STATYSTYKA. Seminarium Chemia Analityczna III rok. Dr inż. Piotr Konieczka
|
|
- Laura Sikora
- 6 lat temu
- Przeglądów:
Transkrypt
1 STATYSTYKA Semiarium Chemia Aalitycza III rok Dr iż. Piotr Koieczka
2 Zaczijmy od defiicji Dokladość (accuracy) zgodość pomiędzy uzykaym wyikiem pomiaru z wartością rzeczywitą (oczekiwaą). Prawdziwość (truee) zgodość wyiku ozaczeia (obliczoego a podtawie erii pomiarów) z wartością oczekiwaą. Precyzja (preciio) zgodość pomiędzy iezależymi wyikami uzykaymi w trakcie aalizy daej próbki z zatoowaiem daej procedury aalityczej.
3 Powtarzalość (repeatability) precyzja wyików uzykaych w tych amych warukach pomiarowych (dae laboratorium, aalityk, itrumet pomiarowy, odczyiki). Precyzja pośredia (itermediate preciio) długotermiowe odchyleie proceu pomiarowego, do którego wyzaczeia wykorzytuje ię odchyleie tadardowe erii pomiarów uzykaych w daym laboratorium w kilkutygodiowym okreie czau. Precyzja pośredia jet pojęciem zerzym od powtarzalości. Odtwarzalość (reproducibility) precyzja wyików uzykaych w różych laboratoriach z zatoowaiem daej metody pomiarowej.
4 Powtarzalość - wyzaczaa a podtawie wartości obliczoego odchyleia tadardowego erii pomiarów przeprowadzoych: w daym laboratorium; przez daego aalityka; z wykorzytaiem daego urządzeia pomiarowego; w krótkim okreie czau;
5 Wartość wyzaczoej powtarzalości metody może dotyczyć zarówo bardzo pecyficzej procedury aalityczej, w której określoy i zdefiioway jet kład matrycy (czyli p.: metoda ozaczaia zawartości aalitu X w matrycy Y) jak i procedury ozaczaia daego aalitu bez precyzowaia kładu matrycy. W pierwzym przypadku wartość odchyleia tadardowego jet obliczaa a podtawie pomiarów wykoaych w próbkach o jedakowym kładzie matrycy, w drugim atomiat przypadku ależy wartość odchyleia tadardowego obliczać a podtawie pomiarów przeprowadzoych dla próbek różiących ię kładem matrycy.
6 Precyzja pośredia jet pojęciem zerzym od powtarzalości, gdyż a jej wartość wpływ mają: czyiki oobowe różi aalitycy wykoujący ozaczeia jak i ietabilość pracy daego aalityka w ciągu całego okreu czau; czyiki aparaturowe ze względu a to, że pomiary mogą być przeprowadzoe z wykorzytaiem: różych itrumetów z daego laboratorium; roztworów wzorcowych i odczyików pochodzących od różych producetów, lub też różych zarż produkcyjych; różych akceoriów p. różych kolum GC, o tej amych charakterytyce, lecz pochodzących od różych producetów, bądź też różych zarż produkcyjych;
7 Tabela Waruki prowadzeia pomiarów aalityczych jakie muzą być zachowae w trakcie wyzaczaia powtarzalości, precyzji pośrediej i odtwarzalości Aparatura Aalityk Stężeie Partia odczyików Waruki laboratoryje (temperatura wilgotość) Laboratorium Waruek Partia akceoriów Skład matrycy Powtarzalość S koieczość zachowaia tałości parametru Z możliwość zmiay daego parametru S S S Z Z S S S Precyzja pośredia Z Z Z Z Z Z Z S Odtwarzalość Z Z Z Z Z Z Z Z
8 Rozrzut wyików Błędy przypadkowe: wytępują zawze; ą zazwyczaj małe i powodują, że wyik iezaczie różi ię od wartości rzeczywitej; przyczya powtawaia - zepół czyików przypadkowych; wielkość błędu - zmiea loowa; zmiejzaie wielkości błędu przez zwiękzaie ilości pomiarów; ie moża ich wyelimiować toując poprawki; rozkład Gaua - opi rozkładu błędów przypadkowych;
9 Miarą powtarzalości, precyzji pośrediej i odtwarzalości może być wartość odchyleia tadardowego, względego odchyleia tadardowego lub tzw. wpółczyika zmieości. Odchyleie tadardowe jet defiiowae jako miara rozprozeia uzykaych pozczególych wartości ozaczeń wokół wartości średiej i opiywae jet poprzez poiżzą zależość: gdzie: = i = ( x x) i x i wartość pojedyczego wyiku ozaczeia; x średia arytmetycza z uzykaych wyików; liczba uzykaych wyików;
10 Odchyleie tadardowe jet rówe zeru wtedy i tylko wtedy, gdy wzytkie wyiki ą idetycze. W każdym iym przypadku wielkość ta jet dodatia. Zatem im więkze rozprozeie wyików, tym wartość jet więkza. Właściwości odchyleia tadardowego: jeżeli do każdej wartości wyiku pomiaru dodamy (lub od iej odejmiemy) tałą wartość to wartość odchyleia tadardowego ie zmiei ię; jeżeli każdą wartość wyiku pomiaru pomożymy lub podzielimy przez dowolą tałą to wartość odchyleia tadardowego zotaie także pomożoa lub podzieloa przez tę tałą; odchyleie tadardowe jet zawze liczbą miaowaą, przy czym miao jego jet wyrażoe w takich amych jedotkach jak miao wartości wyików w próbce;
