ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI TORFÓW

Wielkość: px
Rozpocząć pokaz od strony:

Download "ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI TORFÓW"

Transkrypt

1 prof. dr hab. iż. ZYGUNT EYER e- mail: Zachodiopomorki Uiwerytet Techologiczy w Szczeciie Katedra Geotechiki, al. Piatów 5, 7-3 Szczeci ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI TORFÓW TE ANALYSIS OF FAILURE OF DIKE DURING CONSOLIDATION OF PEAT Strezczeie: W pracy przedtawioo aalizę waruków koolidacji torfu w podłożu pola refulacyjego a Otrowie Grabowkim w Szczeciie. W zczególości przeaalizowao tateczość wałów opakowych a refulowaym polu oraz przyczyę awarii wału opakowego a tym polu. Abtract: The paper preet the aalyi of coolidatio of peat i foudatio of hydraulic fill i Szczeci at Otrow Grabowki. The aalyi of dike tability together with coideratio of failure of the dike i alo preeted.. Wtęp Terey rozwojowe portu w Szczeciie obejmują obzar Otrowa Grabowkiego. Jet to półwyep, który utworzoy zotał przez odogi ujścia Odry. Tere te charakteryzuje ię tym, że zbudoway jet z grutów orgaiczych. Pierwotie miążzość torfów wyoiła ok. 4m do m. Nad torfami zajdowała ię wartwa aypowa o małej miążzości. W celu przygotowaia tego tereu pod przyzłe iwetycje, takie jak drogi dojazdowe, place kładowe czy termial koteerowy w otatich 5 latach przeprowadzoo licze prace refulacyje. W te poób a zaczej części Otrowa Grabowkiego koolidowao torfy. Wartwa refulatu poiada różą miążzość od do 6m. W efekcie polepzyły ię moduły ściśliwości torfu i aktualie wyozą od 6 do 9 kpa. Z uwagi a ciągle jezcze dużą miążzość wartwy torfu (awet 8m) bezpośredie poadowieie obiektów awet lekkich, wywołuje zacze oiadaie awet do,5m (ieraz więcej). W związku z tym podjęto decyzję o wykoaiu w wybraych miejcach kolejej koolidacji. Itiejąca już wcześiej wykoaa wartwa aypowa umożliwiała wykoaie wałów opakowych o zaczej wyokości (awet do 3,m). To z kolei miało przypiezyć zarefulowaie pola pozwalając a zalewaie wartwą pulpy o dużej głębokości. Podcza prac a jedym z odcików dozło do przerwaia wału opakowego. W pracy przeaalizowao prawdopodobe przyczyy awarii wału.. atematyczy opi zjawika Zjawiko koolidacji grutów łabych obciążoych wartwą aypową poiada bogatą literaturę. Teorię w tym zakreie przedtawił Terzaghi, a atępie badaia te były rozwijae przez de aaa, Wiłua, Lechowicza, eyera [,,4,5,]. Podtawową trudością

2 w aalizie proceu koolidacji jet opiaie jak zmieia ię moduł ściśliwości koolidowaego torfu w miarę jak zwiękza ię oiadaie. Do aalizy przyjęto zweryfikowaą dla waruków ujścia Odry metodę zapropoowaą przez eyera []. Wyik tej metody moża przedtawić w potaci wzorów, jak moduł ściśliwości oraz oiadaie torfów zależą od aprężeń wywołaych wartwą refulatu (aypową). Wzory te moża rówież toować przy obliczaiu dalzego oiadaia, jakie zotaie wywołae obciążeiem użytkowym. Schematyczie tay obciążeń i odkztałceń pokazao a ry. Ry.. Schemat obciążeia kolumy torfu Na ry. przyjęto atępujące ozaczeia: miążzość wartwy torfu iekoolidowaego; miążzość wartwy torfu koolidowaego obciążeiem ; miążzość wartwy torfu ścikaego dodatkowo obciążeiem ; wartości ozaczają odpowiedio moduły ściśliwości, atomiat ozacza odpowiedio porowatość torfu. W praktyce częto badaia miążzości oraz parametrów grutowych prowadzimy dla tau tj. po zakończeiu koolidacji wartwą aypową, która wywołuje obciążeie tau torfów. W takiej ytuacji zaczeie poiada zalezieie związku, który pozwoli a określeie parametrów torfu iekoolidowaego, czyli fazy. Podtawowa zależość opiująca te zmiay wyika z propozycji Glazera [3] ( ) ( ) e e - jet wkaźikiem porowatości torfu iekoolidowaego, e( ) e gdzie () - jet wkaźikiem porowatości torfu po wymuzeiu oiadaia ; atomiat - jet bezwymiarowym parametrem, który określamy a podtawie krzywej ścikaia torfu w edometrze. Zależość () moża przedtawić jako ( ) () Z drugiej troy a podtawie literatury Wiłu [5] przyjmuje ię związek pomiędzy zmiaami oiadaia i obciążeia jako

