Rozkłady statystyk z próby
|
|
- Błażej Szczepański
- 7 lat temu
- Przeglądów:
Transkrypt
1 METODY PROBABILISTYCZE I STATYSTYKA WYKŁAD 0: ROZKŁADY STATYSTYK Z PRÓBY. PRZEDZIAŁY UFOŚCI. Rozkłady tatytyk z róby Statytyką azyway zieą loową, będącą fkcją zieych loowych,,..., taowiących róbę. Statytyka jako ziea loowa oiada ewie rozkład, który azyway rozkłade tatytyki z róby. Zależy o rzede wzytki od rozkład olacji, z której ochodzi róba oraz od liczebości róby. Małgorzata Krętowka Wydział Iforatyki Politechika Białotocka Ze względ a liczebość róby rozkłady tatytyk dzieliy a dokłade - rozkłady rawdoodobieńtwa wyzaczoe dla dowolej liczby atralej, będącej liczebością róby. Są oe wykorzytywae dla ałych rób. graicze - rozkład rawdoodobieńtwa tatytyki, który otrzyje ię rzy założei ieograiczeie dżej róby,. ie a jedej, określoej wartości od której zajey róbę za dżą. W iektórych rzyadkach rozkład dokłady jż dla >30 iewiele różi ię od rozkład graiczego, w iych rzyadkach otrzebjey >00. Rozkład średiej arytetyczej z róby x x i i. Cecha w olacji geeralej a rozkład,, zae. Z olacji tej obieray róbę -eleetową,,...,. Średia arytetycza z róby a rozkład:, fx 0,,0. redia arytetycza Rozkład średiej arytetyczej z róby w raktyce wykorzytjey zieą tadaryzowaą: x która a rozkład 0,.. Cecha w olacji a rozkład,, iezae, 30 Dokojey rzekztałceia zwaego tdetyzacją: t x i ziea t a rozkład i t Stdeta z - toiai wobody. Liczba toi wobody jet araetre rozkład t-stdeta; jet oa rówa liczbie iezależych oberwacji określających tatytykę t. Ze względ a zależość: i liczba iezależych oberwacji w ty rzyadk jet rówa -. x i x 0 x
2 Rozkład średiej arytetyczej z róby 3. Cecha w olacji a rozkład dowoly, iezae, >30. Dla dżych rób zakładay, że. Korzytay ze tatytyki: x która a rozkład 0,. Rozkład wariacji z róby. Cecha a w olacji geeralej rozkład, ;, - iezae; 30 Etyatore araetr jet wariacja z róby która a rozkład chi-kwadrat z - toiai wobody. χ i x i która a rozkład chi-kwadrat z - toiai wobody.. Cecha a w olacji geeralej rozkład, ;, - iezae; > 30 Etyatore araetr jet wariacja z róby. a Korzytay z rozkład graiczego: b Korzytay z rozkład :, k k χ χ k- Statytyka a rozkład 0,, Statytyka a rozkład 0, Rozkład rocet rawdoodobieńtwa, wkaźika trktry Cecha a w olacji geeralej rozkład dwktowy, - rawdoodobieńtwo kce, > 00 Etyatore rawdoodobieńtwa jet: gdzie - liczość róby, - liczba kceów w róbie ˆ gdzie - liczo róby, - liczba kceów w róbie ˆ, ˆ Statytyka a rozkład 0, Rozkład różicy dwóch średich. Badae olacje geerale ają rozkłady orale, i, ;, - zae, róby ą iezależe. Badae olacje geerale ają rozkłady orale, i, ;, - iezae, róby ą iezależe, 30, 30, ;, - iezae, róby iezale e, 30, 30 tatytyka t a rozkład t Stdeta z - toiai wobody. 3. Badae olacje geerale ają rozkłady dowole;, - iezae, róby ą iezależe, > 30, > 30. t,
