceia.. IDEA METODY ESTYMACJI Do ozacowaia załóceia propouje ię wyorzytać filtrację mediaową, tórej działaie opiae jet w atępujący poób. Stadardowy filtr mediaowy otrzymyway jet w wyiu uporządowaia próbe wejściowych x i w olejości roącej i wybór jao wyjściowej, środowej wartości pośród ich, jeżeli ilość pobraych próbe jet ieparzyta. W przeciwym razie próbą wyjściowa filtru mediaowego jet dowola wartość zajdująca ię pomiędzy wartościami dwóch środowych (ajczęściej średia arytmetycza). Ozaczając x = (x, x,..., x N ) jao zbiór oberwacji, a ich mediaę jao med(x) to powyżzą zależość moża zapiać wzorem [4]: xv, gdy N v med( x) x x () v v, gdy N v W proceie wygładzaia atępuje reducja wariacji załóceia do wartości opiaych zależościami przedtawioymi w Tabeli [7]. Zajomość tych zależości jet podtawą do opracowaia metody etymacji poziomu załóceia. Załada ię, że w proceie wygładzaia atępuje tylo reducja wariacji zumu według zależości przedtawioej w tabeli, atomiat wariacja ygału użyteczego V() = σ pozotaje bez zmia. Przyjmując, że oberwoway zereg czaowy jet potaci (), oraz uwzględiając, że zum i ygał użyteczy ie ą orelowae, wariacja ygału wejściowego wyoi: V ( x) (3) Załadając, że wygładzaie reduuje tylo wariację załóceia, możemy apiać zależość a wariację ygału wyjściowego jao: V ( y) (4)

3 Etymacja poziomu załóceia w zeregach czaowych przy pomocy filtru Tabela. Graicze wartości wariacji załóceia a wyjściu filtrów średiej ruchomej i mediay, przy różych modelach załóceia oraz przy zachowaiu zgodości tłumieia, N-ilość elemetów w oie Model załóceia Rozład jedotajy:, 3 x 3 f ( x) 3 0, w przeciwym razie Rozład Gaua (ormaly): f ( x) e Rozład Laplace a: f ( x) e x / x / Średia ruchoma N N N Mediaa 3 N Ozaczając: V(y) = V med wariacja po filtracji mediaowej, V(x) = V 0 wariacja ygału bez wygładzaia, otrzymujemy: Vmed (5) V0 V0 (6) Podtawiając (6) do (5), po przeztałceiach otrzymujemy zależość a wariację załóceia (7), wyzaczoą a podtawie zajomości wariacji ygału załócoego oraz wariacji ygału po filtracji mediaowej: ( V0 V med ) (7) Przedtawioy powyżej poób wyzaczeia wariacji załóceń (7) charateryzuje ię potrzebą zajomości tylo wariacji ygału wejściowego i wyjściowego, tórych wartość możemy obliczyć [0]. Pozwala to w poób proty wyzaczyć poziom załóceń. 3. WYNIKI TESTÓW Propoowaą metodę etymacji wariacji załóceia, przedtawioą w rozdziale, poddao tetom, polegającym a wygładzaiu ciągu próbe {x }, wygeerowaych a podtawie tłumioego ygału harmoiczego { } (8), przedtawioym a ryuu, załócoych zumem { }, o rozładzie ormalym (Gaua), wartości przeciętej zero E() = 0 i wariacji V() =, gdzie wartość odchyleia tadardowego zmieiao w zareie od 0 do 0.

4 08 Grzegorz Miołajcza, Jaub Pęińi e K 4 i K (0; K ) (8) Ry.. Przebieg ygału orygialego { } oraz załócoego zumem o rozładzie ormalym {x } Dla ażdej wartości geerowao M = 0 iezależych załóceń dla tórych otrzymywao wyetymowae wartości,m, tórych wyzaczao średią będącą etymatorem próby:, for m M (9) M m m Natępie dla ażdej wartości wyzaczao obciążeie etymatora μ oraz odchyleie tadardowe SD etymatora (9): ; SD, m (0) M m Do porówaia wyiów etymacji załóceia zatoowao miarę błędu średiowadratowego: MSE, m () M m Etymacji załóceia wyoao dla różej ilości elemetów zeregu: K = 00, K = 500, K = 000, ja i zmieej ilości elemetów w oie (N) filtru mediaowego (). 4. PODSUMOWANIE Aalizując otrzymae rezultaty etymacji załóceia przedtawioe w tabeli, moża twierdzić, że we wzytich przypadach uzyao zadowalające wyii, a w zczególości dla wartości załóceia <0 w przypadu zeregu liczącego K = 00 próbe. Natomiat z ry. moża zaoberwować, że wartość błędu średiowaratowego () MSE<0.75 dla zeregów o liczbie próbe K = 500 i K = 000.