3 ( ) d d (3) Z zależości tych otrzymamy podtawowe wzory opiujące zmiaę modułu ściśliwości i oiadaia, jako fukcję obciążeia. Otrzymamy S oraz (4) ( ) (5) Badaia przeprowadzoe a próbkach torfu pobraych z Otrowa Grabowkiego wkazują, że z dotateczą dla celów praktyczych obliczeń dokładością, moża przyjąć parametr jako, 68 < < 83, W praktyczych obliczeiach ajczęściej przyjmuje ię, 75. Parametr te zależy główie od porowatości początkowej i dla torfów o porowatości, 66 mamy, 68, atomiat dla torfów o porowatości, 8 mamy, 83. Dokładą zależość aalityczą trudo jet utalić. Należałoby dodatkowo uwzględić topień rozłożeia oraz zawartość części mieralych w torfie. Wydaje ię rówież, że parametr te zależy od obciążeia. Dotychczaowe badaia wkazują a możliwość wykorzytaia poiżzej zależości w obliczeiach przybliżoych 8, (6) gdzie: [ kpa] - jet obliczeiem koolidacyjym. Zależość pomiędzy porowatością oraz moża określić w potaci przybliżoej (ry. ) Poadto z zależości geometryczych mamy S (7) (8) S

4 Jeżeli zae jet obciążeie wartwą refulatu, które powoduje miążzość, to możemy zapiać S (9) Jeśli zamy parametry torfu po pierwzej koolidacji:,,, to możemy obliczyć parametry torfu pierwotego (przed obciążeiem) cofając ię w obliczeiach tj.. Wtedy otrzymamy S i wtedy < () ożemy rówież obliczyć efekt drugiej koolidacji po wykoaiu kolejej wartwy przeciążającej oraz przyłożeiu w te poób dodatkowych obciążeń S oraz () Jeżeli po wykoaiu drugiej koolidacji przyłożymy obciążeia użytkowe p. od obciążeia budowlą, wówcza obciążeie to wywoła oiadaie S rówe S () W dalzej części pracy przedtawioo przybliżoą potać tego wzoru przy założeiu, że druga koolidacja zakończyła ię.

5 Plaowaie drugiej koolidacji ma a celu takie dobraie ciężaru akładki, aby dla plaowaych obciążeń, oiadaie powodowae tymi obciążeiami dodatkowymi S było miejze od dopuzczalych S < S dop. 3. Przykład obliczeiowy Dla waruków Otrowa Grabowkiego a podtawie badań laboratoryjych po pierwzej koolidacji otrzymao atępujące parametry torfu:, 68 ; 66kPa ; 75kPa ; 5, 5m. Przyjmując, że, 75 otrzymamy : S, 73m, co daje am 6, 3m oraz 55 kpa. Poieważ przedmiotem projektu jet budowa placu kładowego oraz drogi, przyjmując obciążeie użytkowe 5kPa otrzymamy oiadaie od tego obciążeia S, 4m. Jet to oiadaie za duże, dlatego potaowioo przeprowadzić drugą koolidację. Wykoao wartwę aypową o wyokości 3 4m z refulatu. Ozaczało to przyłożeie dodatkowego obciążeia 5kPa. Zakładając, że koolidacja druga zakończyła ię po wybudowaiu drogi lub placu maewrowego od obciążeia użytkowego dodatkowe oiadaie wyieie: S (3) po podtawieiu za 5kPa ; 6 kpa ; otrzymamy S, m. Ozacza to, że moża rozważać poadowieie bezpośredio tego rodzaju lekkich kotrukcji. 4. Obliczeie tateczości wału ołoowego Wykoaie dodatkowego adkładu a rozpatrywaym polu refulacyjym odbywało ię klayczie poprzez wykoaie wałów opakowych z materiału lokalego, a atępie wypełieie kwater urobkiem z pogłębiaia. Schematyczie a ry. pokazao przekrój poprzeczy przez wał opakowy, który miał łużyć do wykoaia adkładu.

