Pattern Classification
|
|
- Elżbieta Kamińska
- 5 lat temu
- Przeglądów:
Transkrypt
1 atter Classificatio All materials i these slides were tae from atter Classificatio d ed by R. O. Duda,. E. Hart ad D. G. Stor, Joh Wiley & Sos, 000 with the permissio of the authors ad the publisher
2 Chapter 3: Estymator ajwięszej wiarygodości i estymator Bayesa part Wstęp Estymator ajwięszej wiarygodości rzyład dla przypadu szczególego rzypade Gaussowsi: iezae µ i σ Obciążeie estymatora Dodate: Sformułowaie zadaia MW
3 Wstęp Data availability i a Bayesia framewor Możemy opracować optymaly lasyfiator Bayesa, zając: ω i prawdopodobieństwa a priori ω i waruowe rozłady w lasach Niestety, jedyie w wyjątowych sytuacjach dyspoujemy pełą iformacją probabilistyczą Opracowywaie lasyfiatora w oparciu o ciąg uczący Łatwo oszacować prawdopodobieństwa a priori Ciąg uczący jest zwyle zbyt mały do estymacji rozładów waruowych duży wymiar przestrzei cech atter Classificatio, Chapter 3
4 Iformacja apriorycza o problemie 3 Normaly rozład ω i ω i ~ N µ i, Σ i Rozład charateryzoway przez dwa parametry Techii estymacji Estymator Masymalej Wiarygodości MW Estymator Bayesa Wyii ońcowe są podobe, ale podejścia są róże atter Classificatio, Chapter 3
5 4 Zestaw parametrów w zadaiu MW jest ustaloy, ale wartości parametrów ależy wyzaczyć Najlepsze oszacowaia wartości parametrów uzysujemy masymalizując prawdopodobieństwo otrzymaia daych, jaie zostały zaobserwowae W metodach Bayesowsich parametry rozpatrywae są jao zmiee losowe o zaych rozładach W obu podejściach używamy ω i do ostrucji reguł decyzyjych lasyfiatora atter Classificatio, Chapter 3
6 Estymator Masymalej Wiarygodości 5 Ma dobre własości zbieżości dla rosącej długości ciągu uczącego Łatwiejszy w wyzaczeiu od estymatorów iych metod Ogóla idea działaia estymatora Załóżmy, że jest c las obietów ω j ~ N µ j, Σ j ω j ω j, j gdzie: µ, Σ j j µ, µ,..., σ, σ,cov m j j j j j j,... atter Classificatio, Chapter 3
7 Wyorzystaie ciągu uczącego do estymacji,,, c, gdzie i i,,, c odpowiadają lasom 6 Niech D zawiera próbe,,,, D F D fucja wiarygodości Estymator MW parametru masymalizuje D Jest taą wartością parametru, tóra ajlepiej odpowiada zaobserwowaym pomiarom, zebraym w ciągu uczącym atter Classificatio, Chapter 3
8 7 atter Classificatio, Chapter 3
9 Estymator optymaly Niech,,, p T oraz iech ozacza gradiet 8,,..., p T Ozaczmy l jao: l l D Sformułowaie problemu: wyzaczyć wartość, tóra masymalizuje: ˆ arg ma l atter Classificatio, Chapter 3
10 9 Warue oieczy optimum: l l l 0 atter Classificatio, Chapter 3
11 atter Classificatio, Chapter 3 0 Szczególy przypade: iezae µ i µ ~ Nµ, Σ Wartości cech obietów są zmieymi losowymi o wielowymiarowym rozładzie ormalym µ a zatem: Estymator MW parametru µ musi spełiać warue: [ ] 0 l i l l Σ Σ Σ µ µ µ µ π µ µ T d 0 ˆ Σ µ
12 o wymożeiu przez Σ oraz po prostych przeształceiach otrzymujemy: ˆµ Jest to średia arytmetycza próbe z ciągu uczącego Wiose: Jeżeli ω j j,,, c jest rozładem Gaussa w d- wymiarowej przestrzei cech to moża estymować,,, c T i dooać optymalej lasyfiacji w sesie bayesowsim. atter Classificatio, Chapter 3
13 atter Classificatio, Chapter 3 Estymator MW: Rozład ormaly: iezae µ oraz σ, µ, σ l l l l π l l
14 atter Classificatio, Chapter 3 3 Sumowaie: Rozwiązaie uładu daje wyi: ˆ ; ˆ µ σ µ + 0 ˆ ˆ ˆ 0 ˆ
15 4 Obciążeie estymatora Estymator MW parametru σ jest obciążoy E Σ i. σ σ Nieobciążoy estymator macierzy Σ ma postać: C T µ ˆ µ - macierz owariacji z próby atter Classificatio, Chapter 3