11 Odchyleie tadardowe: a. dla zaej wartości rzeczywitej µ x i = = ( x µ ) i x b. dla iezaej wartości rzeczywitej (ozacowaie x) = i= ( x x) i
12 c. względe odchyleie tadardowe ( RSD) R = x d. wpółczyik zmieości CV = RSD 00%
13 e. odchyleie tadardowe średiej arytmetyczej g = = f. odchyleie tadardowe metody (ogóle) gdzie: k - ogóla liczba ozaczeń k - liczba erii k i= i k = g i k i = ( ) dla rówoliczych erii wzór uprazcza ię do potaci: i
14 µ µ p.: wykoaie daą metoda pomiarową (tałe odchyleie tadardowe) aaliz dla próbek o różej zawartości aalitu; µ = µ p.: wykoaie aaliz dla tej amej próbki (taka ama wartość oczekiwaa) dwiema iezależymi metodami (róże wartości odchyleń tadardowych);
15 Ocea (porówaie) uzykaej(ych) wartości odchyleia tadardowego Ocea a podtawie obliczoej wartości RSD Z zatoowaiem odpowiediego tetu tatytyczego w celu prawdzeia itotości różicy między odchyleiem tadardowym badaej populacji a wartością zadaą toujemy tet χ. w celu porówaia precyzji dwóch iezależych erii pomiarowych uzykaych w trakcie aalizy próbek o zawartości aalitu a takim amym poziomie, toujemy tet F-Sedecora
16 do porówaia precyzji dwóch zależych (korelowaych) erii pomiarowych, toujemy tet Morgaa do porówywaia precyzji dla rówoliczych populacji (ilość wyików uzykaych porówywaymi metodami) toujemy tet F max Hartleya w celu porówywaia precyzji (kilka metod, erie ie koieczie rówolicze) - tet Bartletta
17 tet F-Sedecora Spoób potępowaia: obliczyć wartości odchyleń tadardowych dla erii wyików uzykaych obydwiema metodami ( i ); obliczyć wartość parametru tetu F-Sedecora wg wzoru: przy założeiu: > ; F = F > zawze!!!
18 tet F-Sedecora z tabeli rozkładu tetu F-Sedecora wyzukać wartość parametru F kr dla przyjętego poziomu itotości - α (ajczęściej α = 0,05) oraz wyliczoych topi wobody f i f (gdzie f = - i f = - a i to ilość wyików uzykaych z zatoowaiem obydwu metod); porówać wartość F z wartością F kr
19 Przykład Ozaczao zawartoc HCl dwiema metodami: kulometrycza i koduktometrycza. Sprawdzic, czy obliczoe wartości odchyleń tadardowych dla uzykaych tymi metodami erii pomiarowych rózia ie między obą w poób tatytyczie itoty. Uzykae wyiki [mol dm -3 ]: kulometria koduktometria 0,0095 0,003 0,0098 0,00 0,0097 0,0 0,0093 0,008 0,0097 0,006 0,0096 0,004 0,0099 0,009 tet F-Sedecora
20 tet F-Sedecora Obliczoe wartości: kulometria koduktometria = 7 =7 = 0,0000 mol dm -3 = 0,0003 mol dm -3 F = =,56
21 Tet F-Sedecora wartości krytycze f f ,00 99,0 9,55 30,8 6,94 8,00 5,79 3,7 5,4 0,9 4,74 9,55 4,46 8,65 4,6 8,0 4,0 7,56 3,98 7,0 9,6 99,7 9,8 9,46 6,59 6,69 5,4,06 4,76 9,78 4,35 8,45 4,07 7,59 3,86 6,99 3,7 6,55 3,59 6, 9,5 99,5 9, 8,7 6,39 5,98 5,9,39 4,53 9,5 4, 7,85 3,84 7,0 3,63 6,4 3,48 5,99 3,36 5,67 9,30 99,30 9,0 8,4 6,6 5,5 5,05 0,97 4,39 8,57 3,97 7,46 3,69 6,63 3,48 6,06 3,33 5,64 3,0 5,3 9,33 99,33 8,94 7,9 6,6 5, 4,95 0,67 4,8 8,47 3,87 7,9 3,58 6,37 3,37 5,80 3, 5,39 3,09 5,07 9,36 99,34 8,88 7,67 6,09 4,98 4,88 0,45 4, 8,6 3,79 7,00 3,50 6,9 3,9 5,6 3,4 5, 3,0 4,88 9,37 99,36 8,84 7,49 6,04 4,80 4,8 0,7 4,5 8,0 3,73 6,84 3,44 6,03 3,3 5,47 3,07 5,06,95 4,74 9 9,38 99,38 8,8 7,34 6,00 4,66 4,78 0,5 4,0 7,98 3,68 6,7 3,39 5,9 3,8 5,35 3,0 4,95,90 4,63 0 9,39 99,40 8,78 7,3 5,96 4,54 4,74 0,05 4,06 7,87 3,63 6,6 3,34 5,8 3,3 5,6,97 4,85,86 4,54 9,40 99,4 8,76 7,3 5,93 4,45 4,70 9,96 4,03 7,79 3,60 6,54 3,3 5,74 3,0 5,8,94 4,78,8 4,46 α = 0,05 α = 0,0 tet F-Sedecora Z tablicy rozkładu F- Sedecora odczytao wartość F kr dla daego poziomu itotości i odpowiedich liczb topi wobody. F kr (α=0,05; f =f =6)= 4,8 F =,56 Poieważ F < F kr zatem wyika tąd wioek, że uzykae wartości odchyleń tadardowych ie różią ię między obą w poób tatytyczie itoty (porówywae metody ie różią ię pod względem precyzji).