6 Ry.. Przekrój poprzeczy przez wał opakowy poadowioy a aypie z refulatu Do obliczeia tateczości wału przyjęto, że poziom zalaia kwatery ięga koroy aypu oraz że iłą przeuwającą ayp jet apór poziomy wody a wał. Rówaie rówowagi a przeuw ma zaą potać: T G tgφ > W (4) gdzie: G jet iłą ciężkości wału z uwzględieiem wyporu wody, która przeiąka przez wał, W jet poziomym aporem wody a wał, atomiat T to iła tarcia w powierzchi poślizgu, a φ kąt tarcia wewętrzego grutu w poziomie ścięcia. Pozczególe iły kładowe wytępujące w rówaiu rówowagi (4) mają potać: G ( ) ( B m ) ( γ γ ) (5) W γ w (6) Po podtawieiu powyżzych zależości otrzymamy rówaie, a obliczeie wpółczyika pewości N wyoi N T W ( ) ( B )( γ γ ) w γ w w tgφ W rozpatrywaym przypadku wytąpiły atępujące waruki ścięcia (7) 3m ; B, m ; m ; 4% ; γ 3 6, 5kN / m ; γ 3 w kn / m ; o φ 6. Po podtawieiu otrzymamy N,96 co ozacza, że zotało przekroczoe kryterium ścięcia. oża rówież rozważyć kryterium ścięcia jako N i wtedy otrzymamy rówaie, które podaje jak ależy dobrać wymiary wału w przekroju poprzeczym aby zachować rówowagę. amy:

7 B N ctgφ m (8) γ ( ) γ w Wzór te pozwala przyjąć przekrój poprzeczy wału opakowego w zależości od założoego wpółczyika pewości N. W rozpatrywaym przypadku dla p. N,5 ależało przyjąć B 3, m. 5. Wioki 5.. W pracy przedtawioo aalizę waruków powtaia awarii wału opakowego podcza prac związaych z koolidacją grutów orgaiczych. 5.. Szczegółowej aalizie poddao efekt koolidacji, który miał doprowadzić do poprawy grutu łabego, tak aby obiekty liiowe moża było poadowić bezpośredio Okazuje ię, że dopiero po zakończeiu drugiej koolidacji moża uzykać takie wzmocieie grutów orgaiczych, że itieje możliwość bezpośrediego poadowieia obiektów lekkich o aciku od 3 do 5 kpa W pracy przeaalizowao rówież przyczyy awarii wału opakowego, który umożliwił wykoaie adkładu a kwaterze poprzez zalaie urobkiem z prac refulacyjych. Bezpośredią przyczyą było utrzymywaie ię przez długi okre czau wyokiego apełieia kwatery, co pozwoliło a uruchomieie mechaizmu ścięcia wału w podtawie. atematyczy opi tego przypadku przedtawioo w pracy Przeprowadzoe badaia zmiay parametrów grutowych torfu w wyiku koolidacji wkazują a potrzebę dalzych badań tereowych, które umożliwią głębzą weryfikację wzorów przedtawioych w rozdziale. W zczególości wydaje ię, że parametr jet fukcją i maleje w miarę wzrotu tych aprężeń, atomiat parametr, który wytępuje w tych wzorach jet więkzy od edometryczego modułu ściśliwości awet o 5%. Literatura. eyer Z.: Etimatio of Soil Parameter for Coolidated Layer. The Secod Iteratioal Semiar o Eviromet Protectio Regioal Problem, Kalmar Swede 99.. De aa E.J., Termeat R., Edil T.:Advace i Udertadig ad odellig the athematical Behaviour of Peat. A.A. Belkea, Rotterdam Glazer Z.: echaika grutów. Wydawictwo Geologicze, Warzawa Lechowicz Z.:Wpółczee kieruki badań grutów orgaiczych. Semiarium Naukowo- Techicze Wpółczee Problemy Geoiżyierii w Regioie Szczecińkim Wiłu Z.: Zary geotechiki. Wydawictwo Komuikacji i Łączości, Warzawa 987.

ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI TORFÓW

ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI TORFÓW ZYGUNT EYER, meyer@zut.edu.pl Zachodiopomorski Uiwersytet Techologiczy w Szczeciie Katedra Geotechiki, al. Piastów 5, 7-3 Szczeci ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

Zmiany zagęszczenia i osiadania gruntu niespoistego wywołane obciążeniem statycznym od fundamentu bezpośredniego

Zmiany zagęszczenia i osiadania gruntu niespoistego wywołane obciążeniem statycznym od fundamentu bezpośredniego Zmiany zagęzczenia i oiadania gruntu niepoitego wywołane obciążeniem tatycznym od fundamentu bezpośredniego Dr inż. Tomaz Kozłowki Zachodniopomorki Uniwerytet Technologiczny w Szczecinie, Wydział Budownictwa

Bardziej szczegółowo

Materiały do wykładu 4 ze Statystyki

Materiały do wykładu 4 ze Statystyki Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.