3 Rozkład iloraz wariacji Rozkład różicy dwóch wkaźików trktry Badae olacje geerale ają rozkłady orale, i, ;,,, - iezae;, - liczebości róby obraej z olacji I i II Badaa cecha a w dwóch olacjach rozkład dwktowy z rawdoodobieńtwe kce odowiedio,. ˆ F ˆ ˆ i i x i x i iech ˆ ˆ ˆ ˆ, gdzie - etyator wariacji z róby obraej z olacji I ; - etyator wariacji z róby obraej z olacji II ; Statytyka F a rozkład F Sedecora z - i - toiai wobody Etyacja rzedziałowa Wółczyik fości Etyacja rzedziałowa olega a kotrowai rzedział liczbowego, który z góry określoy - bliki jedości - rawdoodobieńtwe będzie zawierał iezaą wartość zacowaego araetr θ. Przedział te oi azwę rzedział fości: P {g θ < θ < g θ } - gdzie θ - etyator araetr θ, g θ - doly kraiec rzedział fości g θ - góry kraiec rzedział fości - - rawdoodobieńtwo tzw. wółczyik fości Utaloe z góry rawdoodobieńtwo - azyway wółczyikie fości Iterretacja wółczyika fości: rzy wielokroty obierai rób -eleetowych i wyzaczai a ich odtawie fkcji g θ oraz g θ średio w - 00% rzyadków otrzyalibyśy rzedziały okrywające iezaą wartość araetr θ,, w 00% rzyadków - rzedziały ie okrywające tej wartości. Z regły za - rzyjjey: 0.9; 0.95, 0.99 Dłgość rzedział fości: g θ - g θ > i dłgość rzedział iejza ty ozacowaie bardziej recyzyje Makyaly błąd zack: g θ - g θ /.
4 Przedziały fości dla wartości oczekiwaej średiej Bdowa rzedział fości dla wartości średiej oczekiwaej µe rozkład olacji zależy od: ty rozkład cechy w olacji geeralej zajoości wariacji odchyleia tadardowego wielkości róby PU dla wartości średiej - Model Założeia: róba loowa obraa z olacji o rozkładzie, ; jet zae; Cel: bdowa rzedział fości dla rzy wółczyik fości -. Bdowa rzedział fości: Etyatore araetr jet średia arytetycza z róby : śr, która a rozkład,. Stadaryzjąc otrzyjey tatytykę U: U która a rozkład 0,. PU dla wartości średiej - Model - / / - 0 Rozklad tatytyki U - 0, P { < U < } P < < Przedział fości dla wartości średiej: P < < PU dla wartości średiej - Model Założeia: róba loowa obraa z olacji o rozkładzie, ; jet iezae; liczość róby ała 30 Cel: bdowa rzedział fości dla rzy wółczyik fości -. Bdowa rzedział fości: Przy iezay araetrze odtawą bdowy tet itotości dla wartości średiej jet tatytyka t o rozkładzie t-stdeta z - toiai wobody: t gdzie i x i
5 PU dla wartości średiej - Model Rozklad t-stdeta - / / -t 0 t P { t < t < t } P t < < t Przedział fości dla wartości średiej: P t < < t PU dla wartości średiej - Model 3 Założeia: róba loowa obraa z olacji o dowoly rozkładzie; jet iezae; liczość róby dża > 30 Cel: : bdowa rzedział fości dla rzy wółczyik fości -. Bdowa rzedział fości: Dla dżych rób rozkład t-stdeta oża rzybliżyć rozkłade oraly oraz. Wówcza rzedział fości jet aalogiczy jak w Model : P < < PU dla wariacji - Model PU dla wariacji - Model Założeia: olacja geerala a rozkład,, - iezae; liczość róby 30 Cel: bdowa rzedział fości dla rzy wółczyik fości - Bdowa rzedział fości: Etyatore araetr jet wariacja z róby. Bdowę rzedział fości orzey a tatytyce: χ która a rozkład chi-kwadrat z - toiai wobody. Rozklad chi-kwadrat / / - 0 c c Przedział fości dla wariacji: P c { < χ < } P c c P c < < c < < c
