Zadania z Rachunku Prawdopodobieństwa III - 1
|
|
- Julian Piasecki
- 6 lat temu
- Przeglądów:
Transkrypt
1 Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o następujących rozkładach: a) symetryczny dwupunktowy; b) dwumianowy z parametrami n, p; c) Poissona z parametrem λ; d) Gaussowski N (a, σ 2 ); e) wykładniczy z parametrem λ; f) jednostajny na [a, b]. 2. Udowodnij, że jeśli X i Y niezależne zmienne losowe, to M X+Y = M X M Y. 3. Wykaż, że X ma skończoną funkcję tworzącą momenty na przedziale ( t 0, t 0 ) wtedy i tylko wtedy gdy dla każdego 0 < λ < t 0 istnieje stała C(λ) taka, że P( X > t) C(λ)e λt dla wszystkich t > Załóżmy, że X ma skończoną funkcję tworzącą momenty na przedziale ( t 0, t 0 ) dla pewnego t 0 > 0. Udowodnij, że a) X ma wszystkie momenty skończone, tzn. E X p < dla p > 0; b) M X (t) = k=0 tk k! EXk ; c) EX k = dk M dx k X (t) t=0 ; d) Jeśli Y zmienna losowa taka, że M Y (t) = M X (t) dla t z pewnego otoczenia 0, to µ Y = µ X ; e) Rozkład X jest wyznaczony przez swoje momenty tzn. jeśli EY k = EX k dla wszystkich k Z +, to µ Y = µ X ; f) Jeśli X n ciąg zmiennych losowych taki, że M Xn (t) M X (t) dla t ( t 0, t 0 ) przy n, to X n zbiega do X według rozkładu. 5. Podaj przykład dwu zmiennych losowych takich, że EX k = EY k dla wszystkich k Z + (zakładamy, że E X k, E Y k < ) oraz µ X µ Y. Niech f : R R { }. Transformatą Fenchela-Legendre a funkcji f nazywamy funkcję Lf : R R { } określoną wzorem Lf(x) := sup{xy f(y): y R}. Ogólniej, gdy f : R d R { }, to definiujemy Lf(x) := sup{ x, y f(y): y R d }. 6. Wykaż, że: a) L(af)(x) = alf(x/a) dla a > 0; b) f(x) + Lf(y) xy dla x, y R; c) Lf jest funkcją wypukłą; 1
2 d) LLf f; e) LLf = f jeśli f : R R wypukła, a jeśli f przyjmuje wartość, to równość zachodzi poza co najwyżej dwoma punktami; f) LLf to maksymalna funkcja wypukła dominowana przez f. 7. Oblicz Lf dla f = x p, 1 p. Dla zmiennej losowej X, określmy Λ X (t) := log M X (t), Λ X(t) := LΛ X (t). 8. Wykaż, że Λ X jest funkcją wypukłą. 9. Załóżmy, że X i są niezależnymi zmiennymi losowymi o jednakowym rozkładzie, a S n = X X n. Wyraź Λ S n za pomocą Λ X. 10. Oblicz Λ X dla rozkładów z zadania 1. 2
3 Zadania z Rachunku Prawdopodobieństwa III Wykaż, że dla dowolnego t > 0, t 1 t 3 < e t2 /2 t e s2 /2 ds < t Uogólnij poprzednie zadanie i znajdź takie liczby a i > 0, i = 0, 1, 2,..., że dla dowolnego t > 0 oraz k = 0, 1, 2,..., ( 1) i a i t 2i 1 < e t2 /2 2k+1 i=0 t e s2 /2 ds < 3. Udowodnij, że dla X N (0, 1) oraz dowolnego A B(R), 2k i=0 ( 1) i a i t 2i 1. 1 lim n n log P( S n A) = essinf{x 2 /2: x A}. 4. Podaj przykład zmiennej X takiej, że nie istnieje lim n n 1 log P( S n = 0). 5. Wykaż, że dla dowolnej zmiennej X, 1 lim n n log P( S n t) = inf s t Λ X(s). 6. Wykaż, że a) Funkcja Λ X jest półciągła z dołu dla dowolnej zmiennej X; b) Jeśli 0 IntD ΛX, to lim t Λ X (t) =, w szczególności zbiory {t: Λ X (t) a} są zwarte dla a R; c) Jeśli D ΛX = R, to lim t Λ X (t)/ t =. 3