Bardziej szczegółowo

MODELOWANIE OSIADAŃ PODŁOśA SŁABEGO W OPARCIU O BADANIA IN SITU

MODELOWANIE OSIADAŃ PODŁOśA SŁABEGO W OPARCIU O BADANIA IN SITU Prof. dr hab. iŝ. Zygmut eyer dr iŝ. ariusz Kowalów mgr iŝ. leksadra Plucińska Politechika zczecińska Katedra Geotechiki Geotechical Cosultig Office p.z o.o. Geotechical Cosultig Office p.z o.o. ODELOWNIE

Bardziej szczegółowo

EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU

EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU Dr inż. Grzegorz Straż Intrukcja do ćwiczeń laboratoryjnych pt: EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU Wprowadzenie. Zalecenia dotyczące badań gruntów w edometrze: Zalecane topnie wywoływanego naprężenia:

Bardziej szczegółowo

W³adys³aw Duliñski*, Czes³awa Ewa Ropa* ANALIZA RÓWNAÑ PRZEP YWU DLA USTALENIA ODLEG OŒCI POMIÊDZYT OCZNIAMI NA TRASIE GAZOCI GU WYSOKOPRÊ NEGO

W³adys³aw Duliñski*, Czes³awa Ewa Ropa* ANALIZA RÓWNAÑ PRZEP YWU DLA USTALENIA ODLEG OŒCI POMIÊDZYT OCZNIAMI NA TRASIE GAZOCI GU WYSOKOPRÊ NEGO WIERTNICTWO NAFTA GAZ TOM /1 005 W³ady³aw Duliñki*, Cze³awa Ewa Ropa* ANALIZA RÓWNAÑ RZE YWU DLA USTALENIA ODLEG OŒCI OMIÊDZYT OCZNIAMI NA TRASIE GAZOCI GU WYSOKORÊ NEGO 1. WSTÊ Sytem przey³owy azu ziemeo

Bardziej szczegółowo

W(s)= s 3 +7s 2 +10s+K

W(s)= s 3 +7s 2 +10s+K PRZYKŁAD (LINIE PIERWIASTKOWE) Tramitacja operatorowa otwartego układu regulacji z jedotkowym ujemym przęŝeiem zwrotym daa jet wzorem: G O K ( + )( + 5) a) Podaj obraz liii pierwiatkowych układu zamkiętego.

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego

Bardziej szczegółowo

Układy liniowosprężyste Clapeyrona

Układy liniowosprężyste Clapeyrona Układy liiowosprężyste Clapeyroa Liiowosprężysty układ Clapeyroa zbiór połączoych ze sobą ciał odkształcalych, w których przemieszczeia są liiowymi fukcjami sił Układ rzeczywisty może być traktoway jako

Bardziej szczegółowo

This copy is for personal use only - distribution prohibited.

This copy is for personal use only - distribution prohibited. ZESZYTY NAUKOWE WSOWL - - - - - Nr 1 (159) 11 Włodzimierz KUPICZ Staiław NIZIŃSKI ETODA DIAGNOZOWANIA SILNIKÓW SPALINOWYCH W WARUNKACH TRAKCYJNYCH W pracy przedtawioo ową metodę diagozowaia ilika paliowego

Bardziej szczegółowo

Wykład 4 Soczewki. Przyrządy optyczne

Wykład 4 Soczewki. Przyrządy optyczne Wykład 4 Soczewki. Przyrządy optycze Soczewka cieka - rówaie zlifierzy oczewek Rozważyy teraz dwie powierzchi ferycze oddzielające ośrodki o wpółczyikach załaaia kolejo i odległych od iebie o d. Niech

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Dlaczego ekonomiści głównego nurtu mogą ignorować czas?

Dlaczego ekonomiści głównego nurtu mogą ignorować czas? Dlaczego ekoomiści główego urtu mogą igorować cza? Autor: Wojciech Czariecki Poczyając od Joh B. Clarka w główym urcie ekoomii przyjął ię pogląd, że kapitał taowi permaety, homogeiczy fuduz, w którym dobra

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

KSZTAŁTOWANIE ZARYSÓW PŁASKO-WIERZCHOŁKOWYCH NAGNIATANIEM I ICH WYKORZYSTANIE W BUDOWIE POJAZDÓW

KSZTAŁTOWANIE ZARYSÓW PŁASKO-WIERZCHOŁKOWYCH NAGNIATANIEM I ICH WYKORZYSTANIE W BUDOWIE POJAZDÓW LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Mariuz WOJTALIK 1 Nagiataie tocze, pla ekperymetu, zary płako-wierzchołkowy KSZTAŁTOWANIE ZARYSÓW

Bardziej szczegółowo

Analiza gazów spalinowych

Analiza gazów spalinowych POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH Aaliza gazów iowych Laboratorium mierictwa (M 7) Opracował: dr iż. Grzegorz Wiciak Sprawdził:

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Zmiany Q wynikające z przyrostu zlewni

