ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI TORFÓW
|
|
- Judyta Żurek
- 5 lat temu
- Przeglądów:
Transkrypt
1 prof. dr hab. iż. ZYGUNT EYER e- mail: Zachodiopomorki Uiwerytet Techologiczy w Szczeciie Katedra Geotechiki, al. Piatów 5, 7-3 Szczeci ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI TORFÓW TE ANALYSIS OF FAILURE OF DIKE DURING CONSOLIDATION OF PEAT Strezczeie: W pracy przedtawioo aalizę waruków koolidacji torfu w podłożu pola refulacyjego a Otrowie Grabowkim w Szczeciie. W zczególości przeaalizowao tateczość wałów opakowych a refulowaym polu oraz przyczyę awarii wału opakowego a tym polu. Abtract: The paper preet the aalyi of coolidatio of peat i foudatio of hydraulic fill i Szczeci at Otrow Grabowki. The aalyi of dike tability together with coideratio of failure of the dike i alo preeted.. Wtęp Terey rozwojowe portu w Szczeciie obejmują obzar Otrowa Grabowkiego. Jet to półwyep, który utworzoy zotał przez odogi ujścia Odry. Tere te charakteryzuje ię tym, że zbudoway jet z grutów orgaiczych. Pierwotie miążzość torfów wyoiła ok. 4m do m. Nad torfami zajdowała ię wartwa aypowa o małej miążzości. W celu przygotowaia tego tereu pod przyzłe iwetycje, takie jak drogi dojazdowe, place kładowe czy termial koteerowy w otatich 5 latach przeprowadzoo licze prace refulacyje. W te poób a zaczej części Otrowa Grabowkiego koolidowao torfy. Wartwa refulatu poiada różą miążzość od do 6m. W efekcie polepzyły ię moduły ściśliwości torfu i aktualie wyozą od 6 do 9 kpa. Z uwagi a ciągle jezcze dużą miążzość wartwy torfu (awet 8m) bezpośredie poadowieie obiektów awet lekkich, wywołuje zacze oiadaie awet do,5m (ieraz więcej). W związku z tym podjęto decyzję o wykoaiu w wybraych miejcach kolejej koolidacji. Itiejąca już wcześiej wykoaa wartwa aypowa umożliwiała wykoaie wałów opakowych o zaczej wyokości (awet do 3,m). To z kolei miało przypiezyć zarefulowaie pola pozwalając a zalewaie wartwą pulpy o dużej głębokości. Podcza prac a jedym z odcików dozło do przerwaia wału opakowego. W pracy przeaalizowao prawdopodobe przyczyy awarii wału.. atematyczy opi zjawika Zjawiko koolidacji grutów łabych obciążoych wartwą aypową poiada bogatą literaturę. Teorię w tym zakreie przedtawił Terzaghi, a atępie badaia te były rozwijae przez de aaa, Wiłua, Lechowicza, eyera [,,4,5,]. Podtawową trudością
2 w aalizie proceu koolidacji jet opiaie jak zmieia ię moduł ściśliwości koolidowaego torfu w miarę jak zwiękza ię oiadaie. Do aalizy przyjęto zweryfikowaą dla waruków ujścia Odry metodę zapropoowaą przez eyera []. Wyik tej metody moża przedtawić w potaci wzorów, jak moduł ściśliwości oraz oiadaie torfów zależą od aprężeń wywołaych wartwą refulatu (aypową). Wzory te moża rówież toować przy obliczaiu dalzego oiadaia, jakie zotaie wywołae obciążeiem użytkowym. Schematyczie tay obciążeń i odkztałceń pokazao a ry. Ry.. Schemat obciążeia kolumy torfu Na ry. przyjęto atępujące ozaczeia: miążzość wartwy torfu iekoolidowaego; miążzość wartwy torfu koolidowaego obciążeiem ; miążzość wartwy torfu ścikaego dodatkowo obciążeiem ; wartości ozaczają odpowiedio moduły ściśliwości, atomiat ozacza odpowiedio porowatość torfu. W praktyce częto badaia miążzości oraz parametrów grutowych prowadzimy dla tau tj. po zakończeiu koolidacji wartwą aypową, która wywołuje obciążeie tau torfów. W takiej ytuacji zaczeie poiada zalezieie związku, który pozwoli a określeie parametrów torfu iekoolidowaego, czyli fazy. Podtawowa zależość opiująca te zmiay wyika z propozycji Glazera [3] ( ) ( ) e e - jet wkaźikiem porowatości torfu iekoolidowaego, e( ) e gdzie () - jet wkaźikiem porowatości torfu po wymuzeiu oiadaia ; atomiat - jet bezwymiarowym parametrem, który określamy a podtawie krzywej ścikaia torfu w edometrze. Zależość () moża przedtawić jako ( ) () Z drugiej troy a podtawie literatury Wiłu [5] przyjmuje ię związek pomiędzy zmiaami oiadaia i obciążeia jako