5 Etymacja poziomu załóceia w zeregach czaowych przy pomocy filtru Ry.. Wyre wartości błędu średiowadratowego MSE dla pozczególych tetów w fucji wartości odchyleia tadardowego załóceia Tabela. Wartości pozczególych waźiów: μ, SD MSE uzyaych w obliczeiach dla K = 00 próbe zeregu czaowego N=3 N=5 N=7 μ SD MSE μ SD MSE μ SD MSE

6 0 Grzegorz Miołajcza, Jaub Pęińi Reaumując moża przyjąć poprawość poczyioych założeń, dotyczących brau wpływu filtracji mediaowej a ygał użyteczy oraz zajomości wpółczyia tłumieia tego filtru a załóceie o rozładzie ormalym. LITERATURA [] L. Ljug, Sytem idetificatio theory for Uer. Pretice-Hall, Eglewood CliP, NJ, 987. [] H. Poor, A Itroductio to Sigal Detectio ad Etimatio. New Yor: Spriger- Verlag, 985. [3] P.G. Ferrario, Local Variace Etimatio for Uceored ad Ceored Obervatio, Spriger Vieweg, 03. [4] S.K. Mitra, J.F.Kaier, Hadboo Digital Sigal Proceig, Joh Willey 993. [5] A. Joe, New tool i o-liear modellig ad predictio, Computatioal Maagemet Sciece, vol., o., pp , Jul [6] M. Neuma, Fully data-drive oparametric variace etimator Statitic, vol. 5, pp. 89-, 994. [7] J. Kowali,J. Peii, G. Miolajcza, Detectio of oie i digital image by uig the averagig filter ame COV Itelliget Iformatio ad Databae Sytem 5th Aia Coferece, ACIIDS 03, Proceedig, Pt. ed.: Ali Selamat, Ngoc Thah Nguye, Habibollah Haro Berli [i i.] : Spriger, pp [8] H. Pi ad C. Petero, Fidig the embeddig dimeio ad variable depedecie i time erie, Neural Computatio, vol. 6, o. 3, pp , 994. [9] E. Eirola, E. Liiti aie, A. Ledae, F. Coroa, ad M. Verleye, Uig the delta tet for variable electio, i ESANN 008, Europea Sympoium o Artificial Neural Networ, Bruge (Belgium), pp [0] J. Peii, M. Stefaowi, G. Miolajcza, Etimatig the level of oie i digital image. Itelliget multimedia techologie for etworig applicatio: techique ad tool ed. Dimitri N. Kaellopoulo Iformatio Sciece Referece, pp , 03. ESTIMATION OF THE LEVEL OF DISTURBANCE IN TIME SERIES USING A MEDIAN FILTER Thi paper preet a method of etimatig the level of diturbace, baed o media filtratio ad the aumptio that the moothig proce applie to oie, excluively. The owledge of a oie reductio coefficiet eable the determiig of a etimated quatity.

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy. MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,

Bardziej szczegółowo

Statystyka opisowa. () Statystyka opisowa 24 maja / 8

Statystyka opisowa. () Statystyka opisowa 24 maja / 8 Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów

Bardziej szczegółowo

1 Dwuwymiarowa zmienna losowa

1 Dwuwymiarowa zmienna losowa 1 Dwuwymiarowa zmiea loowa 1.1 Dwuwymiarowa zmiea loowa kokowa X = x i, Y = y k = p ik przy czym i, k N oraz p ik = 1; i k p i = X = x i = p ik dla i N; p k = Y = y k = p ik dla k N; k i F 1 x = p i dla

Bardziej szczegółowo

Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste

Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x

Bardziej szczegółowo

Porównanie dwu populacji

Porównanie dwu populacji Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :

Bardziej szczegółowo

1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,

1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1, 1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871 COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH Kieruek: Fiase i rachukowość Robert Bąkowski Nr albumu: 9871 Projekt: Badaie statystycze cey baryłki ropy aftowej i wartości dolara