4 Zadania z Rachunku Prawdopodobieństwa III Załóżmy, że współrzędne X (j) wektora losowego X są niezależnymi zmiennymi losowymi. Wyraź Λ X i Λ X za pomocą Λ X (j) i Λ X (j). 2. Niech X będzie gaussowskim d-wymiarowym wektorem losowym o średniej a i macierzy kowariancji C. Znajdź Λ X i Λ X. 3. a) Wykaż, że jeśli X jest wektorem losowym w R d oraz t / conv(supp µ X ), to Λ X (t) =. b) Podaj przykład wektora losowego X oraz t / supp µ X takiego, że Λ X (t) <. 4. Załóżmy, że (M k, F k ) k=0 jest martyngałem takim, że M k M k 1 a k dla k = 1, 2,.... Wykaż, że oraz Λ Mn M 0 (t) t2 2 k=1 P( M n M 0 s) 2 exp( a 2 k u 2 2 n ). k=1 a2 k 5. Przy oznaczeniach poprzedniego zadania, wykaż, że istnieje stała C < taka, że dla p 2, M n M 0 p := (E M n M 0 p ) 1/p C p( a 2 k) 1/2. 6. Niech S = n k=1 a kε k, gdzie ε k niezależne zmienne losowe takie, że P(ε k = ±1) = 1/2. Wykaż, że dla p, q > 0 istnieje stała C p,q zależna tylko od p i q dla której S p C p,q S q. k=1 4
5 Zadania z Rachunku Prawdopodobieństwa III Rozpatrując rozkłady wykładnicze, gaussowskie i Poissona pokaż, że nie można poprawić rzędu oszacowań w nierównościach Bernsteina i Bennetta. 2. Załóżmy, że (M k, F k ) k=0 jest martyngałem takim, że max k M k M k 1 = a, E((M k M k 1 ) 2 F k 1 ) σk 2 oraz σ2 = n k=1 σ2 k. Wykaż, że oraz Λ Mn M 0 (t) σ2 a 2 (eta ta 1) ( P( M n M 0 s) 2 exp s ( 2a ln 1 + sa )) σ Wykaż, że z odwrotnej nierówności wykładniczej Kołmogorowa wynika, że dla niezależnych zmiennych X i o sredniej zero, ( n ) P X i s 1 ( ) K(ε) exp (1 + ε) s2 2σ 2, o ile max(s, σ) max X δ(ε)σ 2. i 4. Niech X i będą niezależnymi symetrycznymi zmiennymi losowymi oraz a i 1. Wykaż, że dla dowolnej funkcji wypukłej f : F R +, Ef( a i X i ) Ef( X i ). Wywnioskuj stąd, że dla funkcji wypukłej, niemalejącej f : R+ R +, Ef( a i X i ) Ef( X i ). 5. Wykaż, że przy założeniach poprzedniego zadania nie musi być prawdą, że dla s > 0, P( a i X i s) P( X i s). 5
6 Zadania z Rachunku Prawdopodobieństwa III Wykaż, że dla niezależnych zmiennych losowych o jednakowym rozkładzie dla p 1 i stałej uniwersalnej C. E max k n S k p C p E S n p 2. Wykaż, że dla niezależnych zmiennych losowych dla p 1 i stałej uniwersalnej C. E max S k p C p max E S k p k n 1 k n 3. Wykaż, że nie istnieje stała uniwersalna C taka, że E max k n M k CE M n dla dowolnego martyngału (M k ) 1 k n. 4. Załóżmy, że X i i Y i są niezależnymi zmiennymi losowymi o jednakowym rozkładzie. Wykaż, że istnieją uniwersalne stałe C 1 i C 2 dla których k P(max k,l n j=1 l h(x i, Y j ) t) C 1 P( h(x i, Y j ) t/c 2 ) dla dowolnej funkcji mierzalnej h. j=1 5* Niech X i będzie ciągiem niezależnych zmiennych losowych w ośrodkowej przestrzeni Banacha F. Wykaż, że następujące warunki są równoważne. i) X i zbiega według prawdopodobieństwa ii) X i zbiega p.n. iii) X i zbiega według rozkładu. 