3 ( ) d d (3) Z zależości tych otrzymamy podtawowe wzory opiujące zmiaę modułu ściśliwości i oiadaia, jako fukcję obciążeia. Otrzymamy S oraz (4) ( ) (5) Badaia przeprowadzoe a próbkach torfu pobraych z Otrowa Grabowkiego wkazują, że z dotateczą dla celów praktyczych obliczeń dokładością, moża przyjąć parametr jako, 68 < < 83, W praktyczych obliczeiach ajczęściej przyjmuje ię, 75. Parametr te zależy główie od porowatości początkowej i dla torfów o porowatości, 66 mamy, 68, atomiat dla torfów o porowatości, 8 mamy, 83. Dokładą zależość aalityczą trudo jet utalić. Należałoby dodatkowo uwzględić topień rozłożeia oraz zawartość części mieralych w torfie. Wydaje ię rówież, że parametr te zależy od obciążeia. Dotychczaowe badaia wkazują a możliwość wykorzytaia poiżzej zależości w obliczeiach przybliżoych 8, (6) gdzie: [ kpa] - jet obliczeiem koolidacyjym. Zależość pomiędzy porowatością oraz moża określić w potaci przybliżoej (ry. ) Poadto z zależości geometryczych mamy S (7) (8) S
4 Jeżeli zae jet obciążeie wartwą refulatu, które powoduje miążzość, to możemy zapiać S (9) Jeśli zamy parametry torfu po pierwzej koolidacji:,,, to możemy obliczyć parametry torfu pierwotego (przed obciążeiem) cofając ię w obliczeiach tj.. Wtedy otrzymamy S i wtedy < () ożemy rówież obliczyć efekt drugiej koolidacji po wykoaiu kolejej wartwy przeciążającej oraz przyłożeiu w te poób dodatkowych obciążeń S oraz () Jeżeli po wykoaiu drugiej koolidacji przyłożymy obciążeia użytkowe p. od obciążeia budowlą, wówcza obciążeie to wywoła oiadaie S rówe S () W dalzej części pracy przedtawioo przybliżoą potać tego wzoru przy założeiu, że druga koolidacja zakończyła ię.
5 Plaowaie drugiej koolidacji ma a celu takie dobraie ciężaru akładki, aby dla plaowaych obciążeń, oiadaie powodowae tymi obciążeiami dodatkowymi S było miejze od dopuzczalych S < S dop. 3. Przykład obliczeiowy Dla waruków Otrowa Grabowkiego a podtawie badań laboratoryjych po pierwzej koolidacji otrzymao atępujące parametry torfu:, 68 ; 66kPa ; 75kPa ; 5, 5m. Przyjmując, że, 75 otrzymamy : S, 73m, co daje am 6, 3m oraz 55 kpa. Poieważ przedmiotem projektu jet budowa placu kładowego oraz drogi, przyjmując obciążeie użytkowe 5kPa otrzymamy oiadaie od tego obciążeia S, 4m. Jet to oiadaie za duże, dlatego potaowioo przeprowadzić drugą koolidację. Wykoao wartwę aypową o wyokości 3 4m z refulatu. Ozaczało to przyłożeie dodatkowego obciążeia 5kPa. Zakładając, że koolidacja druga zakończyła ię po wybudowaiu drogi lub placu maewrowego od obciążeia użytkowego dodatkowe oiadaie wyieie: S (3) po podtawieiu za 5kPa ; 6 kpa ; otrzymamy S, m. Ozacza to, że moża rozważać poadowieie bezpośredio tego rodzaju lekkich kotrukcji. 4. Obliczeie tateczości wału ołoowego Wykoaie dodatkowego adkładu a rozpatrywaym polu refulacyjym odbywało ię klayczie poprzez wykoaie wałów opakowych z materiału lokalego, a atępie wypełieie kwater urobkiem z pogłębiaia. Schematyczie a ry. pokazao przekrój poprzeczy przez wał opakowy, który miał łużyć do wykoaia adkładu.