22 x yt x x x 3 x x 5 x 6 µ x x x4 x j x x yt x i x δx j δx j - błąd ytematyczy metody aalityczej; - błąd przypadkowy pojedyczego wyiku; - błąd przypadkowy średiej arytmetyczej; - błąd gruby;
23 Dokładość i miary iedokładości dokładość wyiku pojedyczego ozaczeia: x = x i -µ x = x yt + x i +δx i. dokładość wyiku aalizy: x = x-µ x = x yt + x 3. dokładość metody aalityczej: x met = E(x)-µ x = x yt
24 BŁĄD GRUBY wyik jedorazowego wpływu przyczyy działającej przejściowo; wytępuje przy iektórych pomiarach; przyczyy to p.: pomyłka przy odczycie wkazań przyrządu pomiarowego, pomyłka w obliczeiach; zmiea loowa - jedak o iezaym rozkładzie i iezaej wartości oczekiwaej; ajłatwiejzy do wykrycia i uuięcia; bywa zarówo dodati jak i ujemy (iaczej iż w przypadku błędu ytematyczego);
25 tet Q-Dixoa Spoób potępowaia uzeregować wyiki w ciąg iemalejący; obliczyć wartość roztępu R zgodie ze wzorem: R = x x obliczyć parametry Q i Q wg wzorów: Q = x R x Q = x x R porówać otrzymae wartości z wartością krytyczą Q kr jeśli, któryś z obliczoych parametrów przekracza wartość krytyczą Q kr to wyik a podtawie, którego zotał obliczoy (x lub x ) ależy odrzucić jako obarczoy błędem grubym i policzyć poowie wartości x i ; Stoując tet Q-Dixoa moża z daej erii odrzucić! tylko jede wyik obarczoy błędem grubym
26 Przykład Wyiki ozacze miedzi w ciekach [mg dm -3 ]: 0,875 0,863 0,876 0,868 0,77 0,88 0,878 0,869 0,866 Wyiki uzeregowae w ciąg iemalejący: 0,77 0,863 0,866 0,868 0,869 0,875 0,876 0,878 0,88 obliczoe parametry: R = 0,88-0,77=0,0 Q = (0,863-0,77)/R = 0,836 Q = (0,88-0,878)/R = 0,07
27 Tet Q-Dixoa wartości krytycze f α 0,0 0,886 0,679 0,557 0,48 0,434 0,399 0,370 0,349 0,05 0,94 0,765 0,64 0,560 0,507 0,468 0,437 0,4 0,0 0,988 0,889 0,780 0,698 0,637 0,590 0,555 0,57 Z tablic rozkładu Q-Dixoa odczytao wartość krytyczą parametru Q kr Q kr (α =0,05; f =9) = 0,437 Q = 0,836 Q = 0,07 Poieważ Q > Q kr wyik ajmiejzy w erii ależy z iej odrzucić jako obarczoy błędem grubym.
28 BŁĄD SYSTEMATYCZNY błąd ytematyczy tały - wartość ie zależy od poziomu zawartości aalitu a ; błąd ytematyczy zmiey - wartość błędu zależy (liiowo) od poziomu zawartości aalitu - b µ x x yt = a + b µ x x =µ x + x yt = µ x + a + b µ x = a +(+b) µ x
29 Porówaie dokładości dwóch metod (wartości średich) Jeżeli porówywae metody ie różią ię w poób tatytyczie itoty pod względem precyzji (toujemy w tym celu tet F-Sedecora) ich dokładość porówujemy toując tet t-studeta. Spoób potępowaia: obliczyć wartości średie i wartości odchyleń tadardowych dla erii wyików uzykaych porówywaymi metodami; obliczyć wartość parametru t wg wzoru: t = ( ) + ( ) x x ( + ) +
30 W przypadku, gdy liczeboci erii pomiarów dla obu metod a jedakowe powyzzy wzór uprazcza ie do potaci: t = x x + porówać wartość obliczoego parametru t z wartością krytyczą t kr z tablic rozkładu t-studeta dla przyjętego poziomu itotości α oraz iloci topi wobody f = + - ;
31 Przykład Ozaczao zawartoc HCl dwiema metodami: kulometrycza i koduktometrycza. Porówać precyzję i dokładość obydwu metod. Uzykae wyiki [mol dm -3 ]: kulometria koduktometria 0,0095 0,003 0,0098 0,00 0,0097 0,0 0,0093 0,008 0,0097 0,006 0,0096 0,004 0,0099 0,009
32 Obliczoe wartości: kulometria koduktometria = 7 =7 x = 0,0096 mol dm -3 x = 0,007 mol dm -3 = 0,0000 mol dm -3 = 0,0003 mol dm -3 Porówaie precyzji - tet F-Sedecora, x, x F = =,56