6* Wykaż, że istnieją stałe C i taka, że dla dowolnych niezależnych rzeczywistych zmiennych losowych X i oraz liczb a k, P( max S k a k t) C 1 max P( S k a k t/c 2 ). 1 k n 1 k n 6
7 Zadania z Rachunku Prawdopodobieństwa III Niech X będzie zmienną losową o wartościach w osrodkowej przestrzeni Banacha F. Wykaż, że a) dla ε > 0 istnieje funkcja ϕ: F F przyjmująca tylko przeliczalnie wiele wartości taka, że X ϕ(x) ε p.n., b) jeśli E X <, to dla ε > 0 istnieje funkcja ϕ: F F przyjmująca tylko skończenie wiele wartości taka, że E X ϕ(x) ε. 2. Wykaż, że jeśli X i są zmiennymi o jednakowym rozkładzie takimi, że S P(X i 0) > 0, to lim sup n n n = p.n.. 3. Załóżmy, że X i są niezależne o wartościach w F. Wykaż, że a) Dla dowolnych s, t > 0, P(max k n S k > 3t + s) P(max k n S k > t) 2 + P(max k n X k > s). b) Jeśli zmienne X i są symetryczne, to dla s, t > 0, P(max k n S k > 2t + s) 4P( S n > t) 2 + P(max k n X k > s). 4. Niech S := n x iε i dla pewnych x i F. Wykaż, że dla p, q > 0 istnieją stałe C p,q < zależne tylko od p i q takie, że (E S p ) 1/p C p,q (E S q ) 1/q. 5. Załóżmy, że 0 < p <, zmienne X i są niezależne i symetryczne o wartościach w F. Wykaż, że E S n p 2 3 p E max i n X i p + 2(3t 0 ) p, gdzie t 0 := inf{t > 0: P( S n > t) (8 3 p ) 1 }. 6. Przestrzeń Banacha F nazywamy typu p 1 jeśli istnieje stała T p taka, że dla dowolnych wektorów x i F, (E x i ε i p ) 1/p T p ( x i p ) 1/p. Wykaż, że a) Jeśli przestrzeń jest typu p, to jest typu q dla q p. b) Przestrzenie Hilberta są typu 2. c) Każda przestrzeń Banacha jest typu 1 i nie istnieją przestrzenie typu p > 2. d) Przestrzeń L p jest typu min(p, 1) dla p <. e) Przestrzeń c 0 nie ma nietrywialnego typu. 7
8 Zadania z Rachunku Prawdopodobieństwa III Załóżmy, że X i są niezależnymi ograniczonymi zmiennymi losowymi o średniej zero spełniającymi warunki: i) a 2 n := Var(S n ) = n EX2 i ii) X n ln ln a 2 n a n 0. Wykaż, że lim sup n S n = 1 p.n. 2a 2 n ln ln a 2 n 2. Załóżmy, że X i są niezależnymi zmiennymi losowymi o jednakowym rozkładzie ze średnią zero i warinacją σ 2. Wykaż, że dla dowolnej funkcji ciągłej f : R R, lim sup n lim inf n f( S n f( ) = 2n ln ln n S n 2n ln ln n ) = sup f(t) p.n., t [ σ,σ] inf f(t) p.n.. t [ σ,σ] 3. Załóżmy, że X i są niezależnymi wektorami losowymi w ośrodkowej przestrzeni Banacha o tym samym rozkładzie co X. Wykaż, że warunek lim sup n S n 2n ln ln n < p.n. implikuje: i) E X 2 LL X <, gdzie LLx := ln ln(x 10). ii) EX = 0 oraz sup x 1 E x (X) 2 <. 4. Załóżmy, że X i są niezależnymi wektorami losowymi w ośrodkowej przestrzeni Banacha typu 2 o tym samym rozkładzie co X oraz E X 2 LL X <. S Wykaż, że 2n n ln ln n zbiega do 0 według prawdopodobieństwa. 8