16 5 Dodate: Sformułowaie zadaia estymacji MW Niech D {,,, },, ; D Należy wyzaczyć wartość, przy tórej ciąg uczący jest ajbardziej reprezetatywy ˆ atter Classificatio, Chapter 3
17 6 D Nµ j, Σ j j, ω j ω j ω D... 0 D D c atter Classificatio, Chapter 3
18 7,,, c roblem: wyzaczyć ˆ taie, że: ma D ma,..., ma atter Classificatio, Chapter 3
19 Metoda Bayesa MB Chapter 3: Estymator ajwięszej wiarygodości i estymator Bayesa part arametryczy estymator Bayesa: rozład ormaly arametryczy estymator Bayesa: przypade ogóly roblemy z wielowymiarowością Złożoość obliczeiowa Aaliza ompoetów i aaliza dysrymiacyja Uryte łańcuchy Marowa 8
20 Estymator Bayesa uczeie bayesowsie w rozpozawaiu obrazów I MLE was supposed fi I BE is a radom variable Wyzaczaie prawdopodobieństw a posteriori ω i Wyzaczyć ω i, D Wzór Bayesa dla próbi D: ω i, D c j ω, D ω D i ω, D ω D j i j 9 atter Classificatio, Chapter 9 3
21 0 atter Classificatio, Chapter 0,,, Ostateczie :,, c j j j i i i i i i j j i i i ω ω ω ω ω ω ω ω ω ω ω D D D D D D D D, D 3
22 arametryczy estymator Bayesa: rozład ormaly Cel: Estymacja z wyorzystaiem rozładu a posteriori D rzypade jedowymiarowy: µ D µ jest jedyym iezaym parametrem µ ~ N µ, σ µ ~ N µ, σ 0 0 atter Classificatio, Chapter 4
23 atter Classificatio, Chapter Estymacja rozładu orówaie i : d µ µ α µ µ µ µ µ µ D D D, ~ N σ µ µ D ˆ σ σ σ σ σ µ σ σ σ µ σ σ σ µ ad 4
24 3 atter Classificatio, Chapter 3 4
25 rzypade jedowymiarowy D µ D jest już wyzaczoe D pozostało do wyzaczeia! D µ µ D dµ jest rozładem ormalym 4 A więc: D ~ N µ, σ + σ ma ω szuay rozład w lasach D j, ω j Mając D j, ω j wraz z ω j i wzorem Bayesa, otrzymujemy regułę decyzyją dla lasyfiatora Bayesa: j [ ω, D] ma[ ω, D ω ] j ω j j j atter Classificatio, Chapter 4 4 j
26 arametryczy estymator Bayesa: przypade ogóly 5 Wyzaczeie D może być przeprowadzoe w ażdej sytuacji, w tórej iezay rozład daje się parametryzować. Szczegółowe założeia są astępujące: ostać jest zaa z doładością do wartości, tórą ależy wyzaczyć Wiedza o jest zawarta w zaym rozładzie a priori ozostała część wiedzy o jest zawarta w zbiorze D zmieych losowych,,, atter Classificatio, Chapter 5 5
27 6 atter Classificatio, Chapter 6 odstawowe zadaie: Wyzacz rozład a posteriori D a astępie wyzacz D Ze wzoru Bayesa mamy: Z waruu iezależości otrzymujemy: D, d D D D 5
28 roblemy z wielowymiarowością Zadaia z 50 lub 00 biarymi cechami Doładość lasyfiacji zależy od wymiaru i ilości daych uczących rzypade wielowymiarowy z rozładem ormalym i dwiema lasami o tej samej owariacji 7 blad gdzie : r π r / e u µ µ du T Σ µ µ lim r blad 0 atter Classificatio, Chapter 7 7
29 8 Jeżeli cechy są iezależe, to: Σ diag σ r i d i µ,,..., d i σ µ σ i i σ Najbardziej użytecze cechy to taie, tórych różica między średią jest duża w porówaiu do odchyleia stadardowego Często obserwuje się w pratyce, że począwszy od pewego mometu uwzględiaie olejych cech prowadzi do pogorszeia jaości lasyfiacji!. atter Classificatio, Chapter 8 7
30 9 7 atter Classificatio, Chapter 9 7
31 30 Złożoość obliczeiowa Notacja wielie o f Oh Jeżeli: c, R ; f c0 góra graica f rośie ie szybciej iż h wystarczająco o wystarczająco dużym wymiarze! h 0 0 f +3+4 g f O atter Classificatio, Chapter 30 7
32 3 atter Classificatio, Chapter 3 f O ; f O 3 ; f O 4 Notacja wielie theta f h Jeżeli: f ale f 3 0 ;,, g c f g c c c > R 7