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

Pattern Classification

Pattern Classification atter Classificatio All materials i these slides were tae from atter Classificatio d ed by R. O. Duda,. E. Hart ad D. G. Stor, Joh Wiley & Sos, 000 with the permissio of the authors ad the publisher Chapter

Bardziej szczegółowo

PODSTAWY BIOSTATYSTYKI ĆWICZENIA

PODSTAWY BIOSTATYSTYKI ĆWICZENIA PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM ZADANIE 1 Z populacji wyborców pobrao próbkę 1000 osób i okazało

Bardziej szczegółowo

Techniczne Aspekty Zapewnienia Jakości

Techniczne Aspekty Zapewnienia Jakości Istytut Techologii Maszy i Automatyzacji Politechii Wrocławsiej Pracowia Metrologii i Badań Jaości Wrocław, dia Ro i ierue studiów. Grupa (dzień tygodia i godzia rozpoczęcia zajęć) Techicze Aspety Zapewieia

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

Metody Statystyczne II

Metody Statystyczne II Metody Statytycze II dr Dorota Węziak-Białowolka Itytut Statytyki i Demograii Iormacje orgaizacyje Koultacje: poiedziałek 5:3 6:3 5F lub 73F Materiały: www.e-gh.pl/bialowolka/ms Zaliczeie: w ormie egzamiu

Bardziej szczegółowo

MODELOWANIE PROBABILISTYCZNE PROCESU PRZESYŁANIA KOMUNIKATÓW W SYSTEMACH ROZPROSZONYCH

MODELOWANIE PROBABILISTYCZNE PROCESU PRZESYŁANIA KOMUNIKATÓW W SYSTEMACH ROZPROSZONYCH Zbigiew WESOŁOWSKI MODELOWANIE PROBABILISYCZNE PROCESU PRZESYŁANIA KOMUNIKAÓW W SYSEMACH ROZPROSZONYCH SRESZCZENIE W artykule omówioo zagadieia modelowaia probabilityczego oraz aalizy tatytyczej proceu

Bardziej szczegółowo

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407 Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie

Bardziej szczegółowo

STATYSTYKA. Seminarium Chemia Analityczna. Dr hab. inż. Piotr Konieczka.

STATYSTYKA. Seminarium Chemia Analityczna. Dr hab. inż. Piotr Konieczka. 00--5 STATYSTYKA Semiarium Chemia Aalitycza Dr hab. iż. Piotr Koieczka e-mail: piotr.koieczka@pg.gda.pl Dokładość (accuracy) topień zgodości uzykaego wyiku pojedyczego pomiaru z wartością oczekiwaą (rzeczywitą).

Bardziej szczegółowo

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7 Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Materiały do wykładu 4 ze Statystyki

Materiały do wykładu 4 ze Statystyki Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematycza dla leśików Wydział Leśy Kieruek leśictwo Studia Stacjoare I Stopia Rok akademicki 0/0 Wykład 5 Testy statystycze Ogóle zasady testowaia hipotez statystyczych, rodzaje hipotez, rodzaje

Bardziej szczegółowo

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o 1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej

Bardziej szczegółowo

Rozkład Poissona. I. Cel ćwiczenia. Obowiązujący zakres materiału. Podstawy teoretyczne. Opracował: Roman Szatanik

Rozkład Poissona. I. Cel ćwiczenia. Obowiązujący zakres materiału. Podstawy teoretyczne. Opracował: Roman Szatanik Opracował: Roma Szatai Rozład Poissoa I. Cel ćwiczeia Zapozaie ze statystyczym sposobem opisu zagadień związaych z promieiowaiem jądrowym oraz z rozładami statystyczymi stosowaymi w fizyce jądrowej. Pratycze

Bardziej szczegółowo

d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem

d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistycza Defiicja Odwzorowaie X: Ω R d azywamy d-wymiarowym wektorem losowym jeśli dla każdego (x 1, x 2,,x d ) є R d zbiór Uwaga {ω є Ω: X(ω)

Bardziej szczegółowo

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1). TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW

PRZETWARZANIE SYGNAŁÓW PRZETWARZAIE SYGAŁÓW SEMESTR V Człowie- ajlepza iwetycja Projet wpółfiaoway przez Uię Europeją w ramach Europejiego Fuduzu Społeczego Dotoowaie arzędzi matematyczych do potrzeb pratyczej aalizy ygałów

Bardziej szczegółowo

Estymacja to wnioskowanie statystyczne koncentrujące się wokół oszacowania wartości specyficznych parametrów populacji.