9 Zadania z Rachunku Prawdopodobieństwa III Niech f : R n R będzie funkcją ciągłą o nośniku zwartym, Wykaż, że a) Dla α Z n + oraz t R n t α f(t) = i α D α f(t) i wywnioskuj stąd, że f jest funkcją szybko znikającą w nieskończoności, b) dla dowolnej miary skończonej µ na R n, f(x)dµ(x) = 1 f( y) µ(y)dy, R (2π) n n R n w szczególności c) Dla α Z n +, f(t) = 1 (2π) n e itx f( x)dx. R n D α f(t) = 1 (2π) n e itx (ix) α f( x)dx. 2. a) Niech ν będzie miarą na R \ {0} taką, że x 2 dν(x) < oraz X ma rozkład nieskończenie podzielny π a,σ 2,ν. Wykaż, że EX 2 < oraz y 3 EX = a + R\{0} 1 + y 2 dν(y), Var(X) = σ 2 + y 2 dν(y). R\{0} b) Wykaż, że jeśli X π a,σ 2,ν oraz EX 2 <, to x 2 dν(x) <. 3. Załóżmy, że ciąg zmiennych nieskończenie podzielnych X n zbiega według rozkładu do zmiennej X. Wykaż, że X jest nieskończenie podzielny. 4. Wykaż, że jedyne ograniczone zmienne nieskończenie podzielne, to stałe. 5. Wykaż, że zmienna X ma symetryczny rozkład nieskończenie podzielny wtedy i tylko wtedy gdy istnieje σ 0 oraz miara ν na (0, ) taka, że (0, ) min(1, x2 )dν(x) < dla których ( ϕ X (t) = exp t2 σ 2 ) + (cos(tx) 1)dν(x). 2 (0, ) 6. Udowodnij, że zmienna X ma nieujemny rozkład nieskończenie podzielny wtedy i tylko wtedy gdy istnieje a 0 oraz miara ν na (0, ) taka, że min(1, x)dν(x) < dla których (0, ) ( ) ϕ X (t) = exp ita + (e itx 1)dν(x). (0, ) 9
10 Zadania z Rachunku Prawdopodobieństwa III Niech q : R R będzie funkcją mierzalną, ograniczoną taką, że lim sup x 0 x q(x) x 2 <. Wykaż, że zmienna X jest nieskończenie podzielna wtedy i tylko wtedy gdy istnieje układ Levy ego (a, σ, ν) taki, że ϕ X (t) = exp (ita t2 σ 2 ) + (e itx 1 itq(x))dν(x). 2 R\{0} 2. Niech (a, σ 2, ν) będzie układem Levy ego. Wykaż, że istnieje proces stochastyczny (X t ) t 0 taki, że i) X 0 = 0 p.n. ii) X t ma przyrosty niezależne iii) X t X s π (t s)a,(t s)σ 2,(t s)ν dla 0 s < t. 3. Niech N t będzie procesem Poissona z intensywnością λ oraz X, X 1, X 2,... będą niezależnymi zmiennymi losowymi o jednakowym rozkładzie. Określmy złożony proces Poissona wzorem N t Y t := X s. s=1 Wykaż, że a) Y t jest procesem o przyrostach niezależnych i trajektoriach prawostronnie ciągłych, b) EY t = λtex, Var(Y t ) = λtex 2 c) EWah [0,T ] (Y ) = λt E X, d) P(sup 0 t T Y t λtex ε) 4λT ε 2 EX Wykaż, że dla dowolnego układu Levy ego (a, σ 2, ν) istnieje proces Z t spełniający warunki i)-iii) zadania 2 oraz taki, że iv) Trajektorie Z t są prawostronnie ciągłe i posiadają lewostronne granice. 5. Udowodnij, że przy założeniach poprzedniego zadania, jeśli σ = 0 oraz y dν <, to możemy skonstruować proces Xt spełniający warunki poprzedniego zadania którego trajektorie mają wahanie ograniczone na każdym przedziale skończonym. 10