6 PU dla wariacji - Model PU dla rawdoodobieńtwa Założeia: olacja geerala a rozkład,, - iezae; liczość róby >30 Cel: bdowa rzedział fości dla rzy wółczyik fości - Bdowa rzedział fości: Gdy dyojey dżą róbą rzedział fości dla odchyleie tadardowego bdjey a odtawie graiczego rozkład tatytyki. Odchyleie tadardowe a wówcza rozkład, Stadaryzjąc otrzyjey tatytykę U: U która a rozkład 0,. PU dla rawdoodobieńtwa PU dla wkaźika trktry PU dla rocet PU dla frakcji Założeia: Liczba eleetów w róbie >00 Cel: bdowa rzedział fości dla frakcji rocet eleetów oiadających wyróżioą cechę w olacji geeralej Bdowa rzedział fości: Etyatore rawdoodobieńtwa w olacji geeralej jet wkaźik trktry w róbie W/, gdzie jet liczbą jedotek w róbie oiadających wyróżioą cechę, atoiat jet liczebością róby. Dla dżych rób wkaźik W a rozkład, PU dla rawdoodobieńtwa PU dla rawdoodobieńtwa 3 Dokojąc tadaryzacji etyatora W otrzyjey tatytykę: W U która a rozkład 0,. - / / Rozklad tatytyki U - 0, P { < U < } P < < Po rzekztałceiach otrzyjey: P < < Dla dżych rób ożey założyć, że /, tąd rzedział fości dla rawdoodobieńtwa rzyjje otać: P < < - 0
7 Zagadieie iialej liczebości róby Z regły z olacji geeralej obiera ię tylko jedą -eleetową róbę zbyt dża róba > zbyt dże kozty, oóźieia cza aalizy wyików zbyt ała róba > ie zaewia żądaej dokładości i wiarygodości wiokowaia Aby wyzaczyć iialą liczebości róby ależy talić: ozio wółczyika fości taleie akyalego błęd zack dłgości rzedział fości iezbęda liczebość róby rzy zacowai średiej w olacji Przykład Model I - zae odchyleie tadardowe olacji < < Dłgość rzedział > akyaly błąd zack Zakładając wartość akyalego błęd zack d oraz ozio wółczyika itotości - otrzyjey iialą liczebość róby: dł d d iezbęda liczebość róby rzy zacowai rawdoodobieńtwa < < Dłgość rzedział > akyaly błąd zack dł d Zakładając wartość akyalego błęd zack d oraz ozio wółczyika itotości - otrzyjey iialą liczebość róby: d
Rozkłady statystyk z próby. Metody probabilistyczne i statystyka Wykład 10: Rozkłady statystyk z próby. Przedziały ufnoci.
Rozkłay tatytyk z róby Metoy robabilitycze i tatytyka Wykła 0: Rozkłay tatytyk z róby. rzeziały foci. Małgorzata Krtowka Wyział Iforatyki olitechika Białotocka e-ail: ac@ii.b.bialytok.l troa www: htt://aragor.b.bialytok.l/~gkret
Rozkłady statystyk z próby Twierdzenia graniczne
Rozkłady statystyk z róby Twierdzeia graicze PRÓBA LOSOWA Próbą losową rostą azyway ciąg -zieych losowych iezależych i osiadających jedakowe rozkłady takie jak rozkład zieej losowej w oulacji geeralej
Rozkłady statystyk z próby. Metody probabilistyczne i statystyka Wykład 2: Rozkłady statystyk z próby. Przedziały ufnoci
Rozkłady tatytyk z próby Metody probabilitycze i tatytyka Wykład : Rozkłady tatytyk z próby. rzedziały ufoci Małgorzata Krtowka Wydział Iformatyki olitechika Białotocka e-mail: mmac@ii.pb.bialytok.pl troa
Podstawowe pojęcia. Próba losowa. Badanie próby losowej
METODY PROBABILISTYCZNE I STATYSTYKA WYKŁAD 8: STATYSTYKA OPISOWA. ROZKŁADY PRAWDOPODOBIEŃSTWA WYSTĘPUJĄCE W STATYSTYCE. Małgorzata Krętowska Wydział Iforatyki Politechika Białostocka Podstawowe pojęcia
1 Dwuwymiarowa zmienna losowa
1 Dwuwymiarowa zmiea loowa 1.1 Dwuwymiarowa zmiea loowa kokowa X = x i, Y = y k = p ik przy czym i, k N oraz p ik = 1; i k p i = X = x i = p ik dla i N; p k = Y = y k = p ik dla k N; k i F 1 x = p i dla
PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).
TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ
1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,
1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =
Rachunek prawdopodobieństwa i statystyka Wnioskowanie statystyczne. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Rachek rawdoodobieństwa i statystyka Wioskowaie statystycze. Estymacja i estymatory Dr Aa ADRIAN Paw B5, ok407 ada@agh.ed.l Estymacja arametrycza Podstawowym arzędziem szacowaia iezaego arametr jest estymator
Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste
Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x
Parametryczne Testy Istotności
Parametrycze Testy Istotości Wzory Parametrycze testy istotości schemat postępowaia pukt po pukcie Formułujemy hipotezę główą H odośie jakiegoś parametru w populacji geeralej Hipoteza H ma ajczęściej postać
Rozkład χ 2 = + 2π 2. Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej:
Rozkład χ Niech ziea losowa a rozkład oralyn(; µ,). Zajdziey rozkład zieej: µ Stadaryzjąc zieą losową µ otrzyjey stadaryzoway rozkład Gassa: ( ;, ) ep N 0 π Rozkład zieej a więc postać: d ( X + ) N N ep
χ 2 = + 2π 2 Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej: σ
χ Niech ziea losowa a rozkład oralyn(; µ,). Zajdziey rozkład zieej: µ Stadaryzjąc zieą losową µ otrzyjey stadaryzoway rozkład Gassa: ( ;, ) ep N 0 π Rozkład zieej a więc postać: d ( X + ) N N ep d π Rozważy
Porównanie dwu populacji
Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :
Pojcie estymacji. Metody probabilistyczne i statystyka Wykład 9: Estymacja punktowa. Własnoci estymatorów. Rozkłady statystyk z próby.
Pojcie estymacji Metody probabilistycze i statystyka Wykład 9: Estymacja puktowa. Własoci estymatorów. Rozkłady statystyk z próby. Szacowaie wartoci parametrów lub rozkładu zmieej losowej w populacji geeralej
STATYSTYKA MATEMATYCZNA
TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę
Statystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody
ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji
Ćwiczenie 2 ESTYMACJA STATYSTYCZNA
Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej
Statystyka Wzory I. Analiza struktury
Uiwersytet Ekooiczy w Katowicach Wzory I. Aaliza struktury 1. Miary tedecji cetralej (średie, przecięte Średia arytetycza Dla sz. ważoego Dla sz. ważoego dla z. ciągłej Dla szeregu wyliczającego: dla zieej
Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja
Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Estymacja przedziałowa - przedziały ufności
Estymacja rzedziałowa - rzedziały ufości Próbę -elemetową charakteryzujemy jej arametrami ( x, s, s ). SłuŜą oe do ocey wartości iezaych arametrów oulacji (m, σ, σ). Nazywamy je estymatorami uktowymi iezaych
Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie
są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X
Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)
Wnioskowanie statystyczne dr Alicja Szuman
Wiokowaie tatytycze dr Alicja Szuma Literatura: J. Jóźwiak, J. Podgórki Statytyka od podtaw PWE Warzawa 006 J. Kudelki, I. Roeke Slomka Statytyka AE Pozań 995 J. Greń Statytyka matematycza. Modele i zadaia
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)
IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym
Prawdopodobieństwo i statystyka r.
Prawdopodobieństwo i statystyka.0.00 r. Zadaie Rozważy astępującą, uproszczoą wersję gry w,,woję. Talia składa się z 5 kart. Dobrze potasowae karty rozdajey dwó graczo, każdeu po 6 i układay w dwie kupki.
Estymacja parametrów populacji
Estymacja parametrów populacji Estymacja parametrów populacji Estymacja polega a szacowaiu wartości parametrów rozkładu lub postaci samego rozkładu zmieej losowej, a podstawie próby statystyczej. Estymacje
θx θ 1, dla 0 < x < 1, 0, poza tym,
Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.
STATYSTYKA. Seminarium Chemia Analityczna. Dr hab. inż. Piotr Konieczka.
00--5 STATYSTYKA Semiarium Chemia Aalitycza Dr hab. iż. Piotr Koieczka e-mail: piotr.koieczka@pg.gda.pl Dokładość (accuracy) topień zgodości uzykaego wyiku pojedyczego pomiaru z wartością oczekiwaą (rzeczywitą).
1 Testy statystyczne. 2 Rodzaje testów
1 Testy statystycze Podczas sprawdzaia hipotez statystyczych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ a odrzuceiu hipotezy zerowej (H 0 ), gdy jest oa prawdziwa, czyli
Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.
MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,
3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).
Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy
L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3
L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uiwersytet Ekoomiczy w Katowicach 2015/16 ROND, Fiase i Rachukowość, rok 2 Rachuek prawdopodobieństwa Rzucamy 10 razy moetą, dla której prawdopodobieństwo wyrzuceia orła w pojedyczym
Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7
Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Estymacja to wnioskowanie statystyczne koncentrujące się wokół oszacowania wartości specyficznych parametrów populacji.
/7/06 Biotatytyka, 06/07 dla Fizyki Medyczej, tudia magiterkie etymacja etymacja średiej puktowa przedział ufości średiej rozkładu ormalego etymacja puktowa i przedziałowa wariacji rozkładu ormalego etymacja
16 Przedziały ufności
16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])
1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2
Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Estymacja przedziałowa:
Estymacja przedziałowa: Zamiast szukad ajlepszego estymatora, tak jak w estymacji puktowej będziemy poszukiwad przedziału, do którego będzie ależał szukay parametr z odpowiedio dużym prawdopodobieostwem.
KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę
Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
Estymacja przedziałowa - przedziały ufności
Estymacja przedziałowa - przedziały ufości Próbę -elemetową charakteryzujemy jej parametrami (p. x, s, s ). Służą oe do ocey wartości iezaych parametrów populacji (m, σ, σ). Nazywamy je estymatorami puktowymi
Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia
Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk
Metody Statystyczne II
Metody Statytycze II dr Dorota Węziak-Białowolka Itytut Statytyki i Demograii Iormacje orgaizacyje Koultacje: poiedziałek 5:3 6:3 5F lub 73F Materiały: www.e-gh.pl/bialowolka/ms Zaliczeie: w ormie egzamiu
Testy statystyczne teoria
Tety tatytyczne teoria przygotowanie: dr A Goroncy, dr J Karłowka-Pik Niech X,, X n będzie próbą loową protą z rozkładu P θ, θ Θ oraz niech α (0, ) będzie poziomem itotności (najczęściej 0,, 0,05, czy
Lista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57),
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Uiv. Techol. Steti. 009, Oecoomica 75 (57), 3 36 Leoid WOROBJOW, Krzyztof WISIŃSKI, Alekadra PANFIORAVA STOSOWANIE METOD ESTYMACJI PRZEDZIAŁOWEJ
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Wykład 10 Wnioskowanie o proporcjach
Wykład 0 Wioskowaie o roorcjach. Wioskowaie o ojedyczej roorcji rzedziały ufości laowaie rozmiaru róby dla daego margiesu błędu test istotości dla ojedyczej roorcji Uwaga: Będziemy aalizować roorcje odobie
WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD Zdarzeia losowe i prawdopodobieństwo Zmiea losowa i jej rozkłady Metody statystycze metody opisu metody wioskowaia statystyczego sytetyczy liczbowy opis właściwości zbioru daych ocea charakterystyk
Testy dotyczące wartości oczekiwanej (1 próbka).
ZASADY TESTOWANIA HIPOTEZ STATYSTYCZNYCH. TESTY DOTYCZĄCE WARTOŚCI OCZEKIWANEJ Przez hipotezę tatytyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu intereującej na cechy. Hipotezy
SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY
SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą
Twierdzenia graniczne:
Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości
Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
Materiały do wykładu 4 ze Statystyki
Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli
Statystyczny opis danych - parametry
Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea
PODSTAWY BIOSTATYSTYKI ĆWICZENIA
PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM ZADANIE 1 Z populacji wyborców pobrao próbkę 1000 osób i okazało
STATYSTYKA OPISOWA WYKŁAD 1 i 2
STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest
Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)
Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod
STATYSTYKA. Seminarium Chemia Analityczna. Dr inż. Piotr Konieczka.
STATYSTYKA Semiarium Chemia Aalitycza Dr iż. Piotr Koieczka e-mail: kaczor@chem.pg.gda.pl Zaczijmy od defiicji Dokładość (accuracy) topień zgodości uzykaego wyiku pojedyczego pomiaru z wartością oczekiwaą
Prawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału
Statystyka Matematyczna Anna Janicka
Statystyka Matematycza Aa Jaicka wykład XIII, 30.05.06 STATYSTYKA BAYESOWSKA Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej
Statystyka. Katarzyna Chudy Laskowska
Statystyka Katarzya Chudy Laskowska http://kc.sd.prz.edu.pl/ WNIOSKOWANIE STATYSTYCZNE Celem aalizy statystyczej ie jest zwykle tylko opisaie (prezetacja) posiadaych daych, czyli tzw. próby statystyczej.