Zmiany Q wynikające z przyrostu zlewni uch wody w korytach rzeczych Klasyfikacja ruchu. uch ieustaloy zmiey przepływ Q a długości rzeki i w czasie: ruch fal wezbraiowych ruch wody a długim odciku rzeki Q fala wezbraiowa obserwowaa w przekroju

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Analiza osiadania pojedynczego pala

Analiza osiadania pojedynczego pala Poradnik Inżyniera Nr 14 Aktualizacja: 09/2016 Analiza oiadania pojedynczego pala Program: Pal Plik powiązany: Demo_manual_14.gpi Celem niniejzego przewodnika jet przedtawienie wykorzytania programu GO5

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu

Bardziej szczegółowo

MECHANIKA BUDOWLI 8 METODA SIŁ

MECHANIKA BUDOWLI 8 METODA SIŁ W YKŁ DY Z ECHIKI BUDOWLI WIERDZEI O WZJEOŚCI Olga Kopacz, dam Łodygowki, Wociech awłowki, ichał łotkowiak, Krzyztof ymper Koultace aukowe: prof. dr hab. JERZY RKOWSKI ozań 00/00 ECHIK BUDOWLI 8 EOD SIŁ

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

Określenie maksymalnych składowych stycznych naprężenia na pobocznicy pala podczas badania statycznego

Określenie maksymalnych składowych stycznych naprężenia na pobocznicy pala podczas badania statycznego Określenie makymalnych kładowych tycznych naprężenia na pobocznicy pala podcza badania tatycznego Pro. dr hab. inż. Zygmunt Meyer, m inż. Krzyzto Żarkiewicz Zachodniopomorki Uniwerytet Technologiczny w

Bardziej szczegółowo

Wprowadzenie do laboratorium 1

Wprowadzenie do laboratorium 1 Wprowadzeie do laboratorium 1 Etymacja jedorówaiowego modelu popytu a bilety loticze Etapy budowy modelu ekoometryczego Specyfikacja modelu Zebraie daych tatytyczych Etymacja parametrów modelu Weryfikacja

Bardziej szczegółowo

Ćwiczenie nr 4 Badanie zjawiska Halla i przykłady zastosowań tego zjawiska do pomiarów kąta i indukcji magnetycznej

Ćwiczenie nr 4 Badanie zjawiska Halla i przykłady zastosowań tego zjawiska do pomiarów kąta i indukcji magnetycznej Ćwiczenie nr 4 Badanie zjawika alla i przykłady zatoowań tego zjawika do pomiarów kąta i indukcji magnetycznej Opracowanie: Ryzard Poprawki, Katedra Fizyki Doświadczalnej, Politechnika Wrocławka Cel ćwiczenia:

Bardziej szczegółowo

Porównanie dwu populacji

Porównanie dwu populacji Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA aboratorium z Fizyki Materiałów 010 Ćwiczenie WYZNCZNIE MODUŁU YOUNG METODĄ STRZŁKI UGIĘCI Zadanie: 1.Za pomocą przyrządów i elementów znajdujących ię w zetawie zmierzyć moduł E jednego pręta wkazanego

Bardziej szczegółowo

9. DZIAŁANIE SIŁY NORMALNEJ

9. DZIAŁANIE SIŁY NORMALNEJ Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki marzec 2012

Materiał ćwiczeniowy z matematyki marzec 2012 Materiał ćwiczeiowy z matematyki marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych dla iewidomych POZIOM PODSTAWOWY Klucz puktowaia do zadań zamkiętych Nr zad 3 4 6 7

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

Osiadanie podłoża gruntowego wzmocnionego wierconymi kolumnami żwirowymi

Osiadanie podłoża gruntowego wzmocnionego wierconymi kolumnami żwirowymi Oiadanie podłoża runtoweo wzmocnioneo wierconymi kolumnami żwirowymi Prof. zw. dr hab. inż. Eueniuz Dembicki Politechnika Gdańka. Wydział Inżynierii Lądowej i Środowika Mr inż. Michel Wojnarowicz Sepia

Bardziej szczegółowo

Mechanika analityczna wprowadzenie

Mechanika analityczna wprowadzenie Mechaika aalitycza wprowadzeie 1. Więzy i wpółrzęde uogólioe Jeśli rozważamy ruch układów iewobodych ależy określić ograiczeia ałożoe a ruch tzw. więzy. Gdy układ puktów jet ograiczoy więzami wówcza wpółrzęde

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7

Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7 Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach: kołowym, pierścieniowym, protokątnym 7 Wprowadzenie Do obiczenia naprężeń tycznych wywołanych momentem kręcającym w przekrojach

Bardziej szczegółowo

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9 Retgeowska aaliza fazowa jakościowa i ilościowa Wykład 9 1. Retgeowska aaliza fazowa jakościowa i ilościowa. 2. Metody aalizy fazowej ilościowej. 3. Dobór wzorca w aalizie ilościowej. 4. Przeprowadzeie

Bardziej szczegółowo

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...