11 Zadania z Rachunku Prawdopodobieństwa III Wykaż (bez używania funkcji charakterystycznych), że jeśli X jest rozkładem α-stabilnym oraz X 1, X 2 są niezależnymi kopiami X, to c 1 X 1 + c 2 X 2 (c α 1 + c α 2 ) 1/α X + B(c 1, c 2 ) dla c 1, c Scharakteryzuj wszystkie nieujemne rozkłady stabilne. 3. Scharakteryzuj wszystkie symetryczne rozkłady stabilne. 4. Niech T 1, T 2,... będą niezależnymi zmiennymi losowymi o rozkładzie wykładniczym z parametrem 1, zaś Γ j := T T j. a) Niech S j będzie momentem j-tego skoku procesu Poissona N z intensywnością λ, tzn. S j := inf{t: N t = j}. Wykaż, że ciąg (S j ) ma ten sam rozkład, co ciąg (Γ j /λ). b) Załóżmy, że (Γ j,k ), k = 1, 2..., n są niezależnymi kopiami (Γ j ) oraz λ 1,..., λ n > 0. Niech (Zj ) j 1 oznacza niemalające uporzadkowanie zbioru {Γ j,k /λ k : j 1, 1 k n}. Wykaż, że (Zj ) ma ten sam rozkład, co Γ ( j λ λ n ). c) Wykaż, że dla j > p > 0, EΓ p Γ(j p) j = 1 Γ(j) j p. 5. Ustalmy 0 < α < 2. Niech (Γ j ) będzie jak w porzednim zadaniu, a X, X 1, X 2,... będzię ciągiem niezależnych symetrycznych zmiennych losowych o jednakowym rozkładzie, niezależnym od (Γ j ) takim, że E X α <. Wykaż, że a) Szereg S := j=1 jest zbieżny p.n. b) S ma symetryczny rozkład α-stabilny c*) lim t t α P( S > t) = E X α. Γ 1/α j X j 6. Wykaż, że jeśli X ma rozkład α-stabilny oraz α 2, to E X p < wtedy i tylko wtedy gdy p < α. 11
Zadania z Rachunku Prawdopodobieństwa III - 1
Zadania z Rachunku Prawdopodobieństwa III - 1 1. Oblicz funkcję tworzącą momenty zmiennych o następujących rozkładach: a) symetryczny dwupunktowy; b) dwumianowy z parametrami n, p; c) Poissona z parametrem
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Zadania z Procesów Stochastycznych 1
Zadania z Procesów Stochastycznych 1 Definicja Procesem Poissona z parametrem (intensywnością) λ > 0 nazywamy proces stochastyczny N = (N t ) t 0 taki, że N 0 = 0; (P0) N ma przyrosty niezależne; (P1)
Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podaj przykład
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i
Zadania z Koncentracji Miary I
Zadania z Koncentracji Miary I Przez λ n oznaczamy n-wymiarową miarę Lebesgue a, a przez σ n unormowaną miarę powierzchniową na S n. Jeśli µ jest miarą na X, d), to określamy dla dowolnego zbioru A miarę
3. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II - Mówimy, że i) ciąg miar probabilistycznych µ n zbiega słabo do miary probabilistycznej µ (ozn. µ n µ), jeśli fdµ n fdµ dla dowolnej funkcji ciągłej ograniczonej
Zadania ze Wstępu do Analizy Stochastycznej 1. = 0 p.n.