33 Tet F-Sedecora wartości krytycze f f ,00 99,0 9,55 30,8 6,94 8,00 5,79 3,7 5,4 0,9 4,74 9,55 4,46 8,65 4,6 8,0 4,0 7,56 3,98 7,0 9,6 99,7 9,8 9,46 6,59 6,69 5,4,06 4,76 9,78 4,35 8,45 4,07 7,59 3,86 6,99 3,7 6,55 3,59 6, 9,5 99,5 9, 8,7 6,39 5,98 5,9,39 4,53 9,5 4, 7,85 3,84 7,0 3,63 6,4 3,48 5,99 3,36 5,67 9,30 99,30 9,0 8,4 6,6 5,5 5,05 0,97 4,39 8,57 3,97 7,46 3,69 6,63 3,48 6,06 3,33 5,64 3,0 5,3 9,33 99,33 8,94 7,9 6,6 5, 4,95 0,67 4,8 8,47 3,87 7,9 3,58 6,37 3,37 5,80 3, 5,39 3,09 5,07 9,36 99,34 8,88 7,67 6,09 4,98 4,88 0,45 4, 8,6 3,79 7,00 3,50 6,9 3,9 5,6 3,4 5, 3,0 4,88 9,37 99,36 8,84 7,49 6,04 4,80 4,8 0,7 4,5 8,0 3,73 6,84 3,44 6,03 3,3 5,47 3,07 5,06,95 4,74 9 9,38 99,38 8,8 7,34 6,00 4,66 4,78 0,5 4,0 7,98 3,68 6,7 3,39 5,9 3,8 5,35 3,0 4,95,90 4,63 0 9,39 99,40 8,78 7,3 5,96 4,54 4,74 0,05 4,06 7,87 3,63 6,6 3,34 5,8 3,3 5,6,97 4,85,86 4,54 9,40 99,4 8,76 7,3 5,93 4,45 4,70 9,96 4,03 7,79 3,60 6,54 3,3 5,74 3,0 5,8,94 4,78,8 4,46 Z tablicy rozkładu F- Sedecora odczytao wartość F kr dla daego poziomu itotości i odpowiedich liczb topi wobody. F kr (α=0,05; f =f =6)= 4,8 F =,56 Poieważ F < F kr zatem wyika tąd wioek, że porówywae metody ie różią ię między obą, w poób tatytyczie itoty, pod względem precyzji.
34 Porówaie dokładości - tet t-studeta poieważ liczeboci erii pomiarów dla obu metod a jedakowe parametr t obliczoo w oparciu o poiżzy wzór: obliczoa wartość: t = x t = 7,7 Z tablicy rozkładów wartości krytyczych tetu t- Studeta zajduję wartość: t kr (α =0,05; f = f + f = ) =,79 + Poieważ t > t kr zatem wyika tąd wioek, że porówywae metody różią ię pod względem dokładości. x Tet t-studeta wartości krytycze f α 0,05,706 4,303 3,8,776,57,447,365,306,6,8,0,79,60,49,3,0,0,0,093,086 0,0 63,567 9,95 5,84 4,604 4,03 3,707 3,499 3,355 3,50 3,69 3,06 3,055 3,0,977,947,9,898,878,86,845
35 Jeżeli porówywae metody różią ię w poób tatytyczie itoty pod względem precyzji (toujemy w tym celu tet F-Sedecora) ich dokładość porówujemy toując przybliżoy tet C-Cochraa i Coxaerie mało licze lub tet Api i Welcha. tet C- Cochraa i Coxa Spoób potępowaia: obliczyć wartości średie i wartości odchyleń tadardowych dla erii wyików uzykaych porówywaymi metodami; obliczyć wartość parametru C wg wzoru: gdzie: z C = = x z + x z z =
36 obliczyć wartość krytyczą parametru C kr wg wzoru: gdzie: z t + C kr = z + z z t t i t wartości krytycze odczytae z tabeli rozkładu t-studeta odpowiedio dla f = - i f = - topi wobody oraz poziomu itotości α; porówać wartość krytyczą parametru C kr z wartością obliczoą C ;
37 Przykład Przeprowadzoo aalizę zawartości wody w herbacie (uchej oczywiście) przez dwa laboratoria. Sprawdzić czy wyiki uzykae przez te laboratoria różią ię pod względem dokładości. Uzykae wyiki: Laboratorium. Laboratorium. = 0,036 g kg - = 0,08 g kg - x =,35 g kg - x =,4 g kg - = 8 = 8 Porówaie precyzji - tet F-Sedecora, x, x F = = 4,00
38 Tet F-Sedecora wartości krytycze f f ,00 99,0 9,55 30,8 6,94 8,00 5,79 3,7 5,4 0,9 4,74 9,55 4,46 8,65 4,6 8,0 4,0 7,56 3,98 7,0 9,6 99,7 9,8 9,46 6,59 6,69 5,4,06 4,76 9,78 4,35 8,45 4,07 7,59 3,86 6,99 3,7 6,55 3,59 6, 9,5 99,5 9, 8,7 6,39 5,98 5,9,39 4,53 9,5 4, 7,85 3,84 7,0 3,63 6,4 3,48 5,99 3,36 5,67 9,30 99,30 9,0 8,4 6,6 5,5 5,05 0,97 4,39 8,57 3,97 7,46 3,69 6,63 3,48 6,06 3,33 5,64 3,0 5,3 9,33 99,33 8,94 7,9 6,6 5, 4,95 0,67 4,8 8,47 3,87 7,9 3,58 6,37 3,37 5,80 3, 5,39 3,09 5,07 9,36 99,34 8,88 7,67 6,09 4,98 4,88 0,45 4, 8,6 3,79 7,00 3,50 6,9 3,9 5,6 3,4 5, 3,0 4,88 9,37 99,36 8,84 7,49 6,04 4,80 4,8 0,7 4,5 8,0 3,73 6,84 3,44 6,03 3,3 5,47 3,07 5,06,95 4,74 9 9,38 99,38 8,8 7,34 6,00 4,66 4,78 0,5 4,0 7,98 3,68 6,7 3,39 5,9 3,8 5,35 3,0 4,95,90 4,63 0 9,39 99,40 8,78 7,3 5,96 4,54 4,74 0,05 4,06 7,87 3,63 6,6 3,34 5,8 3,3 5,6,97 4,85,86 4,54 9,40 99,4 8,76 7,3 5,93 4,45 4,70 9,96 4,03 7,79 3,60 6,54 3,3 5,74 3,0 5,8,94 4,78,8 4,46 Z tablicy rozkładu F- Sedecora odczytao wartość F kr dla daego poziomu itotości i odpowiedich liczb topi wobody. F kr (α=0,05; f =f =7)= 3,79 F = 4,00 Poieważ F > F kr zatem wyika tąd wioek, że porówywae metody różią ię między obą, w poób tatytyczie itoty, pod względem precyzji.