Bardziej szczegółowo

Klasyfikacja inwestycji materialnych ze względu na ich cel:

Klasyfikacja inwestycji materialnych ze względu na ich cel: Metodologia obliczeia powyższych wartości Klasyfikacja iwestycji materialych ze względu a ich cel: mające a celu odtworzeie środków trwałych lub ich wymiaę w celu obiżeia kosztów produkcji, rozwojowe:

Bardziej szczegółowo

Badanie efektu Halla w półprzewodniku typu n

Badanie efektu Halla w półprzewodniku typu n Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.

Bardziej szczegółowo

Wykład 25 Soczewki. Przyrządy optyczne

Wykład 25 Soczewki. Przyrządy optyczne Wykład 5 Soczewki. Przyrządy optycze Soczewka cieka - rówaie oczewek Rozważyy teraz dwie powierzchi erycze oddzielające ośrodki o wpółczyikach załaaia kolejo i odległych od iebie o d. Niech proień krzywizy

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH ETODĄ TENSOETRYCZNĄ A. PRĘT O PRZEKROJU KOŁOWY 7. WPROWADZENIE W pręcie o przekroju kołowym, poddanym obciążeniu momentem

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

WP YW ZMIAN PARAMETRÓW GRUNTOWYCH NA SZYBKOÚÃ KONSOLIDACJI TORFU

WP YW ZMIAN PARAMETRÓW GRUNTOWYCH NA SZYBKOÚÃ KONSOLIDACJI TORFU XVI SEINARIU NAUKOWE z cyklu REGIONALNE PROBLEY OCRONY ÚRODOWISKA Geotechnika w projektach regionalnych UE na obzarze etuariowym Szczecin Praga - 4 czerwca 8 r. ZYGUNT EYER, ROAN BEDNAREK, ARIUSZ KOWALÓW

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE

ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE ISSN 0209-2069 ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE EXPLO-SHIP 2004 Tadeusz Szelagiewicz, Katarzya Żelazy Progozowaie charakterystyk apędowych statku ze śrubą stałą podczas pływaia w

Bardziej szczegółowo

Analiza potencjału energetycznego depozytów mułów węglowych

Analiza potencjału energetycznego depozytów mułów węglowych zaiteresowaia wykorzystaiem tej metody w odiesieiu do iych droboziaristych materiałów odpadowych ze wzbogacaia węgla kamieego ależy poszukiwać owych, skutecziej działających odczyików. Zdecydowaie miej

Bardziej szczegółowo

IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO

IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO MODELOWANIE INśYNIERSKIE ISSN 896-77X 36,. 87-9, liwice 008 IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO JÓZEF IERIEL, KRZYSZTOF KURC Katedra Mechaniki Stoowanej i Robotyki, Politechnika Rzezowka

Bardziej szczegółowo

Maszyny Elektryczne i Transformatory Kolokwium dodatkowe w sesji poprawkowej st. n. st. sem. III (zima) 2011/2012

Maszyny Elektryczne i Transformatory Kolokwium dodatkowe w sesji poprawkowej st. n. st. sem. III (zima) 2011/2012 azyy lektrycze i Traformatory Wariat A Kolokwium dodatkowe w eji poprawkowej t.. t. em. III (zima 0/0 Traformator Traformator trójfazowy ma atępujące dae zamioowe: S 60 kva f 50 Hz / 5750 ± x,5% / 400

Bardziej szczegółowo

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka

Bardziej szczegółowo

Analiza stateczności zbocza

Analiza stateczności zbocza Przewodnik Inżyniera Nr 8 Aktualizacja: 02/2016 Analiza tateczności zbocza Program powiązany: Stateczność zbocza Plik powiązany: Demo_manual_08.gt Niniejzy rozdział przedtawia problematykę prawdzania tateczności

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Maksymalny błąd oszacowania prędkości pojazdów uczestniczących w wypadkach drogowych wyznaczonej różnymi metodami

Maksymalny błąd oszacowania prędkości pojazdów uczestniczących w wypadkach drogowych wyznaczonej różnymi metodami BIULETYN WAT VOL LV, NR 3, 2006 Makymalny błąd ozacowania prędkości pojazdów uczetniczących w wypadkach drogowych wyznaczonej różnymi metodami BOLESŁAW PANKIEWICZ, STANISŁAW WAŚKO* Wojkowa Akademia Techniczna,