33 3 Złożoość estymatora MW Rozłady ormale a priori, d-wymiarowy lasyfiator, a ażdą z c las przypada próbe ciągu uczącego Dla ażdej lasy wyzaczamy fucję dysrymiującą: g O O d. O. d T d ˆ µ Σ ˆ µ l π l Σˆ + l ω O d. O Złożoość ogółem Od.. Złożoość przy c lasach Ocd. Od. Koszt obliczeiowy jest zaczący iedy d i są duże atter Classificatio, Chapter 3 7
34 Aaliza ompoetów i aaliza dysrymiacyja Łączeie cech w celu reducji wymiaru przestrzei cech Najprościej: ombiacje liiowe cech rojecja daych z przestrzei wysoowymiarowych do przestrzei o miejszej liczbie wymiarów Dwa lasycze podejścia do zajdywaia optymalej trasformacji liiowej CA ricipal Compoet Aalysis rojecja dająca ajlepszą reprezetację daych w sesie średiowadratowym MDA Multiple Discrimiat Aalysis rojecja ajlepiej separująca dae w sesie średiowadratowym 33 atter Classificatio, Chapter 33 8
35 Uryte łańcuchy Marowa: Łańcuchy Marowa Cel: wyzaczyć sewecję decyzji rocesy dyamicze, a stay w czasie t wpływają stay w czasie t- Zastosowaia: rozpozawaie i tagowaie mowy, rozpozawaie gestów, sewecjoowaie DNA, roces bez pamięci: ω T {ω, ω, ω3,, ωt} sewecja staów, p. ω 6 {ω, ω4, ω, ω, ω, ω4} roces może odwiedzić te sam sta w różych roach, przy czym pewe stay w ogóle ie muszą być odwiedzae atter Classificatio, Chapter
36 35 Model Marowa pierwszego rzędu rawdopodobieństwa przejść do olejych staów: ω j t + ω i t a ij atter Classificatio, Chapter 35 0
37 36 atter Classificatio, Chapter 36 0
38 a ij, ω T ω T a 4. a 4. a. a. a 4. ω ω i 37 rzyład: rozpozawaie mowy wypowiadaie olejych słów obraz słowa to reprezetacja przy użyciu foemów: /p/ /a/ /tt/ /er/ // // // sta ciszy rzejścia: /p/ do /a/, /a/ do /tt/, /tt/ do /er/, /er/ do // i // do stau ciszy atter Classificatio, Chapter 37 0
39 Chapter 3: Estymator ajwięszej wiarygodości i estymator Bayesa part 3 Uryte modele Marowa
40 39 Uryty model Marowa Związe staów procesu ze staami urytymi b j dla wszystich j, dla tórych b j V t ω j t. 3 zadaia związae z tym modelem The evaluatio problem Zadaie deodowaia Zadaie uczeia atter Classificatio, Chapter 3 art 3
41 atter Classificatio, Chapter 3 art 3 40 The evaluatio problem rawdopodobieństwo, że w tracie działaia procesu zaobserwowaa zostaie sewecja staów V T : gdzie r jest umerem sewecji T staów urytych ma T r r r T r T T V V ω ω { },...,, T T r ω ω ω ω T t t T t t T r T t t t t v V T r ω ω ω ω ω
42 4 Z zależości i wyia: V T r t T ma r t v t ω t ω t ω t Iterpretacja: rawdopodobieństwo zaobserwowaia oretej sewecji T staów procesu V T jest sumą po wszystich r ma możliwych sewecji staów urytych, iloczyów prawdopodobieństw waruowych przejścia do poszczególych staów i prawdopodobieństw zaobserwowaia mierzalych staów w sewecji. rzyład: Niech ω, ω, ω 3 ozaczają uryte stay; v, v, v 3 stay mierzale a V 3 {v, v, v 3 } jest sewecją staów widoczych. {v, v, v 3 } ω v ω ω ω v ω ω 3 ω v 3 ω liczba wszystich sładiów sumy to 3 3 7! atter Classificatio, Chapter 3 art 3
43 4 ierwszy przypade: v v v 3 ω t ω t ω 3 t 3 Drugi przypade: v v v 3 ω t ω 3 t ω t 3 {v, v, v 3 } ω.v ω.ω 3 ω.v ω 3.ω ω 3.v 3 ω + + Zatem: { v, v, v3} v t ω t ω t ω t możliwe sewecje staów urytych t 3 t atter Classificatio, Chapter 3 art 3
44 43 Zadaie deodowaia optymala sewecja staów Dla sewecji staów mierzalych V T, the decodig problem polega a zalezieiu ajbardziej prawdopodobej sewecji staów urytych. ˆ, ω ˆ,..., ω ˆ ω T ˆ, ω ˆ,..., ω ˆ ω T gdzie: λ [π,a,b], tóra spełia arg ma ω, ω,..., ω T π ω ω prawdopodobieństwo stau początowego A a ij ωt+ j ωt i B b j vt ωt j [ ω, ω,..., ω T, v, v,..., V T λ] Zauważmy, że bra jest tu sumowaia, poieważ poszuiwaa jest jeda, ajlepsza sewecja atter Classificatio, Chapter 3 art 3