39 Porówaie dokładości - tet C- Cochraa i Coxa Tet t-studeta wartości krytycze obliczoo wartości parametrów: α 0,05 0,0 z C z = = = x z z t + x z + C kr = z + z z t z = 0,0009 z = 0, C = 3,9 t =t (α =0,05; f =7)=,365 C kr =,365 Poieważ C > C kr zatem ależy twierdzić, że porówywae metody różią ię pod względem dokładości w poób tatytyczie itoty f ,706 4,303 3,8,776,57,447,365,306,6,8,0,79,60,49,3,0,0,0,093,086 63,567 9,95 5,84 4,604 4,03 3,707 3,499 3,355 3,50 3,69 3,06 3,055 3,0,977,947,9,898,878,86,845
40 tet Api i Welcha Spoób potępowaia: obliczyć wartości średie i wartości odchyleń tadardowych dla erii wyików uzykaych porówywaymi metodami; obliczyć wartości parametrów ν i c wg wzorów: x x + = ν c + = < gdzie: z tablicy rozkładu wartości ν o odczytać wartość parametru ν o (c, f, f, α); porówać wartość ν o z wartością obliczoą ν
41 Przykład Zatoować tet Api i Welcha dla erii wyików porówywaych w poprzedim przykładzie. Dla przypomieia: Uzykae wyiki: Laboratorium. Laboratorium. = 0,036 g kg - = 0,08 g kg - x =,35 g kg - x =,4 g kg - = 8 = 8
42 Obliczoe parametry: ν = 4, ν = x + x c = 0,0 c = +
43 z tablicy rozkładu wartości ν o odczytao wartość parametru ν o (c, f, f, α) ν o (0,; 7; 7; 0,05) =,8 ν = 4, Poieważ ν > ν o zatem ależy twierdzić, że porówywae metody różią ię pod względem dokładości w poób tatytyczie itoty. Wioek taki jak w przypadku zatoowaia tetu Cochraa i Coxa Rozkład ν wartości dla α = 0,05 f f c 0,0 0, 0, 0,3 0,4 0,5 0,6,94,90,85,80,76,74,76,94,90,85,80,76,73,74,94,90,85,80,76,73,73,94,90,85,80,76,73,7,94,90,85,80,76,73,7,94,90,85,80,76,7,69,86,8,79,76,74,73,76,86,8,79,76,73,73,73,86,8,79,76,73,7,7,86,8,79,76,73,7,7,86,8,79,76,73,7,70,86,8,79,75,7,70,68,8,78,76,74,73,73,76,8,78,76,74,7,7,73,8,78,76,73,7,7,7,8,78,76,73,7,70,70,8,78,76,73,7,70,69,8,78,76,73,7,69,67,75,73,7,7,7,73,76,75,73,7,7,7,7,73,75,73,7,7,7,70,7,75,73,7,70,70,69,70,75,73,7,70,69,69,69,75,73,7,70,68,67,66,7,7,70,70,7,73,76,7,7,70,70,70,7,73,7,7,70,69,69,70,7,7,7,70,69,69,69,69,7,7,70,69,68,68,68,7,7,70,68,67,66,66,64,65,66,67,69,7,76,64,65,65,66,68,70,7,64,65,65,66,67,69,7,64,65,65,65,66,67,68,64,65,65,65,66,66,67,64,64,64,64,64,64,64 0,7,80,76,74,7,70,67,80,76,74,7,70,66,80,76,73,7,69,66,80,76,73,70,69,65,80,76,73,70,69,65,80,75,73,70,68,64 0,8,85,79,76,7,70,66,85,79,76,7,70,65,85,79,76,7,70,65,85,79,76,7,70,65,85,79,76,7,70,65,85,79,76,7,70,64 0,9,90,8,78,73,7,65,90,8,78,73,7,65,90,8,78,73,7,65,90,8,78,73,7,65,90,8,78,73,7,65,90,8,78,73,7,64,0,94,86,8,75,7,64,94,86,8,75,7,64,94,86,8,75,7,64,94,86,8,75,7,64,94,86,8,75,7,64,94,86,8,75,7,64
STATYSTYKA. Seminarium Chemia Analityczna. Dr inż. Piotr Konieczka.