Zadania ze Wstępu do Analizy Stochastycznej 1 1. Znajdź rozkład zmiennej 5W 1 W 3 + W 7. 2. Dla jakich parametrów a i b, zmienne aw 1 W 2 oraz W 3 + bw 5 są niezależne? 3. Znajdź rozkład wektora losowego
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;
Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,
Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Teoria ze Wstępu do analizy stochastycznej
eoria ze Wstępu do analizy stochastycznej Marcin Szumski 22 czerwca 21 1 Definicje 1. proces stochastyczny - rodzina zmiennych losowych X = (X t ) t 2. trajektoria - funkcja (losowa) t X t (ω) f : E 3.
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podać przykład
}, gdzie a = t (n) )(f(t(n) k. ) f(t(n) k 1 ) 1+δ = 0,
Zadania z Procesów Stochastycznych II - 1 1. Niech π n = {t (n), t(n) 1,..., t(n) k n }, gdzie a = t (n) < t (n) 1
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
5 Przegląd najważniejszych rozkładów
5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,
Seria 1. Zbieżność rozkładów
Seria Zbieżność rozkładów We wszystkich poniższych zadaniach (E, ρ) jest przestrzenią metryczną Wykazać, że dla dowolnych x, x n, δ xn δ x wtedy i tylko wtedy, gdy x n x Sprawdzić, że n nk= δ k n λ, gdzie
Szkice do zajęć z Przedmiotu Wyrównawczego
Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Zadania z Rachunku Prawdopodobieństwa Dana jest przestrzeń probabilistyczna (Ω, F, P ), gdzie Ω jest zbiorem przeliczalnym
Zadania z Rachunku rawdopodobieństwa - 1 1. Dana jest przestrzeń probabilistyczna (Ω, F, ), gdzie Ω jest zbiorem przeliczalnym i F = 2 Ω. Udowodnij, że istnieją liczby p ω 0, ω Ω p ω = 1 takie, że (A)
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Statystyka i eksploracja danych
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja
Zadania z Analizy Funkcjonalnej I* - 1
Zadania z Analizy Funkcjonalnej I* - 1 1. Która z następujących przestrzeni jest przestrzenią Banacha w normie supremum: C(R); C ogr (R) przestrzeń funkcji ciągłych ograniczonych; C zw (R) przestrzeń funkcji
Wykład 11: Martyngały: definicja, twierdzenia o zbieżności
RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
4 Kilka klas procesów
Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces
Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126
Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać
8 Całka stochastyczna względem semimartyngałów
M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,
Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga
RAP 412 21.01.2009 Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga Wykładowca: Andrzej Ruciński Pisarz: Łukasz Waszak 1 Wstęp Na ostatnim wykładzie przedstawiliśmy twierdzenie o zbieżności
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Funkcja tworząca momenty (transformata Laplace a)
Dodatek E Funkcja tworząca momenty transformata Laplace a) E.1. Definicja i przykłady Zamieszczamy tu podstawowe informacje o funkcjach tworzących momenty, które stosuje się w wielu zagadnieniach praktycznych,
Zadania z RP 2. seria Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n
Zadania z RP 2. seria 1. 1. Dla x R n, niech δ x oznacza miarę Diraca, skupioną w punkcie x. Wykazać, że dla dowolnego ciągu x n R n zachodzi δ xn δ x wtedy i tylko wtedy, gdy x n x. 2. Podać przykład
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Wykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła autokorelacji Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN autokorelacji p. 1/25 Zarys referatu Co to sa procesy
2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27
SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane
Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju
Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Analiza Funkcjonalna - Zadania
Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.
Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014
Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne.