45 44 W poprzedim przyładzie, te obliczeia odpowiadają wyborowi ajlepszej ścieżi spomiędzy: {ω t,ω t,ω 3 t 3}, {ω t,ω 3 t,ω t 3} {ω 3 t,ω t,ω t 3}, {ω 3 t,ω t,ω t 3} {ω t,ω t,ω 3 t 3} atter Classificatio, Chapter 3 art 3
46 Zadaie uczeia estymacja parametrów 45 Zadaie polega a zapropoowaiu metody estymacji parametrów λ [π,a,b] optymalizującej pewe ryterium. Należy zaleźć ajlepszy model ˆ λ [ π Aˆ, Bˆ] masymalizujący prawdopodobieństwo zaobserwowaia otrzymaej sewecji : Do zalezieia loalego optimum moża użyć metod iteracyjych, p. metody Bauma-Welcha lub metody gradietowej ˆ, ma V λ T λ atter Classificatio, Chapter 3 art 3
θx θ 1, dla 0 < x < 1, 0, poza tym,
Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
Lista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
16 Przedziały ufności
16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])
Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka
Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu
Wyższe momenty zmiennej losowej
Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla
Statystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
Statystyka Matematyczna Anna Janicka
Statystyka Matematycza Aa Jaicka wykład XIII, 30.05.06 STATYSTYKA BAYESOWSKA Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).
TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ
STATYSTYKA MATEMATYCZNA
TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę
P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +
Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch
WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI
Piotr KOZIERSKI WYKORZYSTAIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDETYFIKACJI UKŁADÓW AUTOMATYKI STRESZCZEIE W artyule przedstawioo sposób idetyfiacji parametryczej obietów ieliiowych zapisaych w przestrzei
Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011
Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y
MACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie
Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
Rozkład normalny (Gaussa)
Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Prawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n
Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby
H brak zgodności rozkładu z zakładanym
WSPÓŁZALEŻNOŚĆ PROCESÓW MASOWYCH Test zgodości H : rozład jest zgody z załadaym 0 : H bra zgodości rozładu z załadaym statystya: p emp i p obszar rytyczy: K ;, i gdzie liczba ategorii p Przyład: Wyoujemy
Analiza matematyczna i algebra liniowa
Aaliza matematycza i algebra liiowa Materiały pomocicze dla studetów do wyładów Rachue różiczowy ucji wielu zmieych. Pochode cząstowe i ich iterpretacja eoomicza. Estrema loale. Metoda ajmiejszych wadratów.
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).
Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy
Wykład 11. a, b G a b = b a,
Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada
Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja
Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im
tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze
R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych
Statystyka Matematyczna Anna Janicka
Statystyka Matematycza Aa Jaicka wykład XIV, 06.06.06 STATYSTYKA BAYESOWSKA CD. Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej
0.1 ROZKŁADY WYBRANYCH STATYSTYK
0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.