STATYSTYKA Semiarium Chemia Aalitycza Dr iż. Piotr Koieczka e-mail: kaczor@chem.pg.gda.pl Zaczijmy od defiicji Dokładość (accuracy) topień zgodości uzykaego wyiku pojedyczego pomiaru z wartością oczekiwaą
STATYSTYKA. Seminarium Chemia Analityczna. Dr hab. inż. Piotr Konieczka.
00--5 STATYSTYKA Semiarium Chemia Aalitycza Dr hab. iż. Piotr Koieczka e-mail: piotr.koieczka@pg.gda.pl Dokładość (accuracy) topień zgodości uzykaego wyiku pojedyczego pomiaru z wartością oczekiwaą (rzeczywitą).
Porównanie dwu populacji
Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :
STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.
Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
1 Dwuwymiarowa zmienna losowa
1 Dwuwymiarowa zmiea loowa 1.1 Dwuwymiarowa zmiea loowa kokowa X = x i, Y = y k = p ik przy czym i, k N oraz p ik = 1; i k p i = X = x i = p ik dla i N; p k = Y = y k = p ik dla k N; k i F 1 x = p i dla
1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,
1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =
JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE
1 JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE Precyzja Dr hab. inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/1 80-95 GDAŃSK e-mail: kaczor@chem.pg.gda.pl
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
Wprowadzenie do laboratorium 1
Wprowadzeie do laboratorium 1 Etymacja jedorówaiowego modelu popytu a bilety loticze Etapy budowy modelu ekoometryczego Specyfikacja modelu Zebraie daych tatytyczych Etymacja parametrów modelu Weryfikacja
Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.
MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,
3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej
Opracowaie daych pomiarowych dla studetów realizujących program Pracowi Fizyczej Pomiar Działaie mające a celu wyzaczeie wielkości mierzoej.. Do pomiarów stosuje się przyrządy pomiarowe proste lub złożoe.
16 Przedziały ufności
16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])
Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).
Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,
Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)
IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym
Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona
Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń
MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1
Materiały do wykładu 4 ze Statystyki
Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.
Estymacja parametrów populacji
Estymacja parametrów populacji Estymacja parametrów populacji Estymacja polega a szacowaiu wartości parametrów rozkładu lub postaci samego rozkładu zmieej losowej, a podstawie próby statystyczej. Estymacje
Estymacja to wnioskowanie statystyczne koncentrujące się wokół oszacowania wartości specyficznych parametrów populacji.
/7/06 Biotatytyka, 06/07 dla Fizyki Medyczej, tudia magiterkie etymacja etymacja średiej puktowa przedział ufości średiej rozkładu ormalego etymacja puktowa i przedziałowa wariacji rozkładu ormalego etymacja
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej
Lista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Rozwiązanie n1=n2=n=8 F=(4,50) 2 /(2,11) 2 =4,55 Fkr (0,05; 7; 7)=3,79
Test F =służy do porównania precyzji dwóch niezależnych serii pomiarowych uzyskanych w trakcie analizy próbek o zawartości analitu na takim samym poziomie #obliczyć wartość odchyleń standardowych dla serii
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
LABORATORIUM METROLOGII
AKADEMIA MORSKA W SZCZECINIE Cetrum Iżyierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczeie 5 Aaliza statystycza wyików pomiarów pozycji GNSS Szczeci, 010 Zespół wykoawczy: Dr iż. Paweł Zalewski Mgr
Statystyka matematyczna dla leśników
Statystyka matematycza dla leśików Wydział Leśy Kieruek leśictwo Studia Stacjoare I Stopia Rok akademicki 0/0 Wykład 5 Testy statystycze Ogóle zasady testowaia hipotez statystyczych, rodzaje hipotez, rodzaje
Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste
Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x
Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona)
Wykład 7 Dwie iezależe próby Częto porówujemy wartości pewej zmieej w dwóch populacjach. Przykłady: Grupa zabiegowa i kotrola Lekartwo a placebo Pacjeci biorący dwa podobe lekartwa Mężczyźi a kobiety Dwie
Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)
Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod
Wykład 4 Soczewki. Przyrządy optyczne
Wykład 4 Soczewki. Przyrządy optycze Soczewka cieka - rówaie zlifierzy oczewek Rozważyy teraz dwie powierzchi ferycze oddzielające ośrodki o wpółczyikach załaaia kolejo i odległych od iebie o d. Niech
Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2
Wykład 7 Dwie iezależe próby Często porówujemy wartości pewej zmieej w dwóch populacjach. Przykłady: Grupa zabiegowa i kotrola Lekarstwo a placebo Pacjeci biorący dwa podobe lekarstwa Mężczyźi a kobiety
Rozkłady statystyk z próby
METODY PROBABILISTYCZE I STATYSTYKA WYKŁAD 0: ROZKŁADY STATYSTYK Z PRÓBY. PRZEDZIAŁY UFOŚCI. Rozkłady tatytyk z róby Statytyką azyway zieą loową, będącą fkcją zieych loowych,,..., taowiących róbę. Statytyka