Estymacja to wnioskowanie statystyczne koncentrujące się wokół oszacowania wartości specyficznych parametrów populacji. /7/06 Biotatytyka, 06/07 dla Fizyki Medyczej, tudia magiterkie etymacja etymacja średiej puktowa przedział ufości średiej rozkładu ormalego etymacja puktowa i przedziałowa wariacji rozkładu ormalego etymacja

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa aaliza daych doświadczalych Wykład 7 8.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Z-TRANSFORMACJA Spis treści

Z-TRANSFORMACJA Spis treści Z-TRANSFORMACJA Spi treści. Deiicja. Pryłady traormat 3. Właości -traormacji 4. Zwiąe -traormacji traormacją Fouriera 5. Z-traormacja ygału dwuwymiarowego Deiicja -traormacji Z-traormata jet eregiem Laureta

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa aaliza daych doświadczalych Wykład 7 7.04.07 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 06/07 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory

Bardziej szczegółowo

Parametryczne Testy Istotności

Parametryczne Testy Istotności Parametrycze Testy Istotości Wzory Parametrycze testy istotości schemat postępowaia pukt po pukcie Formułujemy hipotezę główą H odośie jakiegoś parametru w populacji geeralej Hipoteza H ma ajczęściej postać

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO WOJSKOWA AKADEMIA ECHNICZNA im. Jaroława Dąbrowiego ZAKŁAD AWIONIKI I UZBROJENIA LONICZEGO Przedmiot: PODSAWY AUOMAYKI (tudia tacjoare I topia) ĆWICZENIE RACHUNKOWE Nr 3 CHARAKERYSYKI CZASOWE I CZĘSOLIWOŚCIOWE

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów

Bardziej szczegółowo

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI Piotr KOZIERSKI WYKORZYSTAIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDETYFIKACJI UKŁADÓW AUTOMATYKI STRESZCZEIE W artyule przedstawioo sposób idetyfiacji parametryczej obietów ieliiowych zapisaych w przestrzei

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57),

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Uiv. Techol. Steti. 009, Oecoomica 75 (57), 3 36 Leoid WOROBJOW, Krzyztof WISIŃSKI, Alekadra PANFIORAVA STOSOWANIE METOD ESTYMACJI PRZEDZIAŁOWEJ

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym) Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli

Bardziej szczegółowo

Wprowadzenie do laboratorium 1

Wprowadzenie do laboratorium 1 Wprowadzeie do laboratorium 1 Etymacja jedorówaiowego modelu popytu a bilety loticze Etapy budowy modelu ekoometryczego Specyfikacja modelu Zebraie daych tatytyczych Etymacja parametrów modelu Weryfikacja

Bardziej szczegółowo

Statystyczny opis danych - parametry

Statystyczny opis danych - parametry Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2 Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%

Bardziej szczegółowo

PREZENTACJA MODULACJI ASK W PROGRAMIE MATCHCAD

PREZENTACJA MODULACJI ASK W PROGRAMIE MATCHCAD POZA UIVE RSIY OF E CHOLOGY ACADE MIC JOURALS o 76 Electrical Egieerig 3 Jaub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Jausz KOWALSKI** PREZEACJA MODULACJI ASK W PROGRAMIE MACHCAD W artyule autorzy przedstawili

Bardziej szczegółowo

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności) IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,

Bardziej szczegółowo

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

Estymacja parametrów populacji

Estymacja parametrów populacji Estymacja parametrów populacji Estymacja parametrów populacji Estymacja polega a szacowaiu wartości parametrów rozkładu lub postaci samego rozkładu zmieej losowej, a podstawie próby statystyczej. Estymacje

Bardziej szczegółowo

PREZENTACJA WŁAŚCIWOŚCI FILTRÓW WYGŁADZAJĄCYCH II RZĘDU W PROGAMIE MathCad

PREZENTACJA WŁAŚCIWOŚCI FILTRÓW WYGŁADZAJĄCYCH II RZĘDU W PROGAMIE MathCad POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 87 Electrical Engineering 2016 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Janusz KOWALSKI** PREZENTACJA WŁAŚCIWOŚCI FILTRÓW WYGŁADZAJĄCYCH II RZĘDU W