6 Ry.. Przekrój poprzeczy przez wał opakowy poadowioy a aypie z refulatu Do obliczeia tateczości wału przyjęto, że poziom zalaia kwatery ięga koroy aypu oraz że iłą przeuwającą ayp jet apór poziomy wody a wał. Rówaie rówowagi a przeuw ma zaą potać: T G tgφ > W (4) gdzie: G jet iłą ciężkości wału z uwzględieiem wyporu wody, która przeiąka przez wał, W jet poziomym aporem wody a wał, atomiat T to iła tarcia w powierzchi poślizgu, a φ kąt tarcia wewętrzego grutu w poziomie ścięcia. Pozczególe iły kładowe wytępujące w rówaiu rówowagi (4) mają potać: G ( ) ( B m ) ( γ γ ) (5) W γ w (6) Po podtawieiu powyżzych zależości otrzymamy rówaie, a obliczeie wpółczyika pewości N wyoi N T W ( ) ( B )( γ γ ) w γ w w tgφ W rozpatrywaym przypadku wytąpiły atępujące waruki ścięcia (7) 3m ; B, m ; m ; 4% ; γ 3 6, 5kN / m ; γ 3 w kn / m ; o φ 6. Po podtawieiu otrzymamy N,96 co ozacza, że zotało przekroczoe kryterium ścięcia. oża rówież rozważyć kryterium ścięcia jako N i wtedy otrzymamy rówaie, które podaje jak ależy dobrać wymiary wału w przekroju poprzeczym aby zachować rówowagę. amy:
7 B N ctgφ m (8) γ ( ) γ w Wzór te pozwala przyjąć przekrój poprzeczy wału opakowego w zależości od założoego wpółczyika pewości N. W rozpatrywaym przypadku dla p. N,5 ależało przyjąć B 3, m. 5. Wioki 5.. W pracy przedtawioo aalizę waruków powtaia awarii wału opakowego podcza prac związaych z koolidacją grutów orgaiczych. 5.. Szczegółowej aalizie poddao efekt koolidacji, który miał doprowadzić do poprawy grutu łabego, tak aby obiekty liiowe moża było poadowić bezpośredio Okazuje ię, że dopiero po zakończeiu drugiej koolidacji moża uzykać takie wzmocieie grutów orgaiczych, że itieje możliwość bezpośrediego poadowieia obiektów lekkich o aciku od 3 do 5 kpa W pracy przeaalizowao rówież przyczyy awarii wału opakowego, który umożliwił wykoaie adkładu a kwaterze poprzez zalaie urobkiem z prac refulacyjych. Bezpośredią przyczyą było utrzymywaie ię przez długi okre czau wyokiego apełieia kwatery, co pozwoliło a uruchomieie mechaizmu ścięcia wału w podtawie. atematyczy opi tego przypadku przedtawioo w pracy Przeprowadzoe badaia zmiay parametrów grutowych torfu w wyiku koolidacji wkazują a potrzebę dalzych badań tereowych, które umożliwią głębzą weryfikację wzorów przedtawioych w rozdziale. W zczególości wydaje ię, że parametr jet fukcją i maleje w miarę wzrotu tych aprężeń, atomiat parametr, który wytępuje w tych wzorach jet więkzy od edometryczego modułu ściśliwości awet o 5%. Literatura. eyer Z.: Etimatio of Soil Parameter for Coolidated Layer. The Secod Iteratioal Semiar o Eviromet Protectio Regioal Problem, Kalmar Swede 99.. De aa E.J., Termeat R., Edil T.:Advace i Udertadig ad odellig the athematical Behaviour of Peat. A.A. Belkea, Rotterdam Glazer Z.: echaika grutów. Wydawictwo Geologicze, Warzawa Lechowicz Z.:Wpółczee kieruki badań grutów orgaiczych. Semiarium Naukowo- Techicze Wpółczee Problemy Geoiżyierii w Regioie Szczecińkim Wiłu Z.: Zary geotechiki. Wydawictwo Komuikacji i Łączości, Warzawa 987.
ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI TORFÓW
ZYGUNT EYER, meyer@zut.edu.pl Zachodiopomorski Uiwersytet Techologiczy w Szczeciie Katedra Geotechiki, al. Piastów 5, 7-3 Szczeci ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI
STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.
Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,
Zmiany zagęszczenia i osiadania gruntu niespoistego wywołane obciążeniem statycznym od fundamentu bezpośredniego
Zmiany zagęzczenia i oiadania gruntu niepoitego wywołane obciążeniem tatycznym od fundamentu bezpośredniego Dr inż. Tomaz Kozłowki Zachodniopomorki Uniwerytet Technologiczny w Szczecinie, Wydział Budownictwa
Materiały do wykładu 4 ze Statystyki
Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.
MODELOWANIE OSIADAŃ PODŁOśA SŁABEGO W OPARCIU O BADANIA IN SITU
Prof. dr hab. iŝ. Zygmut eyer dr iŝ. ariusz Kowalów mgr iŝ. leksadra Plucińska Politechika zczecińska Katedra Geotechiki Geotechical Cosultig Office p.z o.o. Geotechical Cosultig Office p.z o.o. ODELOWNIE
EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU
Dr inż. Grzegorz Straż Intrukcja do ćwiczeń laboratoryjnych pt: EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU Wprowadzenie. Zalecenia dotyczące badań gruntów w edometrze: Zalecane topnie wywoływanego naprężenia:
W³adys³aw Duliñski*, Czes³awa Ewa Ropa* ANALIZA RÓWNAÑ PRZEP YWU DLA USTALENIA ODLEG OŒCI POMIÊDZYT OCZNIAMI NA TRASIE GAZOCI GU WYSOKOPRÊ NEGO
WIERTNICTWO NAFTA GAZ TOM /1 005 W³ady³aw Duliñki*, Cze³awa Ewa Ropa* ANALIZA RÓWNAÑ RZE YWU DLA USTALENIA ODLEG OŒCI OMIÊDZYT OCZNIAMI NA TRASIE GAZOCI GU WYSOKORÊ NEGO 1. WSTÊ Sytem przey³owy azu ziemeo
W(s)= s 3 +7s 2 +10s+K
PRZYKŁAD (LINIE PIERWIASTKOWE) Tramitacja operatorowa otwartego układu regulacji z jedotkowym ujemym przęŝeiem zwrotym daa jet wzorem: G O K ( + )( + 5) a) Podaj obraz liii pierwiatkowych układu zamkiętego.
ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO
Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia
Przykład Obliczenie wskaźnika plastyczności przy skręcaniu
Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego
Układy liniowosprężyste Clapeyrona
Układy liiowosprężyste Clapeyroa Liiowosprężysty układ Clapeyroa zbiór połączoych ze sobą ciał odkształcalych, w których przemieszczeia są liiowymi fukcjami sił Układ rzeczywisty może być traktoway jako
This copy is for personal use only - distribution prohibited.
ZESZYTY NAUKOWE WSOWL - - - - - Nr 1 (159) 11 Włodzimierz KUPICZ Staiław NIZIŃSKI ETODA DIAGNOZOWANIA SILNIKÓW SPALINOWYCH W WARUNKACH TRAKCYJNYCH W pracy przedtawioo ową metodę diagozowaia ilika paliowego
Wykład 4 Soczewki. Przyrządy optyczne
Wykład 4 Soczewki. Przyrządy optycze Soczewka cieka - rówaie zlifierzy oczewek Rozważyy teraz dwie powierzchi ferycze oddzielające ośrodki o wpółczyikach załaaia kolejo i odległych od iebie o d. Niech
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.
Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz
Materiał ćwiczeniowy z matematyki Marzec 2012
Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0
Dlaczego ekonomiści głównego nurtu mogą ignorować czas?