STATYSTYKA OPISOWA WYKŁAD 1 i 2
STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest
Badania, pomiary, diagnostyka monitoring maszyn
Badaia, pomiary, diagotyka moitorig mazy STATYSTYCZNE OPRACOWANIE WYNIKÓW EKSPERYMENTU ZASADY ANALIZY ORAZ ZALECENIA PROCEDURALNE ODNIESIONE DO NIEWIELKIEJ SERII POMIARÓW WYKONYWANYCH W LABORATORIACH STUDENCKICH
Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja
Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im
PROBLEMATYKA OCENY MIARODAJNOŚCI WYNIKÓW W ANALIZIE ŚLADOWEJ
PROBLEMATYKA OCENY MIARODAJNOŚCI WYNIKÓW W ANALIZIE ŚLADOWEJ Edmud Kozłowski, Katedra Chemii Aalityczej, Wydział Chemiczy Politechiki Gdańskiej. Wstęp Chemia aalitycza jest dziedzią auk chemiczych zajmującą
KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę
INFORMATYKA W CHEMII Dr Piotr Szczepański
INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizyczej i Fizykochemii Polimerów WPROWADZENIE DO STATYSTYCZNEJ OCENY WYNIKÓW DOŚWIADCZEŃ 1. BŁĄD I STATYSTYKA błąd systematyczy, błąd przypadkowy,
JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE
JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE 1 Dokładność i poprawność Dr hab. inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/12 80-233 GDAŃSK e-mail:
Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7
Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
PODSTAWY BIOSTATYSTYKI ĆWICZENIA
PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM ZADANIE 1 Z populacji wyborców pobrao próbkę 1000 osób i okazało
KADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
Statystyka Inżynierska
aysyka Iżyierska dr hab. iż. Jacek Tarasik AG WFiI 4 Wykład 5 TETOWANIE IPOTEZ TATYTYCZNYC ipoezy saysycze ipoezą saysyczą azywamy każde przypszczeie doyczące iezaego rozkład o prawdziwości lb fałszywości
Statystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
Parametryczne Testy Istotności
Parametrycze Testy Istotości Wzory Parametrycze testy istotości schemat postępowaia pukt po pukcie Formułujemy hipotezę główą H odośie jakiegoś parametru w populacji geeralej Hipoteza H ma ajczęściej postać
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uiwersytet Ekoomiczy w Katowicach 2015/16 ROND, Fiase i Rachukowość, rok 2 Rachuek prawdopodobieństwa Rzucamy 10 razy moetą, dla której prawdopodobieństwo wyrzuceia orła w pojedyczym
STATYSTKA I ANALIZA DANYCH LAB II
STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.
Statystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
Ćwiczenie 2 ESTYMACJA STATYSTYCZNA
Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej
STATYSTYKA MATEMATYCZNA narzędzie do opracowywania i interpretacji wyników pomiarów
STATYSTYKA MATEMATYCZNA narzędzie do opracowywania i interpretacji wyników pomiarów Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Statystyka matematyczna - część matematyki
Statystyka. Katarzyna Chudy Laskowska
Statystyka Katarzya Chudy Laskowska http://kc.sd.prz.edu.pl/ WNIOSKOWANIE STATYSTYCZNE Celem aalizy statystyczej ie jest zwykle tylko opisaie (prezetacja) posiadaych daych, czyli tzw. próby statystyczej.
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57),
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Uiv. Techol. Steti. 009, Oecoomica 75 (57), 3 36 Leoid WOROBJOW, Krzyztof WISIŃSKI, Alekadra PANFIORAVA STOSOWANIE METOD ESTYMACJI PRZEDZIAŁOWEJ
Podstawowe pojęcia. Próba losowa. Badanie próby losowej
METODY PROBABILISTYCZNE I STATYSTYKA WYKŁAD 8: STATYSTYKA OPISOWA. ROZKŁADY PRAWDOPODOBIEŃSTWA WYSTĘPUJĄCE W STATYSTYCE. Małgorzata Krętowska Wydział Iforatyki Politechika Białostocka Podstawowe pojęcia
SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN
ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI
Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
Podstawy chemii. Natura pomiaru. masa 20 ± 1 g
Podstawy chemii ) Sposoby badań obiektów (6 h) pomiar i jego atura klasycza aaliza jakościowa i ilościowa obliczeia rówowagi i ph metody aalizy promieiowaie elektromagetycze kwatowa atura atomu oddziaływaie
będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ
LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu
wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=
ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej
I PRACOWNIA FIZYCZNA, UMK TORUŃ WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO
I PRACOWNIA FIZYCZNA, UMK TORUŃ Istrukcja do ćwiczeia r WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO Istrukcję wykoał Mariusz Piwiński I. Cel ćwiczeia. pozaie ruchu harmoiczeo oraz
INFORMATYKA W CHEMII Dr Piotr Szczepański
INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizyczej i Fizykochemii Polimerów . BŁĄD A NIEPEWNOŚĆ. TYPY NIEPEWNOŚCI 3. POWIELANIE NIEPEWNOŚCI 4. NIEPEWNOŚĆ STANDARDOWA ZŁOŻONA W rok 995 grpa
Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15
Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay
Estymacja przedziałowa:
Estymacja przedziałowa: Zamiast szukad ajlepszego estymatora, tak jak w estymacji puktowej będziemy poszukiwad przedziału, do którego będzie ależał szukay parametr z odpowiedio dużym prawdopodobieostwem.