LABORATORIUM METROLOGII
AKADEMIA MORSKA W SZCZECINIE Cetrum Iżyierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczeie 5 Aaliza statystycza wyików pomiarów pozycji GNSS Szczeci, 010 Zespół wykoawczy: Dr iż. Paweł Zalewski Mgr
Statystyka Matematyczna Anna Janicka
Statystyka Matematycza Aa Jaicka wykład XIV, 06.06.06 STATYSTYKA BAYESOWSKA CD. Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej
Statystyka Inżynierska
aysyka Iżyierska dr hab. iż. Jacek Tarasik AG WFiI 4 Wykład 5 TETOWANIE IPOTEZ TATYTYCZNYC ipoezy saysycze ipoezą saysyczą azywamy każde przypszczeie doyczące iezaego rozkład o prawdziwości lb fałszywości
Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora
Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia
MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń
MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów
ANALIZA DANYCH DYSKRETNYCH
ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,
będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
Statystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
ZMIENNA LOSOWA I JEJ PARAMETRY -powtórzenie
WNIOSKOWANIE STATYSTYCZNE ZMIENNA LOSOWA I JEJ PARAMETRY -powtórzeie,, S P przestrzeń probabilistycza (matematyczy model zjawiska losowego), zbiór wszystkich zdarzeń elemetarych, S zbiór zdarzeń, (podzbiory
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej
Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15
Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay
2.1. Studium przypadku 1
Uogóliaie wyików Filip Chybalski.. Studium przypadku Opis problemu Przedsiębiorstwo ŚRUBEX zajmuje się produkcją wyrobów metalowych i w jego szerokim asortymecie domiują różego rodzaju śrubki i wkręty.
Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona)
Wykład 7 Dwie iezależe próby Częto porówujemy wartości pewej zmieej w dwóch populacjach. Przykłady: Grupa zabiegowa i kotrola Lekartwo a placebo Pacjeci biorący dwa podobe lekartwa Mężczyźi a kobiety Dwie
Wykład 11 ( ). Przedziały ufności dla średniej
Wykład 11 (14.05.07). Przedziały ufości dla średiej Przykład Cea metra kwadratowego (w tys. zł) z dla 14 losowo wybraych mieszkań w mieście A: 3,75; 3,89; 5,09; 3,77; 3,53; 2,82; 3,16; 2,79; 4,34; 3,61;
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
STATYSTYKA. Seminarium Chemia Analityczna III rok. Dr inż. Piotr Konieczka
STATYSTYKA Semiarium Chemia Aalitycza III rok Dr iż. Piotr Koieczka Zaczijmy od defiicji Dokladość (accuracy) zgodość pomiędzy uzykaym wyikiem pomiaru z wartością rzeczywitą (oczekiwaą). Prawdziwość (truee)
Badanie efektu Halla w półprzewodniku typu n
Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.
Liczebnośd (w tys.) n
STATYSTYKA Statystyka bada prawidłowości w zjawiskach masowych (tz. takich, które mogą występowad ieograiczoą ilośd razy). Przedmiotem badao statyki są zbiory (populacje), których elemetami są wszelkiego
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
1. Błąd średni pomiaru. Leica DISTO
Aaliza dokładości poiarów Charakterystyką dokładości istruetów poiarowych jest błąd średi poiaru. Wykoywae poiary bezpośredie w tereie pośrediczą zwykle w wyzaczaiu pewych wielkości ie poddających się
Wprowadzenie do laboratorium 1
Wprowadzeie do laboratorium 1 Etymacja jedorówaiowego modelu popytu a bilety loticze Etapy budowy modelu ekoometryczego Specyfikacja modelu Zebraie daych tatytyczych Etymacja parametrów modelu Weryfikacja
STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś
1 STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr iż Krzysztof Bryś Pojȩcia wstȩpe populacja - ca ly zbiór badaych przedmiotów lub wartości. próba - skończoy podzbiór populacji podlegaj acy badaiu.