Bardziej szczegółowo

WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY

WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY Budownictwo DOI: 0.75/znb.06..7 Mariuz Pońki WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY Wprowadzenie Wprowadzenie norm europejkich

Bardziej szczegółowo

KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY

KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zadaia Odpowiedzi Pukty Badae umiejtoci Obszar stadardu 1. B 0 1 plauje i wykouje obliczeia a liczbach

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

KRZYSZTOF PIASECKI * EFEKT SYNERGII KAPITAŁU W ARYTMETYCE FINANSOWEJ 1. PROBLEM BADAWCZY. Słowa kluczowe:

KRZYSZTOF PIASECKI * EFEKT SYNERGII KAPITAŁU W ARYTMETYCE FINANSOWEJ 1. PROBLEM BADAWCZY. Słowa kluczowe: KRZYSZTOF PIASECKI * EFEKT SYNERGII KAPITAŁU W ARYTMETYCE FINANSOWEJ Słowa kluczowe: Wartość przyzła, Wartość bieżąca, Synergia kapitału Strezczenie: W pracy implementowano warunek ynergii kapitału do

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut

Bardziej szczegółowo

MODELOWANIE OSIADAÑ POD OÝA S ABEGO W OPARCIU O BADANIA IN SITU

MODELOWANIE OSIADAÑ POD OÝA S ABEGO W OPARCIU O BADANIA IN SITU Prof. dr hab. i. Zygmut eyer dr i. ariusz Kowalów mgr i. leksadra Pluciñska Politechika zczeciñska Katedra Geotechiki LG Bautechik Gmb Oddziaù w Polsce LG Bautechik Gmb Oddziaù w Polsce ODELOWNIE OIDÑ

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Analiza popytu na alkohol w Polsce z zastosowaniem modelu korekty błędem AIDS

Analiza popytu na alkohol w Polsce z zastosowaniem modelu korekty błędem AIDS Ekoomia Meedżerska 2011, r 10, s. 161 172 Jacek Wolak *, Grzegorz Pociejewski ** Aaliza popytu a alkohol w Polsce z zastosowaiem modelu korekty błędem AIDS 1. Wprowadzeie Okres trasformacji, zapoczątkoway

Bardziej szczegółowo

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG Tomasz ŚWIĘTOŃ 1 TRANSFORMACJA DO UKŁADU 2000 A ROBLEM ZGODNOŚCI Z RG Na mocy rozporządzeia Rady Miistrów w sprawie aństwowego Systemu Odiesień rzestrzeych już 31 grudia 2009 roku upływa termi wykoaia

Bardziej szczegółowo

Pszcz. Projektuje się transformator o mocy S=400kVA - Yzn5 15,75/0,4kV wraz z kondensatorem MKPg o mocy 6 kvar do kompensacji biegu jałowego.

Pszcz. Projektuje się transformator o mocy S=400kVA - Yzn5 15,75/0,4kV wraz z kondensatorem MKPg o mocy 6 kvar do kompensacji biegu jałowego. 9. Obliczeia elektrycze DOBÓ TANSFOMATOA NA STACJI Dae wyjściowe: Ilość odbiorców itiejących: x50kw Całkowita zakładaa moc zczytowa: P i 50kW Wpółczyik jedoczeości dla -go odbiorcy: k j Całkowita moc zczytowa

Bardziej szczegółowo

STATYSTYKA. Seminarium Chemia Analityczna. Dr hab. inż. Piotr Konieczka.

STATYSTYKA. Seminarium Chemia Analityczna. Dr hab. inż. Piotr Konieczka. 00--5 STATYSTYKA Semiarium Chemia Aalitycza Dr hab. iż. Piotr Koieczka e-mail: piotr.koieczka@pg.gda.pl Dokładość (accuracy) topień zgodości uzykaego wyiku pojedyczego pomiaru z wartością oczekiwaą (rzeczywitą).

Bardziej szczegółowo

Prognozowanie naprężeń w przewodach linii elektroenergetycznych napowietrznych na terenach objętych szkodami górniczymi

Prognozowanie naprężeń w przewodach linii elektroenergetycznych napowietrznych na terenach objętych szkodami górniczymi dr hab. inż. PIOTR GAWOR, prof. Pol. Śl. dr inż. SERGIUSZ BORON Katedra Elektryfikacji i Automatyzacji Górnictwa Wydział Górnictwa i Geologii Politechniki Śląkiej Prognozowanie naprężeń w przewodach linii

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Układ napędowy z silnikiem indukcyjnym i falownikiem napięcia

Układ napędowy z silnikiem indukcyjnym i falownikiem napięcia Ćwiczenie 13 Układ napędowy z ilnikiem indukcyjnym i falownikiem napięcia 3.1. Program ćwiczenia 1. Zapoznanie ię ze terowaniem prędkością ilnika klatkowego przez zmianę czętotliwości napięcia zailającego..