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

STATYSTYKA. Seminarium Chemia Analityczna III rok. Dr inż. Piotr Konieczka

STATYSTYKA. Seminarium Chemia Analityczna III rok. Dr inż. Piotr Konieczka STATYSTYKA Semiarium Chemia Aalitycza III rok Dr iż. Piotr Koieczka Zaczijmy od defiicji Dokladość (accuracy) zgodość pomiędzy uzykaym wyikiem pomiaru z wartością rzeczywitą (oczekiwaą). Prawdziwość (truee)

Bardziej szczegółowo

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Statystyka opisowa - dodatek

Statystyka opisowa - dodatek Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej

Bardziej szczegółowo

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą

Bardziej szczegółowo

θx θ 1, dla 0 < x < 1, 0, poza tym,

θx θ 1, dla 0 < x < 1, 0, poza tym, Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.

Bardziej szczegółowo

Testy dotyczące wartości oczekiwanej (1 próbka).

Testy dotyczące wartości oczekiwanej (1 próbka). ZASADY TESTOWANIA HIPOTEZ STATYSTYCZNYCH. TESTY DOTYCZĄCE WARTOŚCI OCZEKIWANEJ Przez hipotezę tatytyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu intereującej na cechy. Hipotezy

Bardziej szczegółowo

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów

Bardziej szczegółowo

STATYSTKA I ANALIZA DANYCH LAB II

STATYSTKA I ANALIZA DANYCH LAB II STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.

Bardziej szczegółowo

Wyższe momenty zmiennej losowej

Wyższe momenty zmiennej losowej Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla

Bardziej szczegółowo

Wykład 4 Soczewki. Przyrządy optyczne

Wykład 4 Soczewki. Przyrządy optyczne Wykład 4 Soczewki. Przyrządy optycze Soczewka cieka - rówaie zlifierzy oczewek Rozważyy teraz dwie powierzchi ferycze oddzielające ośrodki o wpółczyikach załaaia kolejo i odległych od iebie o d. Niech

Bardziej szczegółowo

ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI TORFÓW

ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI TORFÓW prof. dr hab. iż. ZYGUNT EYER e- mail: meyer@zut.edu.pl Zachodiopomorki Uiwerytet Techologiczy w Szczeciie Katedra Geotechiki, al. Piatów 5, 7-3 Szczeci ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO

Bardziej szczegółowo

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statytyka. v.0.9 egz mgr inf nietacj Statytyczna analiza danych Statytyka opiowa Szereg zczegółowy proty monotoniczny ciąg danych i ) n uzykanych np. w trakcie pomiaru lub za pomocą ankiety. Przykłady

Bardziej szczegółowo

Estymacja przedziałowa:

Estymacja przedziałowa: Estymacja przedziałowa: Zamiast szukad ajlepszego estymatora, tak jak w estymacji puktowej będziemy poszukiwad przedziału, do którego będzie ależał szukay parametr z odpowiedio dużym prawdopodobieostwem.

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia

Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby METODY PROBABILISTYCZE I STATYSTYKA WYKŁAD 0: ROZKŁADY STATYSTYK Z PRÓBY. PRZEDZIAŁY UFOŚCI. Rozkłady tatytyk z róby Statytyką azyway zieą loową, będącą fkcją zieych loowych,,..., taowiących róbę. Statytyka

Bardziej szczegółowo

WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD Zdarzeia losowe i prawdopodobieństwo Zmiea losowa i jej rozkłady Metody statystycze metody opisu metody wioskowaia statystyczego sytetyczy liczbowy opis właściwości zbioru daych ocea charakterystyk

Bardziej szczegółowo

Histogram: Dystrybuanta:

Histogram: Dystrybuanta: Zadaie. Szereg rozdzielczy (przyjmujemy przedziały klasowe o długości 0): x0 xi i środek i*środek i_sk częstości częstości skumulowae 5 5 8 0 60 8 0,6 0,6 5 5 9 0 70 7 0,8 0, 5 5 5 0 600 0, 0,6 5 55 8

Bardziej szczegółowo

Twierdzenia graniczne:

Twierdzenia graniczne: Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości

Bardziej szczegółowo

Wnioskowanie statystyczne dr Alicja Szuman

Wnioskowanie statystyczne dr Alicja Szuman Wiokowaie tatytycze dr Alicja Szuma Literatura: J. Jóźwiak, J. Podgórki Statytyka od podtaw PWE Warzawa 006 J. Kudelki, I. Roeke Slomka Statytyka AE Pozań 995 J. Greń Statytyka matematycza. Modele i zadaia