1 Testy statystyczne. 2 Rodzaje testów
1 Testy statystycze Podczas sprawdzaia hipotez statystyczych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ a odrzuceiu hipotezy zerowej (H 0 ), gdy jest oa prawdziwa, czyli
2.1. Studium przypadku 1
Uogóliaie wyików Filip Chybalski.. Studium przypadku Opis problemu Przedsiębiorstwo ŚRUBEX zajmuje się produkcją wyrobów metalowych i w jego szerokim asortymecie domiują różego rodzaju śrubki i wkręty.
Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora
Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia
(X i X) 2. n 1. X m S
Wykład 8. Przedziały ufości i testowaie hipotez A gdy ie zamy wariacji σ 2? Załóżmy, że X ma rozkład ormaly, ale ie zamy wartości ai m ai σ 2. Jak wtedy szacować wartość średią m? Przypomijmy, że Wtedy
W(s)= s 3 +7s 2 +10s+K
PRZYKŁAD (LINIE PIERWIASTKOWE) Tramitacja operatorowa otwartego układu regulacji z jedotkowym ujemym przęŝeiem zwrotym daa jet wzorem: G O K ( + )( + 5) a) Podaj obraz liii pierwiatkowych układu zamkiętego.
SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY
SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą
Słowniczek Hipoteza statystyczna Hipoteza parametryczna Hipoteza nieparametryczna Hipoteza zerowa Hipoteza alternatywna Błąd pierwszego rodzaju
Słowiczek Hipoteza statystycza jakiekolwiek przypuszczeie dotyczące rozkładu populacji geeralej Hipoteza parametrycza hipoteza statystycza precyzująca wartość parametru w rozkładzie populacji geeralej
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
Komputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 7 8.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory
Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.
Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują
Statystyczny opis danych - parametry
Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea
Estymacja przedziałowa - przedziały ufności
Estymacja przedziałowa - przedziały ufości Próbę -elemetową charakteryzujemy jej parametrami (p. x, s, s ). Służą oe do ocey wartości iezaych parametrów populacji (m, σ, σ). Nazywamy je estymatorami puktowymi
STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś
1 STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr iż Krzysztof Bryś Pojȩcia wstȩpe populacja - ca ly zbiór badaych przedmiotów lub wartości. próba - skończoy podzbiór populacji podlegaj acy badaiu.
Testy dotyczące wartości oczekiwanej (1 próbka).
ZASADY TESTOWANIA HIPOTEZ STATYSTYCZNYCH. TESTY DOTYCZĄCE WARTOŚCI OCZEKIWANEJ Przez hipotezę tatytyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu intereującej na cechy. Hipotezy
Analiza gazów spalinowych
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH Aaliza gazów iowych Laboratorium mierictwa (M 7) Opracował: dr iż. Grzegorz Wiciak Sprawdził:
Wnioskowanie statystyczne dr Alicja Szuman
Wiokowaie tatytycze dr Alicja Szuma Literatura: J. Jóźwiak, J. Podgórki Statytyka od podtaw PWE Warzawa 006 J. Kudelki, I. Roeke Slomka Statytyka AE Pozań 995 J. Greń Statytyka matematycza. Modele i zadaia
θx θ 1, dla 0 < x < 1, 0, poza tym,
Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.
Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia
Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk
1. Błąd średni pomiaru. Leica DISTO
Aaliza dokładości poiarów Charakterystyką dokładości istruetów poiarowych jest błąd średi poiaru. Wykoywae poiary bezpośredie w tereie pośrediczą zwykle w wyzaczaiu pewych wielkości ie poddających się
n n X n = σ σ = n n n Ponieważ zmienna losowa standaryzowana ma rozkład normalny N(0, 1), więc
5.3. Zagadieia estymacji 87 Rozważmy teraz dokładiej zagadieie szacowaia wartości oczekiwaej m zmieej losowej X o rozkładzie ormalym N(m, F), w którym odchyleie stadardowe F jest zae. Niech X, X,..., X
LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 16
KATEDRA INŻYNIERII CHEMICZNEJ I ROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, ROCESOWEJ I BIOROCESOWEJ Ćwiczeie r 16 Mieszaie Osoba odpowiedziala: Iwoa Hołowacz Gdańsk,
Przejście światła przez pryzmat i z
I. Z pracowi fizyczej. Przejście światła przez pryzmat - cz. II 1. Przejście światła przez pryzmat. Kąt odchyleia. W paragrafie 8.10 trzeciego tomu e-podręczika opisao bieg światła moochromatyczego w pryzmacie.
Statystyczna analiza danych
Statytyka. v.0.9 egz mgr inf nietacj Statytyczna analiza danych Statytyka opiowa Szereg zczegółowy proty monotoniczny ciąg danych i ) n uzykanych np. w trakcie pomiaru lub za pomocą ankiety. Przykłady
Podstawowe testy statystyczne i analiza zależności zjawisk
Podstawowe testy statystycze i aaliza zależości zjawisk PODSTAWOWE TESTY STATYSTYCZNE Hipotezy statystycze Hipoteza statystycza dowole przypuszczeie dotyczące rozkładu lub jego parametrów Hipoteza parametrycza