Dlaczego ekoomiści główego urtu mogą igorować cza? Autor: Wojciech Czariecki Poczyając od Joh B. Clarka w główym urcie ekoomii przyjął ię pogląd, że kapitał taowi permaety, homogeiczy fuduz, w którym dobra
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
KSZTAŁTOWANIE ZARYSÓW PŁASKO-WIERZCHOŁKOWYCH NAGNIATANIEM I ICH WYKORZYSTANIE W BUDOWIE POJAZDÓW
LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Mariuz WOJTALIK 1 Nagiataie tocze, pla ekperymetu, zary płako-wierzchołkowy KSZTAŁTOWANIE ZARYSÓW
Analiza gazów spalinowych
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH Aaliza gazów iowych Laboratorium mierictwa (M 7) Opracował: dr iż. Grzegorz Wiciak Sprawdził:
INWESTYCJE MATERIALNE
OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów
Zmiany Q wynikające z przyrostu zlewni
uch wody w korytach rzeczych Klasyfikacja ruchu. uch ieustaloy zmiey przepływ Q a długości rzeki i w czasie: ruch fal wezbraiowych ruch wody a długim odciku rzeki Q fala wezbraiowa obserwowaa w przekroju
ELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU
Analiza osiadania pojedynczego pala
Poradnik Inżyniera Nr 14 Aktualizacja: 09/2016 Analiza oiadania pojedynczego pala Program: Pal Plik powiązany: Demo_manual_14.gpi Celem niniejzego przewodnika jet przedtawienie wykorzytania programu GO5
VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.
KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski
Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu
dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu
MECHANIKA BUDOWLI 8 METODA SIŁ
W YKŁ DY Z ECHIKI BUDOWLI WIERDZEI O WZJEOŚCI Olga Kopacz, dam Łodygowki, Wociech awłowki, ichał łotkowiak, Krzyztof ymper Koultace aukowe: prof. dr hab. JERZY RKOWSKI ozań 00/00 ECHIK BUDOWLI 8 EOD SIŁ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA
Określenie maksymalnych składowych stycznych naprężenia na pobocznicy pala podczas badania statycznego
Określenie makymalnych kładowych tycznych naprężenia na pobocznicy pala podcza badania tatycznego Pro. dr hab. inż. Zygmunt Meyer, m inż. Krzyzto Żarkiewicz Zachodniopomorki Uniwerytet Technologiczny w
Wprowadzenie do laboratorium 1
Wprowadzeie do laboratorium 1 Etymacja jedorówaiowego modelu popytu a bilety loticze Etapy budowy modelu ekoometryczego Specyfikacja modelu Zebraie daych tatytyczych Etymacja parametrów modelu Weryfikacja
Ćwiczenie nr 4 Badanie zjawiska Halla i przykłady zastosowań tego zjawiska do pomiarów kąta i indukcji magnetycznej
Ćwiczenie nr 4 Badanie zjawika alla i przykłady zatoowań tego zjawika do pomiarów kąta i indukcji magnetycznej Opracowanie: Ryzard Poprawki, Katedra Fizyki Doświadczalnej, Politechnika Wrocławka Cel ćwiczenia:
Porównanie dwu populacji
Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :
WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
aboratorium z Fizyki Materiałów 010 Ćwiczenie WYZNCZNIE MODUŁU YOUNG METODĄ STRZŁKI UGIĘCI Zadanie: 1.Za pomocą przyrządów i elementów znajdujących ię w zetawie zmierzyć moduł E jednego pręta wkazanego
9. DZIAŁANIE SIŁY NORMALNEJ
Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
Materiał ćwiczeniowy z matematyki marzec 2012
Materiał ćwiczeiowy z matematyki marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych dla iewidomych POZIOM PODSTAWOWY Klucz puktowaia do zadań zamkiętych Nr zad 3 4 6 7
TRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
Osiadanie podłoża gruntowego wzmocnionego wierconymi kolumnami żwirowymi
Oiadanie podłoża runtoweo wzmocnioneo wierconymi kolumnami żwirowymi Prof. zw. dr hab. inż. Eueniuz Dembicki Politechnika Gdańka. Wydział Inżynierii Lądowej i Środowika Mr inż. Michel Wojnarowicz Sepia
Mechanika analityczna wprowadzenie
Mechaika aalitycza wprowadzeie 1. Więzy i wpółrzęde uogólioe Jeśli rozważamy ruch układów iewobodych ależy określić ograiczeia ałożoe a ruch tzw. więzy. Gdy układ puktów jet ograiczoy więzami wówcza wpółrzęde
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7
Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach: kołowym, pierścieniowym, protokątnym 7 Wprowadzenie Do obiczenia naprężeń tycznych wywołanych momentem kręcającym w przekrojach
Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9
Retgeowska aaliza fazowa jakościowa i ilościowa Wykład 9 1. Retgeowska aaliza fazowa jakościowa i ilościowa. 2. Metody aalizy fazowej ilościowej. 3. Dobór wzorca w aalizie ilościowej. 4. Przeprowadzeie
Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski
olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...