Rachunek prawdopodobieństwa B; zadania egzaminacyjne.. Niech µ będzie rozkładem probabilistycznym na (0, ) (0, ): µ(b) = l({x (0,) : (x, x) B}), dla B B((0, ) (0, ))), gdzie l jest miarą Lebesgue a na
Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
Zmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Rachunek Prawdopodobieństwa 3
Rachunek Prawdopodobieństwa 3 Rafał Latała 3 marca 205 Poniższe notatki powstały na podstawie wykładu monograficznego z Rachunku Prawdopodobieństwa 3, prowadzonego w semestrze zimowym 204/5. Celem wykładu
Jednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
Statystyka. Magdalena Jakubek. kwiecień 2017
Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,
7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
1 Elementy analizy funkcjonalnej
M. Beśka, Dodatek 1 1 Elementy analizy funkcjonalnej 1.1 Twierdzenia o reprezentacji Zaczniemy od znanego twierdzenia Riesza Twierdzenie 1.1 (Riesz) Niech będzie zwartą przestrzenią metryczną i załóżmy,
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136
Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 19 marzec, 2012 Przykłady procesów Markowa (i). P = (p ij ) - macierz stochastyczna, tzn. p ij 0, j p ij =
WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
1. Pojęcie normy, normy wektora [Kiełbasiński, Schwetlick]
1. Pojęcie normy, normy wektora [Kiełbasiński, Schwetlick] wektor x R d x =(x 1,x 2,..., x d ) T wektor, punkt w przestrzeni d-wymiarowej norma wektora własności (1) kxk > 0, kxk =0tylko wtedy, gdy x =0
Zadania o numerze 4 z zestawów licencjat 2014.
Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...
STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
Przestrzeń probabilistyczna
Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty
Zestaw zadań z Równań różniczkowych cząstkowych I 18/19
Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zad 1. Znaleźć rozwiązania ogólne u = u(x, y) następujących równań u x = 1, u y = 2xy, u yy = 6y, u xy = 1, u x + y = 0, u xxyy = 0. Zad 2. Znaleźć
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
jest ciągiem elementów z przestrzeni B(R, R)
Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)
Statystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5
Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................
PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW
PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW Rachunek prawdopodobieństwa (probabilitis - prawdopodobny) zajmuje się badaniami pewnych prawidłowości (regularności) zachodzących przy wykonywaniu doświadczeń
Liga zadaniowa Seria I, 2014/2015, Piotr Nayar, Marta Strzelecka
Seria I, 04/05, Piotr Nayar, Marta Strzelecka Pytania dotyczące zadań prosimy kierować do Piotra Nayara na adres: nayar@mimuw.edu.pl. Rozwiązania można przesyłać Marcie Strzeleckiej na adres martast@mimuw.edu.pl,
Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa
Ważne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Wstęp do Analizy Stochastycznej
Wstęp do Analizy Stochastycznej Rafał Latała 6 września 21 Poniższy tekst zawiera notatki do wykładów ze Wstępu do Analizy Stochastycznej, prowadzonego w semestrze wiosennym 21 roku. Gwiazdkami oznaczono
Analiza I.2*, lato 2018
Analiza I.2*, lato 218 Marcin Kotowski 14 czerwca 218 Zadanie 1. Niech x (, 1) ma rozwinięcie binarne.x 1 x 2.... Niech dla x, 1: oraz f() = f(1) =. Pokaż, że f: f(x) = lim sup n (a) przyjmuje wszystkie
2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7
Spis treści Spis treści 1 Przedziały ufności 1 1.1 Przykład wstępny.......................... 1 1.2 Określenie i konstrukcja...................... 3 1.3 Model dwupunktowy........................ 5 1.4
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.
Tematy: WSTĘP 1. Wprowadzenie do przedmiotu. Próbkowe odpowiedniki wielkości populacyjnych. Modele statystyczne i przykładowe zadania wnioskowania statystycznego. Statystyki i ich rozkłady. 2. Estymacja
1 Warunkowe wartości oczekiwane
Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie
Robert Kowalczyk. Zbiór zadań z teorii miary i całki
Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie
METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem
1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo
1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo 1.1 Rodzaje zbieżności ciagów zmiennych losowych Niech (Ω, F, P ) będzie przestrzenia probabilistyczna na której określony jest ciag {X
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ
1 Gaussowskie zmienne losowe
Gaussowskie zmienne losowe W tej serii rozwiążemy zadania dotyczące zmiennych o rozkładzie normalny. Wymagana jest wiedza na temat własności rozkładu normalnego, CTG oraz warunkowych wartości oczekiwanych..