Bardziej szczegółowo

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA LABORATORYJNA

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA LABORATORYJNA Na prawach rękopisu do użytku służbowego NYU ENERGOELERY OLEHN ROŁAEJ Raport serii RAOZANA Nr LABORAORUM OA AUOMAY NRUJA LABORAORYJNA EROANE RAĄ LNA Z YORZYANEM L Mirosław Łukowicz łowa kluczowe: sterowik

Bardziej szczegółowo

PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO Z FIZYKI DZIAŁ III. SIŁA WPŁYWA NA RUCH

PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO Z FIZYKI DZIAŁ III. SIŁA WPŁYWA NA RUCH DZIAŁ III. SIŁA WPŁYWA NA RUCH Wielkość fizyczna nazwa ybol Przypiezenie (II zaada dynaiki) a Jednotka wielkości fizycznej Wzór nazwa ybol F N w a niuton na kilogra kg Ciężar Q Q g niuton N Przypiezenie

Bardziej szczegółowo

Metody i systemy detekcji nieszczelności rurociągów dalekosiężnych (1)

Metody i systemy detekcji nieszczelności rurociągów dalekosiężnych (1) Metody i systemy detekcji ieszczelości rurociągów dalekosiężych (1) Ryszard Sobczak Mateusz Turkowski Adrzej Bratek Marci Słowikowski Adam Bogucki Niezależie od tego, jak staraie rurociąg został zaprojektoway

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY

BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY Ć w i c z e n i e 30 BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD EMPERAURY 30.1 Wtęp teoretyczny 30.1.1. Prędkość dźwięku. Do bardzo rozpowzechnionych proceów makrokopowych należą ruchy określone wpólną nazwą

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

Egzamin maturalny z informatyki Poziom rozszerzony część I

Egzamin maturalny z informatyki Poziom rozszerzony część I Zadaie 1. Długość apisów biarych (7 pkt) Opisaa poiżej fukcja rekurecyja wyzacza, dla liczby aturalej 0, długość apisu uzyskaego przez sklejeie biarych reprezetacji liczb aturalych od 1 do 1. ukcja krok

Bardziej szczegółowo

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

OKREŚLENIE NOŚNOŚCI PODŁOŻA GRUNTOWEGO

OKREŚLENIE NOŚNOŚCI PODŁOŻA GRUNTOWEGO OKREŚLENIE NOŚNOŚCI PODŁOŻA GRUNTOWEGO OBIEKT BUDOWLANY: Budynek Markoniówka LOKALIZACJA: Muzeum Pałacu Króla Jana III w Wilanowie ul. Staniława Kotki Potockiego 10/16 02-958 Warzawa WYKONAWCA: INVESTHOME

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 3 Optyka geometryczna

Metody Optyczne w Technice. Wykład 3 Optyka geometryczna Metody Optycze w Techice Wykład 3 Optyka geometrycza Promień świetly Potraktujmy światło jako trumień czątek eergii podróżujących w przetrzei Trajektorie takich czątek to promieie świetle W przypadku wiązki

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1 1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych

Bardziej szczegółowo

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI Ć wiczeie 7 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z RZEIENNIKA CZĘSTOTLIWOŚCI Wiadomości ogóle Rozwój apędów elektryczych jest ściśle związay z rozwojem eergoelektroiki Współcześie a ogół

Bardziej szczegółowo

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s Wprowadzenie Kontrukcja pod wpływem obciążenia odkztałca ię, a jej punkty doznają przemiezczeń iniowych i kątowych. Umiejętność wyznaczania tych przemiezczeń jet konieczna przy prawdzaniu warunku ztywności

Bardziej szczegółowo

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Dr iż. Staisław NOGA oga@prz.edu.pl Politechika Rzeszowska ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Streszczeie: W publikacji

Bardziej szczegółowo

Egzamin z MGIF, I termin, 2006 Imię i nazwisko

Egzamin z MGIF, I termin, 2006 Imię i nazwisko 1. Na podstawie poniższego wykresu uziarnienia proszę określić rodzaj gruntu, zawartość głównych frakcji oraz jego wskaźnik różnoziarnistości (U). Odpowiedzi zestawić w tabeli: Rodzaj gruntu Zawartość

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Instytut Podstaw Budowy Maszyn Zakład Mechaniki

POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Instytut Podstaw Budowy Maszyn Zakład Mechaniki POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Intytut Podtaw Budowy Mazyn Zakład Mechaniki Laboratorium podtaw automatyki i teorii mazyn Intrukcja do ćwiczenia A-5 Badanie układu terowania

Bardziej szczegółowo