Bardziej szczegółowo

1 Testy statystyczne. 2 Rodzaje testów

1 Testy statystyczne. 2 Rodzaje testów 1 Testy statystycze Podczas sprawdzaia hipotez statystyczych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ a odrzuceiu hipotezy zerowej (H 0 ), gdy jest oa prawdziwa, czyli

Bardziej szczegółowo

Statystyka i rachunek prawdopodobieństwa

Statystyka i rachunek prawdopodobieństwa Statystyka i rachuek prawdopodobieństwa Filip A. Wudarski 22 maja 2013 1 Wstęp Defiicja 1. Statystyka matematycza opisuje i aalizuje zjawiska masowe przy użyciu metod rachuku prawdopodobieństwa. Defiicja

Bardziej szczegółowo

STATYSTYKA. Seminarium Chemia Analityczna. Dr inż. Piotr Konieczka.

STATYSTYKA. Seminarium Chemia Analityczna. Dr inż. Piotr Konieczka. STATYSTYKA Semiarium Chemia Aalitycza Dr iż. Piotr Koieczka e-mail: kaczor@chem.pg.gda.pl Zaczijmy od defiicji Dokładość (accuracy) topień zgodości uzykaego wyiku pojedyczego pomiaru z wartością oczekiwaą

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka Wnioskowanie statystyczne. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Rachunek prawdopodobieństwa i statystyka Wnioskowanie statystyczne. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407 Rachek rawdoodobieństwa i statystyka Wioskowaie statystycze. Estymacja i estymatory Dr Aa ADRIAN Paw B5, ok407 ada@agh.ed.l Estymacja arametrycza Podstawowym arzędziem szacowaia iezaego arametr jest estymator

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystya Iżyiersa dr hab. iż. Jace Tarasiu GH, WFiIS 03 Wyład 4 RCHUNEK NIEPEWNOŚCI + KILK UŻYTECZNYCH NRZĘDZI STTYSTYCZNYCH Wyład w więszości oparty a opracowaiu prof.. Zięby http://www.fis.agh.edu.pl/~pracowia_fizycza/pomoce/opracowaiedaychpomiarowych.pdf

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa aaliza daych doświadczalych Wykład 7 3.04.08 dr iż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr leti 07/08 Wielowymiarowy rozkład Gaussa - przypomieie Cetrale twierdzeie graicze

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów

KADD Metoda najmniejszych kwadratów Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie

Bardziej szczegółowo

H brak zgodności rozkładu z zakładanym

H brak zgodności rozkładu z zakładanym WSPÓŁZALEŻNOŚĆ PROCESÓW MASOWYCH Test zgodości H : rozład jest zgody z załadaym 0 : H bra zgodości rozładu z załadaym statystya: p emp i p obszar rytyczy: K ;, i gdzie liczba ategorii p Przyład: Wyoujemy

Bardziej szczegółowo

Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona)

Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) Wykład 7 Dwie iezależe próby Częto porówujemy wartości pewej zmieej w dwóch populacjach. Przykłady: Grupa zabiegowa i kotrola Lekartwo a placebo Pacjeci biorący dwa podobe lekartwa Mężczyźi a kobiety Dwie

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

ZDARZENIE ELEMENTARNE to możliwy wynik doświadczenia losowego. Wszystkie takie możliwe wyniki tworzą zbiór zdarzeń elementarnych.

ZDARZENIE ELEMENTARNE to możliwy wynik doświadczenia losowego. Wszystkie takie możliwe wyniki tworzą zbiór zdarzeń elementarnych. STATYSTYKA to auka, której przedmiotem zaiteresowaia są metody pozyskiwaia i prezetacji, a przede wszystkim aalizy daych opisujących zjawiska masowe. Metody statystycze oparte są a rachuku prawdopodobieństwa.

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII STEROWANIA INSTRUKCJA LABORATORYJNA

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII STEROWANIA INSTRUKCJA LABORATORYJNA Na prawach ręopi do żyt łżbowego INSYU ENERGOELEKRYKI POLIECHNIKI WROCŁAWSKIEJ Raport erii SPRAWOZDANIA Nr LABORAORIUM EORII SEROWANIA INSRUKCJA LABORAORYJNA ĆWICZENIE Nr 4 Minimalnoczaowe terowanie optymalne

Bardziej szczegółowo