Klasyfikacja inwestycji materialnych ze względu na ich cel:
Metodologia obliczeia powyższych wartości Klasyfikacja iwestycji materialych ze względu a ich cel: mające a celu odtworzeie środków trwałych lub ich wymiaę w celu obiżeia kosztów produkcji, rozwojowe:
Badanie efektu Halla w półprzewodniku typu n
Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.
Wykład 25 Soczewki. Przyrządy optyczne
Wykład 5 Soczewki. Przyrządy optycze Soczewka cieka - rówaie oczewek Rozważyy teraz dwie powierzchi erycze oddzielające ośrodki o wpółczyikach załaaia kolejo i odległych od iebie o d. Niech proień krzywizy
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość
WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ
Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH ETODĄ TENSOETRYCZNĄ A. PRĘT O PRZEKROJU KOŁOWY 7. WPROWADZENIE W pręcie o przekroju kołowym, poddanym obciążeniu momentem
Numeryczny opis zjawiska zaniku
FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej
Egzamin maturalny z matematyki CZERWIEC 2011
Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
WP YW ZMIAN PARAMETRÓW GRUNTOWYCH NA SZYBKOÚÃ KONSOLIDACJI TORFU
XVI SEINARIU NAUKOWE z cyklu REGIONALNE PROBLEY OCRONY ÚRODOWISKA Geotechnika w projektach regionalnych UE na obzarze etuariowym Szczecin Praga - 4 czerwca 8 r. ZYGUNT EYER, ROAN BEDNAREK, ARIUSZ KOWALÓW
ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE
ISSN 0209-2069 ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE EXPLO-SHIP 2004 Tadeusz Szelagiewicz, Katarzya Żelazy Progozowaie charakterystyk apędowych statku ze śrubą stałą podczas pływaia w
Analiza potencjału energetycznego depozytów mułów węglowych
zaiteresowaia wykorzystaiem tej metody w odiesieiu do iych droboziaristych materiałów odpadowych ze wzbogacaia węgla kamieego ależy poszukiwać owych, skutecziej działających odczyików. Zdecydowaie miej
IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO
MODELOWANIE INśYNIERSKIE ISSN 896-77X 36,. 87-9, liwice 008 IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO JÓZEF IERIEL, KRZYSZTOF KURC Katedra Mechaniki Stoowanej i Robotyki, Politechnika Rzezowka
Maszyny Elektryczne i Transformatory Kolokwium dodatkowe w sesji poprawkowej st. n. st. sem. III (zima) 2011/2012
azyy lektrycze i Traformatory Wariat A Kolokwium dodatkowe w eji poprawkowej t.. t. em. III (zima 0/0 Traformator Traformator trójfazowy ma atępujące dae zamioowe: S 60 kva f 50 Hz / 5750 ± x,5% / 400
POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne
D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka
Analiza stateczności zbocza
Przewodnik Inżyniera Nr 8 Aktualizacja: 02/2016 Analiza tateczności zbocza Program powiązany: Stateczność zbocza Plik powiązany: Demo_manual_08.gt Niniejzy rozdział przedtawia problematykę prawdzania tateczności
Struktura czasowa stóp procentowych (term structure of interest rates)
Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,
Maksymalny błąd oszacowania prędkości pojazdów uczestniczących w wypadkach drogowych wyznaczonej różnymi metodami
BIULETYN WAT VOL LV, NR 3, 2006 Makymalny błąd ozacowania prędkości pojazdów uczetniczących w wypadkach drogowych wyznaczonej różnymi metodami BOLESŁAW PANKIEWICZ, STANISŁAW WAŚKO* Wojkowa Akademia Techniczna,
WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY
Budownictwo DOI: 0.75/znb.06..7 Mariuz Pońki WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY Wprowadzenie Wprowadzenie norm europejkich
KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY
KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zadaia Odpowiedzi Pukty Badae umiejtoci Obszar stadardu 1. B 0 1 plauje i wykouje obliczeia a liczbach
Niepewności pomiarowe
Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki
KRZYSZTOF PIASECKI * EFEKT SYNERGII KAPITAŁU W ARYTMETYCE FINANSOWEJ 1. PROBLEM BADAWCZY. Słowa kluczowe:
KRZYSZTOF PIASECKI * EFEKT SYNERGII KAPITAŁU W ARYTMETYCE FINANSOWEJ Słowa kluczowe: Wartość przyzła, Wartość bieżąca, Synergia kapitału Strezczenie: W pracy implementowano warunek ynergii kapitału do
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie
Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?
Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)
Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego
doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut
MODELOWANIE OSIADAÑ POD OÝA S ABEGO W OPARCIU O BADANIA IN SITU
Prof. dr hab. i. Zygmut eyer dr i. ariusz Kowalów mgr i. leksadra Pluciñska Politechika zczeciñska Katedra Geotechiki LG Bautechik Gmb Oddziaù w Polsce LG Bautechik Gmb Oddziaù w Polsce ODELOWNIE OIDÑ
BADANIA DOCHODU I RYZYKA INWESTYCJI
StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;
Analiza popytu na alkohol w Polsce z zastosowaniem modelu korekty błędem AIDS
Ekoomia Meedżerska 2011, r 10, s. 161 172 Jacek Wolak *, Grzegorz Pociejewski ** Aaliza popytu a alkohol w Polsce z zastosowaiem modelu korekty błędem AIDS 1. Wprowadzeie Okres trasformacji, zapoczątkoway
TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG
Tomasz ŚWIĘTOŃ 1 TRANSFORMACJA DO UKŁADU 2000 A ROBLEM ZGODNOŚCI Z RG Na mocy rozporządzeia Rady Miistrów w sprawie aństwowego Systemu Odiesień rzestrzeych już 31 grudia 2009 roku upływa termi wykoaia
Pszcz. Projektuje się transformator o mocy S=400kVA - Yzn5 15,75/0,4kV wraz z kondensatorem MKPg o mocy 6 kvar do kompensacji biegu jałowego.
9. Obliczeia elektrycze DOBÓ TANSFOMATOA NA STACJI Dae wyjściowe: Ilość odbiorców itiejących: x50kw Całkowita zakładaa moc zczytowa: P i 50kW Wpółczyik jedoczeości dla -go odbiorcy: k j Całkowita moc zczytowa
STATYSTYKA. Seminarium Chemia Analityczna. Dr hab. inż. Piotr Konieczka.
00--5 STATYSTYKA Semiarium Chemia Aalitycza Dr hab. iż. Piotr Koieczka e-mail: piotr.koieczka@pg.gda.pl Dokładość (accuracy) topień zgodości uzykaego wyiku pojedyczego pomiaru z wartością oczekiwaą (rzeczywitą).
Prognozowanie naprężeń w przewodach linii elektroenergetycznych napowietrznych na terenach objętych szkodami górniczymi
dr hab. inż. PIOTR GAWOR, prof. Pol. Śl. dr inż. SERGIUSZ BORON Katedra Elektryfikacji i Automatyzacji Górnictwa Wydział Górnictwa i Geologii Politechniki Śląkiej Prognozowanie naprężeń w przewodach linii
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
Układ napędowy z silnikiem indukcyjnym i falownikiem napięcia
Ćwiczenie 13 Układ napędowy z ilnikiem indukcyjnym i falownikiem napięcia 3.1. Program ćwiczenia 1. Zapoznanie ię ze terowaniem prędkością ilnika klatkowego przez zmianę czętotliwości napięcia zailającego..
INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA LABORATORYJNA
Na prawach rękopisu do użytku służbowego NYU ENERGOELERY OLEHN ROŁAEJ Raport serii RAOZANA Nr LABORAORUM OA AUOMAY NRUJA LABORAORYJNA EROANE RAĄ LNA Z YORZYANEM L Mirosław Łukowicz łowa kluczowe: sterowik
PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO Z FIZYKI DZIAŁ III. SIŁA WPŁYWA NA RUCH
DZIAŁ III. SIŁA WPŁYWA NA RUCH Wielkość fizyczna nazwa ybol Przypiezenie (II zaada dynaiki) a Jednotka wielkości fizycznej Wzór nazwa ybol F N w a niuton na kilogra kg Ciężar Q Q g niuton N Przypiezenie
Metody i systemy detekcji nieszczelności rurociągów dalekosiężnych (1)
Metody i systemy detekcji ieszczelości rurociągów dalekosiężych (1) Ryszard Sobczak Mateusz Turkowski Adrzej Bratek Marci Słowikowski Adam Bogucki Niezależie od tego, jak staraie rurociąg został zaprojektoway
BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY
Ć w i c z e n i e 30 BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD EMPERAURY 30.1 Wtęp teoretyczny 30.1.1. Prędkość dźwięku. Do bardzo rozpowzechnionych proceów makrokopowych należą ruchy określone wpólną nazwą
Wprowadzenie. metody elementów skończonych
Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów
Egzamin maturalny z informatyki Poziom rozszerzony część I
Zadaie 1. Długość apisów biarych (7 pkt) Opisaa poiżej fukcja rekurecyja wyzacza, dla liczby aturalej 0, długość apisu uzyskaego przez sklejeie biarych reprezetacji liczb aturalych od 1 do 1. ukcja krok
SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74
Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu
O liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
OKREŚLENIE NOŚNOŚCI PODŁOŻA GRUNTOWEGO
OKREŚLENIE NOŚNOŚCI PODŁOŻA GRUNTOWEGO OBIEKT BUDOWLANY: Budynek Markoniówka LOKALIZACJA: Muzeum Pałacu Króla Jana III w Wilanowie ul. Staniława Kotki Potockiego 10/16 02-958 Warzawa WYKONAWCA: INVESTHOME
Moduł 4. Granica funkcji, asymptoty
Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae
Metody Optyczne w Technice. Wykład 3 Optyka geometryczna
Metody Optycze w Techice Wykład 3 Optyka geometrycza Promień świetly Potraktujmy światło jako trumień czątek eergii podróżujących w przetrzei Trajektorie takich czątek to promieie świetle W przypadku wiązki
Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi
Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E
Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1
1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych
Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI
Ć wiczeie 7 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z RZEIENNIKA CZĘSTOTLIWOŚCI Wiadomości ogóle Rozwój apędów elektryczych jest ściśle związay z rozwojem eergoelektroiki Współcześie a ogół
s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s
Wprowadzenie Kontrukcja pod wpływem obciążenia odkztałca ię, a jej punkty doznają przemiezczeń iniowych i kątowych. Umiejętność wyznaczania tych przemiezczeń jet konieczna przy prawdzaniu warunku ztywności
Ćwiczenie 2 ESTYMACJA STATYSTYCZNA
Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej
KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę
ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU
Dr iż. Staisław NOGA oga@prz.edu.pl Politechika Rzeszowska ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Streszczeie: W publikacji
Egzamin z MGIF, I termin, 2006 Imię i nazwisko
1. Na podstawie poniższego wykresu uziarnienia proszę określić rodzaj gruntu, zawartość głównych frakcji oraz jego wskaźnik różnoziarnistości (U). Odpowiedzi zestawić w tabeli: Rodzaj gruntu Zawartość
POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Instytut Podstaw Budowy Maszyn Zakład Mechaniki
POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Intytut Podtaw Budowy Mazyn Zakład Mechaniki Laboratorium podtaw automatyki i teorii mazyn Intrukcja do ćwiczenia A-5 Badanie układu terowania