Ćwiczenie 2 ESTYMACJA STATYSTYCZNA
Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej
1 Twierdzenia o granicznym przejściu pod znakiem całki
1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae
Elementy modelowania matematycznego
Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,
będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
Pattern Classification
Pattern Classification All materials in these slides were taen from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stor, John Wiley & Sons, 2000 with the permission of the authors
Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)
IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym
WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa
Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
PODSTAWY BIOSTATYSTYKI ĆWICZENIA
PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM ZADANIE 1 Z populacji wyborców pobrao próbkę 1000 osób i okazało
Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy
Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej
Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że
Analiza I.1, zima globalna lista zadań
Aaliza I., zima 207 - globala lista zadań Marci Kotowsi 8 styczia 208 Podstawy Zadaie. Udowodij, że dla ażdego aturalego liczby 7 2 + oraz 7 2 dzielą się przez 6. Zadaie 2. Rozstrzygij, czy poiższe liczby
Estymacja punktowa i przedziałowa
Estymacja puktowa i przedziałowa Marta Zalewska Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Populacja Próba losowa (próbka) Parametry rozkładu Estymatory (statystyki) Własości estymatorów
Analiza I.1, zima wzorcowe rozwiązania
Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego.
Rachue rawdoodobieństwa MAP064 Wydział Eletroii, ro aad. 008/09, sem. leti Wyładowca: dr hab. A. Jurlewicz Wyład 8: Zmiee losowe dysrete. Rozłady Beroulliego (dwumiaowy), Pascala, Poissoa. Przybliżeie
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
Techniczne Aspekty Zapewnienia Jakości
Istytut Techologii Maszy i Automatyzacji Politechii Wrocławsiej Pracowia Metrologii i Badań Jaości Wrocław, dia Ro i ierue studiów. Grupa (dzień tygodia i godzia rozpoczęcia zajęć) Techicze Aspety Zapewieia
Funkcja generująca rozkład (p-two)
Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Zadania z algebry liniowej - sem. I Liczby zespolone
Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C
oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:
Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:
KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli.
KOMBINATORYKA Kombiatoryą azywamy dział matematyi zajmujący się zbiorami sończoymi oraz relacjami między imi. Kombiatorya w szczególości zajmuje się wyzaczaiem liczby elemetów zbiorów sończoych utworzoych
Pattern Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors
Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2
Wykład 7 Dwie iezależe próby Często porówujemy wartości pewej zmieej w dwóch populacjach. Przykłady: Grupa zabiegowa i kotrola Lekarstwo a placebo Pacjeci biorący dwa podobe lekarstwa Mężczyźi a kobiety
3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne
APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość
są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X
Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,
Ćwiczenia rachunkowe TEST ZGODNOŚCI 2 PEARSONA ROZKŁAD GAUSSA
Ćwiczeia rachuowe TEST ZGODOŚCI PEARSOA ROZKŁAD GAUSSA UWAGA: a stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz alulacyjy do programu Calc paietu Ope Office, iezbędy podczas
Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste
Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x
n n X n = σ σ = n n n Ponieważ zmienna losowa standaryzowana ma rozkład normalny N(0, 1), więc
5.3. Zagadieia estymacji 87 Rozważmy teraz dokładiej zagadieie szacowaia wartości oczekiwaej m zmieej losowej X o rozkładzie ormalym N(m, F), w którym odchyleie stadardowe F jest zae. Niech X, X,..., X
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
INDUKCJA MATEMATYCZNA
MATEMATYKA DYSKRETNA (4/5) dr hab. iż. Małgorzata Stera malgorzata.stera@cs.put.poza.pl www.cs.put.poza.pl/mstera/ INDUKCJA MATEMATYCZNA Matematya Dysreta Małgorzata Stera FUNKCJA SILNIA dla, fucja silia
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
STATYSTKA I ANALIZA DANYCH LAB II
STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uiwersytet Ekoomiczy w Katowicach 2015/16 ROND, Fiase i Rachukowość, rok 2 Rachuek prawdopodobieństwa Rzucamy 10 razy moetą, dla której prawdopodobieństwo wyrzuceia orła w pojedyczym
Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F.
15. Wyład 15: Podciała, podciała geerowae przez zbiór, rozszerzeia ciał. Charaterystya pierścieia i ciała, ciała proste i lasyfiacja ciał prostych. 15.1. Podciała, podciała geerowae przez zbiór, rozszerzeia
Analiza matematyczna. Robert Rałowski
Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistycza Defiicja Odwzorowaie X: Ω R d azywamy d-wymiarowym wektorem losowym jeśli dla każdego (x 1, x 2,,x d ) є R d zbiór Uwaga {ω є Ω: X(ω)
ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n)
ZADANIA - ZESTAW Zadaie.. Wyzaczyć m (), D ( ) dla procesu symetryczego (p = q =,) błądzeia przypadkowego. Zadaie.. Narysuj graf łańcucha Markowa symetrycze (p = q =,) błądzeie przypadkowe z odbiciem.
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
PODSTAWOWE ZAGADNIENIA METODOLOGICZNE
PODSTAWOWE ZAGADNIENIA METODOLOGICZNE. Wprowadzeie W ekoomii i aukach o zarządzaiu obserwuje się tedecję do ilościowego opisu zależości miedzy zjawiskami ekoomiczymi. Umożliwia to - zobiektywizowaie i
1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n.
Przedziały ufości W tym rozdziale będziemy zajmować się przede wszystkim zadaiami związaymi z przedziałami ufości Będą as rówież iteresować statystki pozycyje oraz estymatory ajwiększej wiarygodości (Eg
Wykład 11 ( ). Przedziały ufności dla średniej
Wykład 11 (14.05.07). Przedziały ufości dla średiej Przykład Cea metra kwadratowego (w tys. zł) z dla 14 losowo wybraych mieszkań w mieście A: 3,75; 3,89; 5,09; 3,77; 3,53; 2,82; 3,16; 2,79; 4,34; 3,61;
Podstawy rachunku prawdopodobieństwa (przypomnienie)
. Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń
TESTY LOSOWOŚCI. Badanie losowości próby - test serii.
TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla
Statystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
Rachunek prawdopodobieństwa i statystyka Wnioskowanie statystyczne. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Rachek rawdoodobieństwa i statystyka Wioskowaie statystycze. Estymacja i estymatory Dr Aa ADRIAN Paw B5, ok407 ada@agh.ed.l Estymacja arametrycza Podstawowym arzędziem szacowaia iezaego arametr jest estymator
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Wykład 6. Przestrzenie metryczne ośrodkowe i zupełne. ρ, gdzie r
Wyład 6 Przestrzeie etrycze ośrodowe i zupełe. Przypoiay, że zbiór azyway przeliczaly, jeśli jest o rówoliczy ze zbiore wszystich liczb aturalych N, a co ajwyżej przeliczaly, jeśli jest o przeliczaly lub
Rachunek różniczkowy funkcji wielu zmiennych
Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji
k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2
Pojęce przedzału ufośc Przyład: Rozważmy pewe rzad proces (tz. ta tórego lczba zajść podlega rozładow Possoa). W cągu pewego czasu zaobserwowao =3 tae zdarzea. Oceć możlwy przedzał lczby zdarzeń tego typu
Prawdopodobieństwo i statystyka
Zadanie Rozważmy następujący model strzelania do tarczy. Współrzędne puntu trafienia (, Y ) są niezależnymi zmiennymi losowymi o jednaowym rozładzie normalnym N ( 0, σ ). Punt (0,0) uznajemy za środe tarczy,
WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska
Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):
O liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA064 Wyział Elektroiki, rok aka 2008/09, sem leti Wykłaowca: r hab A Jurlewicz Wykła 3: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług
Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =
Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a,, a będą dowolymi liczbami Sumę a + a + + a zapisuje się zazwyczaj w postaci (czytaj: suma od do a ) Za Σ to duża greca litera sigma,
Twierdzenia graniczne:
Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości
Zajęcia nr. 2 notatki
Zajęcia r otati wietia 5 Wzory srócoego możeia W rozdziale tym podamy ila wzorów tóre ułatwiają obliczaie wielu zadań rachuowych Fat (wzory srócoego możeia) Dla dowolych liczb rzeczywistych a, b zachodzi:
Rozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI
CHARAKERYSYKI CZĘSOLIWOŚCIOWE PODSAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUOMAYKI Do podstawowych form opisu dyamii elemetów automatyi (oprócz rówań różiczowych zaliczamy trasmitację operatorową s oraz trasmitację